File: test_ts_opinfo.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (380 lines) | stat: -rw-r--r-- 12,940 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
# Owner(s): ["oncall: jit"]

import functools
import itertools
import os
from pathlib import Path
from typing import Sequence
from unittest import skip

import yaml

import torch
import torch._lazy
import torch._lazy.config
import torch._lazy.ir_cache
import torch._lazy.metrics
import torch._lazy.ts_backend
from torch.testing._internal.common_device_type import (
    instantiate_device_type_tests,
    ops,
)
from torch.testing._internal.common_methods_invocations import op_db
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.jit_utils import JitTestCase


torch._lazy.ts_backend.init()


def get_test_device():
    return "cuda" if "LTC_TS_CUDA" in os.environ else "cpu"


def remove_suffixes(l):
    return [x.split(".")[0] for x in l]


def init_lists():
    path_to_script = Path(os.path.abspath(os.path.dirname(__file__)))
    TS_NATIVE_FUNCTIONS_PATH = (
        path_to_script.parent.parent / "aten/src/ATen/native/ts_native_functions.yaml"
    )
    with open(TS_NATIVE_FUNCTIONS_PATH) as f:
        yaml_ts = yaml.load(f, yaml.SafeLoader)
    LAZY_OPS_LIST = set(
        remove_suffixes(
            itertools.chain(
                yaml_ts["full_codegen"], yaml_ts["supported"], yaml_ts["autograd"]
            )
        )
    )
    HAS_SYMINT_SUFFIX = yaml_ts["symint"]
    FALLBACK_LIST = {"clamp"}
    SKIP_RUNTIME_ERROR_LIST = {
        "index_select",  # Empty output_sizes is not supported
        "clone",  # is clone decomposed?
        # General ASAN Failure due to related to generating bool values.
        # https://github.com/pytorch/pytorch/issues/74519
        # https://github.com/pytorch/pytorch/issues/63034
        "nonzero",  # ASAN failure (paste: P501906539)
        "all",  # ASAN failure
        "any",  # ASAN failure
        "logdet",  # ASAN failure
    }
    SKIP_INCORRECT_RESULTS_LIST = {
        "squeeze",  # Value out of range
        "t",  # Value out of range
        "transpose",  # Value out of range
        "bernoulli",  # incorrect results
        "pow",  # incorrect results
        "addcdiv",  # incorrect results (on CI not locally?)
    }
    # The following ops all show up directly in ts_native_functions.yaml,
    # but run functionalized versions of the composite kernels in core.
    # This means that we don't expect the ops to show directly in the LTC metrics.
    FUNCTIONAL_DECOMPOSE_LIST = {
        "diag_embed",
        "block_diag",
        "new_empty_strided",
        "narrow_copy",
        "pixel_shuffle",
        "pixel_unshuffle",
        "select_backward",
        "_trilinear",
        "linalg_inv_ex",
        "linalg_pinv.atol_rtol_tensor",
        "logsumexp",
    }
    # For some ops, we don't support all variants. Here we use formatted_name
    # to uniquely identify the variant.
    SKIP_VARIANT_LIST = {"norm_nuc", "min_reduction_with_dim"}

    return (
        LAZY_OPS_LIST,
        FALLBACK_LIST,
        SKIP_RUNTIME_ERROR_LIST,
        SKIP_INCORRECT_RESULTS_LIST,
        FUNCTIONAL_DECOMPOSE_LIST,
        HAS_SYMINT_SUFFIX,
        SKIP_VARIANT_LIST,
    )


(
    LAZY_OPS_LIST,
    FALLBACK_LIST,
    SKIP_RUNTIME_ERROR_LIST,
    SKIP_INCORRECT_RESULTS_LIST,
    FUNCTIONAL_DECOMPOSE_LIST,
    HAS_SYMINT_SUFFIX,
    SKIP_VARIANT_LIST,
) = init_lists()

torch.manual_seed(42)


def clone_move(t):
    dev = "lazy"
    copy_t = t.detach().clone().requires_grad_(True).to(device=dev)
    return copy_t


class TestLazyTensor(JitTestCase):
    @skip("Disable until autograd supports symints")
    def testConvolutionBackward(self):
        test_device = get_test_device()
        inp = torch.rand(1, 3, 128, 128, device=test_device, requires_grad=True)
        inp_copy = clone_move(inp)
        grad = torch.rand(1, 32, 121, 121, device=test_device)  # no requires_grad
        grad_copy = clone_move(grad)
        weight = torch.rand(32, 3, 8, 8, device=test_device, requires_grad=True)
        weight_copy = clone_move(weight)
        bias = torch.rand(32, device=test_device, requires_grad=True)
        bias_copy = clone_move(bias)

        # run eager
        conv_out = torch.nn.functional.conv2d(inp, weight, bias)
        (inp_grad, weight_grad, bias_grad) = torch.autograd.grad(
            [conv_out], [inp, weight, bias], [grad]
        )

        # run lazy
        conv_copy_out = torch.nn.functional.conv2d(inp_copy, weight_copy, bias_copy)
        (inp_copy_grad, weight_copy_grad, bias_copy_grad) = torch.autograd.grad(
            [conv_copy_out], [inp_copy, weight_copy, bias_copy], [grad_copy]
        )

        # check numerics
        torch.testing.assert_close(bias_copy_grad.cpu(), bias_grad.cpu())

        torch.testing.assert_close(weight_copy_grad.cpu(), weight_grad.cpu())
        torch.testing.assert_close(inp_copy_grad.cpu(), inp_grad.cpu())

    def test_view_mark_step_preserved(self):
        test_device = get_test_device()
        inp = torch.rand(4, device=test_device)
        inp_lazy = clone_move(inp)

        def foo(x, *, mark_step):
            y = x.view(2, 2)
            y.add_(1)
            z = x + x

            if mark_step:
                torch._lazy.mark_step()

            # y and x should contiue to be aliased after the mark_step call.
            y.add_(1)
            return x

        out_ref = foo(inp, mark_step=False)
        out = foo(inp_lazy, mark_step=True)
        # out will have some pending mutations, which will be synced by the .cpu() call.
        torch.testing.assert_close(out_ref.cpu(), out.cpu())

    def test_tensor_ctr(self):
        test_device = get_test_device()
        inp = torch.tensor([[1, 2, 3, 4, 5]], device=test_device)
        inp_lazy = torch.tensor([[1, 2, 3, 4, 5]], device="lazy")

        def foo(x):
            # Calling a view op to ensure that functionalization wrapping occurs.
            return x.view(-1)

        out_ref = foo(inp)
        out = foo(inp_lazy)
        torch.testing.assert_close(out_ref.cpu(), out.cpu())


class TestLazyOpInfo(TestCase):
    @ops(
        [
            op
            for op in op_db
            if op.name in LAZY_OPS_LIST
            and op.name not in SKIP_RUNTIME_ERROR_LIST
            and op.name not in FUNCTIONAL_DECOMPOSE_LIST
            and op.formatted_name not in SKIP_VARIANT_LIST
        ],
        allowed_dtypes=(torch.float,),
    )
    def test_dispatched_to_lazy(self, device, dtype, op):
        def get_name(op):
            l = [op.name]
            if op.variant_test_name != "":
                l.append(op.variant_test_name)
            return ".".join(l)

        global HAS_SYMINT_SUFFIX, FALLBACK_LIST
        samples = op.sample_inputs("lazy", dtype, requires_grad=False)
        sample = next(iter(samples))
        args = [sample.input] + list(sample.args)
        kwargs = sample.kwargs
        torch._lazy.mark_step()
        torch._lazy.wait_device_ops()
        torch._lazy.metrics.reset()

        r = op(*args, **kwargs)
        torch._lazy.mark_step()
        torch._lazy.wait_device_ops()
        prefix = "aten" if op.name in FALLBACK_LIST else "lazy"
        symint_suffix = "_symint" if op.name in HAS_SYMINT_SUFFIX else ""
        found = f"{prefix}::{op.name}{symint_suffix}" in remove_suffixes(
            torch._lazy.metrics.counter_names()
        )
        # check aliases
        if not found:
            for alias in op.aliases:
                alias_found = (
                    f"{prefix}::{alias.name}{symint_suffix}"
                    in remove_suffixes(torch._lazy.metrics.counter_names())
                )
                found = found or alias_found
                if found:
                    break
        self.assertTrue(found)

    @ops(
        [
            op
            for op in op_db
            if op.name in LAZY_OPS_LIST
            and op.name not in SKIP_RUNTIME_ERROR_LIST | SKIP_INCORRECT_RESULTS_LIST
        ],
        allowed_dtypes=(torch.float,),
    )  # noqa: B950
    def test_correctness(self, device, dtype, op):
        test_device = get_test_device()

        def clone_to_device(input, dev):
            if isinstance(input, torch.Tensor):
                return input.detach().clone().to(device=dev)
            if isinstance(input, Sequence) and not isinstance(input, str):
                return tuple(map(functools.partial(clone_to_device, dev=dev), input))
            return input

        def assert_allclose_rec(t):
            a, b = t
            self.assertEqual(type(a), type(b))
            if isinstance(a, torch.Tensor):
                self.assertTrue(
                    torch.allclose(clone_to_device(a, test_device), b, atol=1e-4)
                )

            if isinstance(a, Sequence):
                map(assert_allclose_rec, zip(a, b))

        samples = op.sample_inputs("lazy", dtype, requires_grad=False)
        for sample in samples:
            # Need to run mark step so that all random ops are computed in the right order
            torch._lazy.mark_step()

            args = [sample.input] + list(sample.args)
            kwargs = sample.kwargs
            copy_args = clone_to_device(args, test_device)

            r_exp = op(*copy_args, **kwargs)
            r_actual = op(*args, **kwargs)

            torch._lazy.mark_step()
            assert_allclose_rec((r_actual, r_exp))

    @ops(
        [
            op
            for op in op_db
            if op.name in LAZY_OPS_LIST
            and op.name not in SKIP_RUNTIME_ERROR_LIST | SKIP_INCORRECT_RESULTS_LIST
        ],
        allowed_dtypes=(torch.float,),
    )  # noqa: B950
    def test_correctness_with_reusing_ir(self, device, dtype, op):
        torch._lazy.config.set_reuse_ir(True)
        test_device = get_test_device()

        def clone_to_device(input, dev):
            if isinstance(input, torch.Tensor):
                return input.detach().clone().to(device=dev)
            if isinstance(input, Sequence) and not isinstance(input, str):
                return tuple(map(functools.partial(clone_to_device, dev=dev), input))
            return input

        def assert_allclose_rec(t):
            a, b = t
            self.assertEqual(type(a), type(b))
            if isinstance(a, torch.Tensor):
                self.assertTrue(
                    torch.allclose(clone_to_device(a, test_device), b, atol=1e-4)
                )

            if isinstance(a, Sequence):
                map(assert_allclose_rec, zip(a, b))

        samples = op.sample_inputs("lazy", dtype, requires_grad=False)
        for sample in samples:
            # Need to run mark step so that all random ops are computed in the right order
            torch._lazy.mark_step()

            args = [sample.input] + list(sample.args)
            kwargs = sample.kwargs
            copy_args = clone_to_device(args, test_device)

            r_exp = op(*copy_args, **kwargs)
            r_actual = op(*args, **kwargs)

            torch._lazy.mark_step()
            assert_allclose_rec((r_actual, r_exp))

        torch._lazy.ir_cache.reset()
        torch._lazy.config.set_reuse_ir(False)


# TODO: after we move to master, add Lazy as a new Device here:
# https://github.com/pytorch/pytorch/blob/master/torch/testing/_internal/common_device_type.py#L532
instantiate_device_type_tests(TestLazyOpInfo, globals(), only_for="cpu")


class TestLazyDynamicOps(TestCase):
    @classmethod
    def setUpClass(cls) -> None:
        # Setup the dynamic shape mode
        cls.old_ssa_mode = torch._C._lazy._get_symbolic_shape_mode()
        torch._C._lazy._set_symbolic_shape_mode(True)
        return super().setUpClass()

    @classmethod
    def tearDownClass(cls) -> None:
        torch._C._lazy._set_symbolic_shape_mode(cls.old_ssa_mode)
        return super().tearDownClass()

    def test_nonzero_dynamic(self):
        # Test that nonzero gives upper bounds sizes when symbolic shape mode is enabled
        test_device = get_test_device()
        x1 = torch.tensor(
            [[0, 1.0, 2.0], [3.0, 0, 0]], device=test_device, requires_grad=True
        )
        x1_lazy = clone_move(x1)
        x2_lazy = torch.nonzero(x1_lazy)

        # FIXME: Add bindings to get upper bounds
        # self.assertEqual(tuple(x2_lazy.size()), (6, 2))

        # We should still be able to instantiate it and get the actual result
        x2_eager = x2_lazy.cpu()
        self.assertEqual(tuple(x2_eager.size()), (3, 2))

    def test_adaptiveavgpool3d_dynamic(self):
        # Test that adaptive_avg_pool3d gives correct shapes with lazy backend
        img_cpu = torch.zeros([2, 3, 4, 5, 6], device="cpu")
        out_cpu = torch.nn.AdaptiveAvgPool3d(2).to(device="cpu")(img_cpu)

        test_device = get_test_device()
        img_lazy = torch.zeros([2, 3, 4, 5, 6], device=test_device)
        out_lazy = torch.nn.AdaptiveAvgPool3d(2).to(test_device)(img_lazy)

        self.assertEqual(out_cpu.shape, out_lazy.shape)


if __name__ == "__main__":
    run_tests()