File: test_xnnpack_delegate.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (186 lines) | stat: -rw-r--r-- 5,617 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Owner(s): ["oncall: jit"]

import unittest

import torch
import torch._C


torch.ops.load_library("//caffe2:xnnpack_backend")


class TestXNNPackBackend(unittest.TestCase):
    def test_xnnpack_constant_data(self):
        class Module(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self._constant = torch.ones(4, 4, 4)

            def forward(self, x):
                return x + self._constant

        scripted_module = torch.jit.script(Module())

        lowered_module = torch._C._jit_to_backend(
            "xnnpack",
            scripted_module,
            {
                "forward": {
                    "inputs": [torch.randn(4, 4, 4)],
                    "outputs": [torch.randn(4, 4, 4)],
                }
            },
        )

        for i in range(0, 20):
            sample_input = torch.randn(4, 4, 4)
            actual_output = scripted_module(sample_input)
            expected_output = lowered_module(sample_input)
            self.assertTrue(
                torch.allclose(actual_output, expected_output, atol=1e-03, rtol=1e-03)
            )

    def test_xnnpack_lowering(self):
        class Module(torch.nn.Module):
            def forward(self, x):
                return x + x

        scripted_module = torch.jit.script(Module())

        faulty_compile_spec = {
            "backward": {
                "inputs": [torch.zeros(1)],
                "outputs": [torch.zeros(1)],
            }
        }
        error_msg = 'method_compile_spec does not contain the "forward" key.'

        with self.assertRaisesRegex(
            RuntimeError,
            error_msg,
        ):
            _ = torch._C._jit_to_backend(
                "xnnpack",
                scripted_module,
                faulty_compile_spec,
            )

        mismatch_compile_spec = {
            "forward": {
                "inputs": [torch.zeros(1), torch.zeros(1)],
                "outputs": [torch.zeros(1)],
            }
        }
        error_msg = (
            "method_compile_spec inputs do not match expected number of forward inputs"
        )

        with self.assertRaisesRegex(
            RuntimeError,
            error_msg,
        ):
            _ = torch._C._jit_to_backend(
                "xnnpack", scripted_module, mismatch_compile_spec
            )

        lowered = torch._C._jit_to_backend(
            "xnnpack",
            scripted_module,
            {
                "forward": {
                    "inputs": [torch.zeros(1)],
                    "outputs": [torch.zeros(1)],
                }
            },
        )
        lowered(torch.zeros(1))

    def test_xnnpack_backend_add(self):
        class AddModule(torch.nn.Module):
            def forward(self, x, y):
                z = x + y
                z = z + x
                z = z + x
                return z

        add_module = AddModule()
        sample_inputs = (torch.rand(1, 512, 512, 3), torch.rand(1, 512, 512, 3))
        sample_output = torch.zeros(1, 512, 512, 3)

        add_module = torch.jit.script(add_module)
        expected_output = add_module(sample_inputs[0], sample_inputs[1])

        lowered_add_module = torch._C._jit_to_backend(
            "xnnpack",
            add_module,
            {
                "forward": {
                    "inputs": [sample_inputs[0].clone(), sample_inputs[1].clone()],
                    "outputs": [sample_output],
                }
            },
        )

        actual_output = lowered_add_module.forward(sample_inputs[0], sample_inputs[1])
        self.assertTrue(
            torch.allclose(actual_output, expected_output, atol=1e-03, rtol=1e-03)
        )

    def test_xnnpack_broadcasting(self):
        class AddModule(torch.nn.Module):
            def forward(self, x, y):
                return x + y

        add_module = AddModule()
        sample_inputs = (torch.rand(5, 1, 4, 1), torch.rand(3, 1, 1))
        sample_output = torch.zeros(5, 3, 4, 1)

        add_module = torch.jit.script(add_module)
        expected_output = add_module(sample_inputs[0], sample_inputs[1])

        lowered_add_module = torch._C._jit_to_backend(
            "xnnpack",
            add_module,
            {
                "forward": {
                    "inputs": [sample_inputs[0], sample_inputs[1]],
                    "outputs": [sample_output],
                }
            },
        )

        actual_output = lowered_add_module.forward(sample_inputs[0], sample_inputs[1])
        self.assertTrue(
            torch.allclose(actual_output, expected_output, atol=1e-03, rtol=1e-03)
        )

    def test_xnnpack_unsupported(self):
        class AddSpliceModule(torch.nn.Module):
            def forward(self, x, y):
                z = x + y[:, :, 1, :]
                return z

        sample_inputs = (torch.rand(1, 512, 512, 3), torch.rand(1, 512, 512, 3))
        sample_output = torch.zeros(1, 512, 512, 3)

        error_msg = (
            "the module contains the following unsupported ops:\n"
            "aten::select\n"
            "aten::slice\n"
        )

        add_module = torch.jit.script(AddSpliceModule())
        with self.assertRaisesRegex(
            RuntimeError,
            error_msg,
        ):
            _ = torch._C._jit_to_backend(
                "xnnpack",
                add_module,
                {
                    "forward": {
                        "inputs": [sample_inputs[0], sample_inputs[1]],
                        "outputs": [sample_output],
                    }
                },
            )