1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
|
# Owner(s): ["oncall: jit"]
import functools
import itertools
import os
from pathlib import Path
from typing import Sequence
from unittest import skip
import yaml
import torch
import torch._lazy
import torch._lazy.config
import torch._lazy.ir_cache
import torch._lazy.metrics
import torch._lazy.ts_backend
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
ops,
)
from torch.testing._internal.common_methods_invocations import op_db
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.jit_utils import JitTestCase
torch._lazy.ts_backend.init()
def get_test_device():
return "cuda" if "LTC_TS_CUDA" in os.environ else "cpu"
def remove_suffixes(l):
return [x.split(".")[0] for x in l]
def init_lists():
path_to_script = Path(os.path.abspath(os.path.dirname(__file__)))
TS_NATIVE_FUNCTIONS_PATH = (
path_to_script.parent.parent / "aten/src/ATen/native/ts_native_functions.yaml"
)
with open(TS_NATIVE_FUNCTIONS_PATH) as f:
yaml_ts = yaml.load(f, yaml.SafeLoader)
LAZY_OPS_LIST = set(
remove_suffixes(
itertools.chain(
yaml_ts["full_codegen"], yaml_ts["supported"], yaml_ts["autograd"]
)
)
)
HAS_SYMINT_SUFFIX = yaml_ts["symint"]
FALLBACK_LIST = {"clamp"}
SKIP_RUNTIME_ERROR_LIST = {
"index_select", # Empty output_sizes is not supported
"clone", # is clone decomposed?
# General ASAN Failure due to related to generating bool values.
# https://github.com/pytorch/pytorch/issues/74519
# https://github.com/pytorch/pytorch/issues/63034
"nonzero", # ASAN failure (paste: P501906539)
"all", # ASAN failure
"any", # ASAN failure
"logdet", # ASAN failure
}
SKIP_INCORRECT_RESULTS_LIST = {
"squeeze", # Value out of range
"t", # Value out of range
"transpose", # Value out of range
"bernoulli", # incorrect results
"pow", # incorrect results
"addcdiv", # incorrect results (on CI not locally?)
}
# The following ops all show up directly in ts_native_functions.yaml,
# but run functionalized versions of the composite kernels in core.
# This means that we don't expect the ops to show directly in the LTC metrics.
FUNCTIONAL_DECOMPOSE_LIST = {
"diag_embed",
"block_diag",
"new_empty_strided",
"narrow_copy",
"pixel_shuffle",
"pixel_unshuffle",
"select_backward",
"_trilinear",
"linalg_inv_ex",
"linalg_pinv.atol_rtol_tensor",
"logsumexp",
}
# For some ops, we don't support all variants. Here we use formatted_name
# to uniquely identify the variant.
SKIP_VARIANT_LIST = {"norm_nuc", "min_reduction_with_dim"}
return (
LAZY_OPS_LIST,
FALLBACK_LIST,
SKIP_RUNTIME_ERROR_LIST,
SKIP_INCORRECT_RESULTS_LIST,
FUNCTIONAL_DECOMPOSE_LIST,
HAS_SYMINT_SUFFIX,
SKIP_VARIANT_LIST,
)
(
LAZY_OPS_LIST,
FALLBACK_LIST,
SKIP_RUNTIME_ERROR_LIST,
SKIP_INCORRECT_RESULTS_LIST,
FUNCTIONAL_DECOMPOSE_LIST,
HAS_SYMINT_SUFFIX,
SKIP_VARIANT_LIST,
) = init_lists()
torch.manual_seed(42)
def clone_move(t):
dev = "lazy"
copy_t = t.detach().clone().requires_grad_(True).to(device=dev)
return copy_t
class TestLazyTensor(JitTestCase):
@skip("Disable until autograd supports symints")
def testConvolutionBackward(self):
test_device = get_test_device()
inp = torch.rand(1, 3, 128, 128, device=test_device, requires_grad=True)
inp_copy = clone_move(inp)
grad = torch.rand(1, 32, 121, 121, device=test_device) # no requires_grad
grad_copy = clone_move(grad)
weight = torch.rand(32, 3, 8, 8, device=test_device, requires_grad=True)
weight_copy = clone_move(weight)
bias = torch.rand(32, device=test_device, requires_grad=True)
bias_copy = clone_move(bias)
# run eager
conv_out = torch.nn.functional.conv2d(inp, weight, bias)
(inp_grad, weight_grad, bias_grad) = torch.autograd.grad(
[conv_out], [inp, weight, bias], [grad]
)
# run lazy
conv_copy_out = torch.nn.functional.conv2d(inp_copy, weight_copy, bias_copy)
(inp_copy_grad, weight_copy_grad, bias_copy_grad) = torch.autograd.grad(
[conv_copy_out], [inp_copy, weight_copy, bias_copy], [grad_copy]
)
# check numerics
torch.testing.assert_close(bias_copy_grad.cpu(), bias_grad.cpu())
torch.testing.assert_close(weight_copy_grad.cpu(), weight_grad.cpu())
torch.testing.assert_close(inp_copy_grad.cpu(), inp_grad.cpu())
def test_view_mark_step_preserved(self):
test_device = get_test_device()
inp = torch.rand(4, device=test_device)
inp_lazy = clone_move(inp)
def foo(x, *, mark_step):
y = x.view(2, 2)
y.add_(1)
z = x + x
if mark_step:
torch._lazy.mark_step()
# y and x should contiue to be aliased after the mark_step call.
y.add_(1)
return x
out_ref = foo(inp, mark_step=False)
out = foo(inp_lazy, mark_step=True)
# out will have some pending mutations, which will be synced by the .cpu() call.
torch.testing.assert_close(out_ref.cpu(), out.cpu())
def test_tensor_ctr(self):
test_device = get_test_device()
inp = torch.tensor([[1, 2, 3, 4, 5]], device=test_device)
inp_lazy = torch.tensor([[1, 2, 3, 4, 5]], device="lazy")
def foo(x):
# Calling a view op to ensure that functionalization wrapping occurs.
return x.view(-1)
out_ref = foo(inp)
out = foo(inp_lazy)
torch.testing.assert_close(out_ref.cpu(), out.cpu())
class TestLazyOpInfo(TestCase):
@ops(
[
op
for op in op_db
if op.name in LAZY_OPS_LIST
and op.name not in SKIP_RUNTIME_ERROR_LIST
and op.name not in FUNCTIONAL_DECOMPOSE_LIST
and op.formatted_name not in SKIP_VARIANT_LIST
],
allowed_dtypes=(torch.float,),
)
def test_dispatched_to_lazy(self, device, dtype, op):
def get_name(op):
l = [op.name]
if op.variant_test_name != "":
l.append(op.variant_test_name)
return ".".join(l)
global HAS_SYMINT_SUFFIX, FALLBACK_LIST
samples = op.sample_inputs("lazy", dtype, requires_grad=False)
sample = next(iter(samples))
args = [sample.input] + list(sample.args)
kwargs = sample.kwargs
torch._lazy.mark_step()
torch._lazy.wait_device_ops()
torch._lazy.metrics.reset()
r = op(*args, **kwargs)
torch._lazy.mark_step()
torch._lazy.wait_device_ops()
prefix = "aten" if op.name in FALLBACK_LIST else "lazy"
symint_suffix = "_symint" if op.name in HAS_SYMINT_SUFFIX else ""
found = f"{prefix}::{op.name}{symint_suffix}" in remove_suffixes(
torch._lazy.metrics.counter_names()
)
# check aliases
if not found:
for alias in op.aliases:
alias_found = (
f"{prefix}::{alias.name}{symint_suffix}"
in remove_suffixes(torch._lazy.metrics.counter_names())
)
found = found or alias_found
if found:
break
self.assertTrue(found)
@ops(
[
op
for op in op_db
if op.name in LAZY_OPS_LIST
and op.name not in SKIP_RUNTIME_ERROR_LIST | SKIP_INCORRECT_RESULTS_LIST
],
allowed_dtypes=(torch.float,),
) # noqa: B950
def test_correctness(self, device, dtype, op):
test_device = get_test_device()
def clone_to_device(input, dev):
if isinstance(input, torch.Tensor):
return input.detach().clone().to(device=dev)
if isinstance(input, Sequence) and not isinstance(input, str):
return tuple(map(functools.partial(clone_to_device, dev=dev), input))
return input
def assert_allclose_rec(t):
a, b = t
self.assertEqual(type(a), type(b))
if isinstance(a, torch.Tensor):
self.assertTrue(
torch.allclose(clone_to_device(a, test_device), b, atol=1e-4)
)
if isinstance(a, Sequence):
map(assert_allclose_rec, zip(a, b))
samples = op.sample_inputs("lazy", dtype, requires_grad=False)
for sample in samples:
# Need to run mark step so that all random ops are computed in the right order
torch._lazy.mark_step()
args = [sample.input] + list(sample.args)
kwargs = sample.kwargs
copy_args = clone_to_device(args, test_device)
r_exp = op(*copy_args, **kwargs)
r_actual = op(*args, **kwargs)
torch._lazy.mark_step()
assert_allclose_rec((r_actual, r_exp))
@ops(
[
op
for op in op_db
if op.name in LAZY_OPS_LIST
and op.name not in SKIP_RUNTIME_ERROR_LIST | SKIP_INCORRECT_RESULTS_LIST
],
allowed_dtypes=(torch.float,),
) # noqa: B950
def test_correctness_with_reusing_ir(self, device, dtype, op):
torch._lazy.config.set_reuse_ir(True)
test_device = get_test_device()
def clone_to_device(input, dev):
if isinstance(input, torch.Tensor):
return input.detach().clone().to(device=dev)
if isinstance(input, Sequence) and not isinstance(input, str):
return tuple(map(functools.partial(clone_to_device, dev=dev), input))
return input
def assert_allclose_rec(t):
a, b = t
self.assertEqual(type(a), type(b))
if isinstance(a, torch.Tensor):
self.assertTrue(
torch.allclose(clone_to_device(a, test_device), b, atol=1e-4)
)
if isinstance(a, Sequence):
map(assert_allclose_rec, zip(a, b))
samples = op.sample_inputs("lazy", dtype, requires_grad=False)
for sample in samples:
# Need to run mark step so that all random ops are computed in the right order
torch._lazy.mark_step()
args = [sample.input] + list(sample.args)
kwargs = sample.kwargs
copy_args = clone_to_device(args, test_device)
r_exp = op(*copy_args, **kwargs)
r_actual = op(*args, **kwargs)
torch._lazy.mark_step()
assert_allclose_rec((r_actual, r_exp))
torch._lazy.ir_cache.reset()
torch._lazy.config.set_reuse_ir(False)
# TODO: after we move to master, add Lazy as a new Device here:
# https://github.com/pytorch/pytorch/blob/master/torch/testing/_internal/common_device_type.py#L532
instantiate_device_type_tests(TestLazyOpInfo, globals(), only_for="cpu")
class TestLazyDynamicOps(TestCase):
@classmethod
def setUpClass(cls) -> None:
# Setup the dynamic shape mode
cls.old_ssa_mode = torch._C._lazy._get_symbolic_shape_mode()
torch._C._lazy._set_symbolic_shape_mode(True)
return super().setUpClass()
@classmethod
def tearDownClass(cls) -> None:
torch._C._lazy._set_symbolic_shape_mode(cls.old_ssa_mode)
return super().tearDownClass()
def test_nonzero_dynamic(self):
# Test that nonzero gives upper bounds sizes when symbolic shape mode is enabled
test_device = get_test_device()
x1 = torch.tensor(
[[0, 1.0, 2.0], [3.0, 0, 0]], device=test_device, requires_grad=True
)
x1_lazy = clone_move(x1)
x2_lazy = torch.nonzero(x1_lazy)
# FIXME: Add bindings to get upper bounds
# self.assertEqual(tuple(x2_lazy.size()), (6, 2))
# We should still be able to instantiate it and get the actual result
x2_eager = x2_lazy.cpu()
self.assertEqual(tuple(x2_eager.size()), (3, 2))
def test_adaptiveavgpool3d_dynamic(self):
# Test that adaptive_avg_pool3d gives correct shapes with lazy backend
img_cpu = torch.zeros([2, 3, 4, 5, 6], device="cpu")
out_cpu = torch.nn.AdaptiveAvgPool3d(2).to(device="cpu")(img_cpu)
test_device = get_test_device()
img_lazy = torch.zeros([2, 3, 4, 5, 6], device=test_device)
out_lazy = torch.nn.AdaptiveAvgPool3d(2).to(test_device)(img_lazy)
self.assertEqual(out_cpu.shape, out_lazy.shape)
if __name__ == "__main__":
run_tests()
|