1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
|
# Owner(s): ["oncall: jit"]
import os
import sys
import unittest
import torch
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase
if __name__ == "__main__":
raise RuntimeError(
"This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead."
)
# NOTE: FIXING FAILING TESTS
# If you are seeing a test failure from this file, congrats, you improved
# parity between JIT and Python API. Before you fix the test, you must also update
# the corresponding section in documentation that states the unsupported behavior.
# see: `jit_unsupported.rst`
class TestUnsupportedOps(JitTestCase):
def test_factory_ops_requires_grad_fail(self):
# Keyword argument {name} unknown is a JIT-only error message,
# so these functions are succeeding in eager and failing in JIT
# Complete issue and set of ops is https://github.com/pytorch/pytorch/issues/30761
# only testing some because they should be fixed all at once
def ones():
return torch.ones([2], requires_grad=True)
with self.assertRaisesRegexWithHighlight(
Exception, "Keyword argument requires_grad unknown", "torch.ones"
):
torch.jit.script(ones)
def randn():
return torch.randn([2], requires_grad=True)
with self.assertRaisesRegexWithHighlight(
Exception, "Keyword argument requires_grad unknown", "torch.randn"
):
torch.jit.script(randn)
def zeros():
return torch.zeros([2], requires_grad=True)
with self.assertRaisesRegexWithHighlight(
Exception, "Keyword argument requires_grad unknown", "torch.zeros"
):
torch.jit.script(zeros)
@unittest.skipIf(not torch._C.has_lapack, "PyTorch compiled without Lapack")
def test_init_ops(self):
def calculate_gain():
return torch.nn.init.calculate_gain("leaky_relu", 0.2)
def eye_():
return torch.nn.init.eye_(torch.zeros([2, 2]))
def dirac_():
return torch.nn.init.dirac_(torch.empty(3, 16, 5, 5))
def kaiming_uniform_():
return torch.nn.init.kaiming_normal_(torch.empty(3, 5))
def orthogonal_():
return torch.nn.init.orthogonal_(torch.empty(3, 5))
def sparse():
return torch.nn.init.sparse_(torch.empty(3, 5), sparsity=0.1)
for func in [
calculate_gain,
eye_,
dirac_,
kaiming_uniform_,
orthogonal_,
sparse,
]:
# doesn't error in eager
func()
with self.assertRaisesRegex(Exception, ""):
torch.jit.script(func)
|