1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
# Owner(s): ["oncall: jit"]
import os
import unittest
import torch
import torch._lazy
import torch._lazy.config
import torch._lazy.ir_cache
import torch._lazy.metrics as metrics
import torch._lazy.ts_backend
from torch.testing._internal.common_utils import IS_WINDOWS, run_tests, TestCase
torch._lazy.ts_backend.init()
torch._lazy.config.set_reuse_ir(True)
def get_test_device():
return "cuda" if "LTC_TS_CUDA" in os.environ else "cpu"
@unittest.skipIf(IS_WINDOWS, "To be fixed")
class TestLazyReuseIr(TestCase):
def testAdd(self):
device = get_test_device()
x = torch.randn(2, 3, 4, device=device)
y = torch.randn(2, 3, 4, device=device)
z = torch.zeros(2, 3, 4, device=device)
device = "lazy"
x_lazy = x.detach().clone().to(device=device)
y_lazy = y.detach().clone().to(device=device)
z_lazy = z.detach().clone().to(device=device)
for i in range(10):
z += x + y
for i in range(10):
z_lazy += x_lazy + y_lazy
torch._lazy.mark_step()
torch.testing.assert_close(z.cpu(), z_lazy.cpu())
assert metrics.counter_value("IrNodeReused_torch::lazy::AddTensor") >= 14
metrics.reset()
torch._lazy.ir_cache.reset()
def testAddSub(self):
device = get_test_device()
x = torch.randn(2, 3, 4, device=device)
y = torch.randn(2, 3, 4, device=device)
z = torch.zeros(2, 3, 4, device=device)
device = "lazy"
x_lazy = x.detach().clone().to(device=device)
y_lazy = y.detach().clone().to(device=device)
z_lazy = z.detach().clone().to(device=device)
for i in range(10):
if i < 5:
z += x + y
else:
z += x - y
for i in range(10):
if i < 5:
z_lazy += x_lazy + y_lazy
else:
z_lazy += x_lazy - y_lazy
torch._lazy.mark_step()
torch.testing.assert_close(z.cpu(), z_lazy.cpu())
assert metrics.counter_value("IrNodeReused_torch::lazy::AddTensor") >= 8
metrics.reset()
torch._lazy.ir_cache.reset()
def testAddSubFallback(self):
torch._lazy.config.set_force_fallback("aten::sub")
device = get_test_device()
x = torch.randn(2, 3, 4, device=device)
y = torch.randn(2, 3, 4, device=device)
z = torch.zeros(2, 3, 4, device=device)
device = "lazy"
x_lazy = x.detach().clone().to(device=device)
y_lazy = y.detach().clone().to(device=device)
z_lazy = z.detach().clone().to(device=device)
for i in range(10):
if i < 5:
z += x + y
else:
z += x - y
for i in range(10):
if i < 5:
z_lazy += x_lazy + y_lazy
else:
z_lazy += x_lazy - y_lazy
torch._lazy.mark_step()
torch.testing.assert_close(z.cpu(), z_lazy.cpu())
assert metrics.counter_value("IrNodeReused_torch::lazy::AddTensor") >= 8
metrics.reset()
torch._lazy.ir_cache.reset()
torch._lazy.config.set_force_fallback("")
def testBatchNorm(self):
device = get_test_device()
x = torch.randn(16, 3, 224, 224, device=device)
weight = torch.randn(3, device=device)
bias = torch.randn(3, device=device)
for i in range(10):
# BatchNorm2d does extra checks on dimensions which SymInts don't support yet
# so we call `torch.ops.aten.native_batch_norm` to bypass the checks.
z, _, _ = torch.ops.aten.native_batch_norm(
x, weight, bias, None, None, True, 0.1, 1e-5
)
z_legit, _, _ = torch.ops.aten._native_batch_norm_legit(
x, weight, bias, True, 0.1, 1e-5
)
device = "lazy"
x_lazy = x.detach().clone().to(device=device)
weight_lazy = weight.detach().clone().to(device=device)
bias_lazy = bias.detach().clone().to(device=device)
for i in range(10):
z_lazy, _, _ = torch.ops.aten.native_batch_norm(
x_lazy, weight_lazy, bias_lazy, None, None, True, 0.1, 1e-5
)
z_legit_lazy, _, _ = torch.ops.aten._native_batch_norm_legit(
x_lazy, weight_lazy, bias_lazy, True, 0.1, 1e-5
)
torch._lazy.mark_step()
torch.testing.assert_close(z.cpu(), z_lazy.cpu())
torch.testing.assert_close(z_legit.cpu(), z_legit_lazy.cpu())
assert metrics.counter_value("IrNodeReused_torch::lazy::NativeBatchNorm") >= 7
metrics.reset()
torch._lazy.ir_cache.reset()
if __name__ == "__main__":
run_tests()
|