File: test_init.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (532 lines) | stat: -rw-r--r-- 21,016 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
# Owner(s): ["module: nn"]
import math
import random
import string
import unittest
from functools import reduce
from operator import mul

import torch
import torch.nn.functional as F
import torch.nn.init as init
from torch.testing._internal.common_utils import (
    run_tests,
    skipIfNoLapack,
    skipIfTorchDynamo,
    slowTest,
    TEST_SCIPY,
    TestCase,
)


if TEST_SCIPY:
    from scipy import stats


class TestNNInit(TestCase):
    def setUp(self):
        super().setUp()
        random.seed(123)

    def _is_normal(self, tensor, mean, std):
        samples = tensor.view(-1).tolist()
        p_value = stats.kstest(samples, "norm", args=(mean, std))[1]
        return p_value > 0.0001

    def _is_trunc_normal(self, tensor, mean, std, a, b):
        # scipy's trunc norm is suited for data drawn from N(0, 1),
        # so we need to transform our data to test it using scipy.
        z_samples = (tensor.view(-1) - mean) / std
        z_samples = z_samples.tolist()
        a0 = (a - mean) / std
        b0 = (b - mean) / std
        p_value = stats.kstest(z_samples, "truncnorm", args=(a0, b0))[1]
        return p_value > 0.0001

    def _is_uniform(self, tensor, a, b):
        samples = tensor.view(-1).tolist()
        p_value = stats.kstest(samples, "uniform", args=(a, (b - a)))[1]
        return p_value > 0.0001

    def _create_random_nd_tensor(self, dims, size_min, size_max):
        size = [random.randint(size_min, size_max) for _ in range(dims)]
        tensor = torch.zeros(size)
        return tensor

    def _random_float(self, a, b):
        return (b - a) * random.random() + a

    def test_calculate_gain_linear(self):
        for fn in [
            "linear",
            "conv1d",
            "conv2d",
            "conv3d",
            "conv_transpose2d",
            "conv_transpose2d",
            "conv_transpose3d",
        ]:
            gain = init.calculate_gain(fn)
            self.assertEqual(gain, 1)

    def test_calculate_gain_nonlinear(self):
        for fn in ["sigmoid", "tanh", "relu", "leaky_relu"]:
            gain = init.calculate_gain(fn)
            if fn == "sigmoid":
                self.assertEqual(gain, 1)
            elif fn == "tanh":  # 5 / 3
                self.assertEqual(gain, 1.6666666666666667)
            elif fn == "relu":  # sqrt(2)
                self.assertEqual(gain, 1.4142135623730951)
            elif fn == "leaky_relu":  # sqrt(2 / 1 + slope^2))
                self.assertEqual(gain, 1.4141428569978354)
            elif fn == "selu":
                self.assertEqual(gain, 0.75)

    def test_calculate_gain_leaky_relu(self):
        for param in [None, 0, 0.01, 10]:
            gain = init.calculate_gain("leaky_relu", param)
            if param is None:  # Default slope is 0.01
                self.assertEqual(gain, 1.4141428569978354)
            elif param == 0:  # No slope = same gain as normal ReLU
                self.assertEqual(gain, 1.4142135623730951)
            elif param == 0.01:
                self.assertEqual(gain, 1.4141428569978354)
            elif param == 10:
                self.assertEqual(gain, 0.14071950894605836)

    def test_calculate_gain_leaky_relu_only_accepts_numbers(self):
        for param in [True, [1], {"a": "b"}]:
            with self.assertRaises(ValueError):
                init.calculate_gain("leaky_relu", param)

    def test_calculate_gain_only_accepts_valid_nonlinearities(self):
        for n in [2, 5, 25]:
            # Generate random strings of lengths that definitely aren't supported
            random_string = "".join(
                [random.choice(string.ascii_lowercase) for i in range(n)]
            )
            with self.assertRaises(ValueError):
                init.calculate_gain(random_string)

    @unittest.skipIf(not TEST_SCIPY, "Scipy not found.")
    @skipIfTorchDynamo("scipy.kstest is failing under dynamo")
    def test_uniform(self):
        for dims in [1, 2, 4]:
            input_tensor = self._create_random_nd_tensor(dims, size_min=30, size_max=50)
            a = self._random_float(-3, 3)
            b = a + self._random_float(1, 5)
            init.uniform_(input_tensor, a=a, b=b)
            assert self._is_uniform(input_tensor, a, b)

    @unittest.skipIf(not TEST_SCIPY, "Scipy not found.")
    @skipIfTorchDynamo("scipy.kstest is failing under dynamo")
    def test_normal(self):
        for dims in [1, 2, 4]:
            input_tensor = self._create_random_nd_tensor(dims, size_min=30, size_max=50)
            mean = self._random_float(-3, 3)
            std = self._random_float(1, 5)
            init.normal_(input_tensor, mean=mean, std=std)

            assert self._is_normal(input_tensor, mean, std)

    @unittest.skipIf(not TEST_SCIPY, "Scipy not found.")
    @skipIfTorchDynamo("scipy.kstest is failing under dynamo")
    def test_trunc_normal(self):
        for dims in [1, 2, 4]:
            input_tensor = self._create_random_nd_tensor(dims, size_min=30, size_max=50)
            mean = self._random_float(-3, 3)
            std = self._random_float(0.01, 1)
            a = self._random_float(mean - 2 * std, mean)
            b = self._random_float(mean, mean + 2 * std)
            init.trunc_normal_(input_tensor, mean=mean, std=std, a=a, b=b)

            assert self._is_trunc_normal(input_tensor, mean, std, a, b)

    @unittest.skipIf(not TEST_SCIPY, "Scipy not found.")
    @skipIfTorchDynamo("scipy.kstest is failing under dynamo")
    def test_trunc_normal_generator(self):
        gen = torch.Generator()
        gen.manual_seed(42)
        input_tensor = torch.empty(5)
        init.trunc_normal_(input_tensor, generator=gen)

        ref = torch.empty(5)
        torch.manual_seed(42)
        init.trunc_normal_(ref)

        self.assertEqual(input_tensor, ref)
        assert self._is_trunc_normal(input_tensor, mean=0, std=1, a=0, b=1)

    def test_constant(self):
        for dims in [1, 2, 4]:
            input_tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=5)
            val = self._random_float(1, 10)
            init.constant_(input_tensor, val)

            self.assertEqual(input_tensor, input_tensor.clone().fill_(val))

    def test_ones_and_zeros(self):
        for init_fn_, val in zip([init.ones_, init.zeros_], [1, 0]):
            for dims in [1, 2, 4]:
                input_tensor = self._create_random_nd_tensor(
                    dims, size_min=1, size_max=5
                )
                init_fn_(input_tensor)

                self.assertEqual(input_tensor, input_tensor.clone().fill_(val))

    def test_eye(self):
        input_tensor = self._create_random_nd_tensor(2, size_min=1, size_max=5)
        init.eye_(input_tensor)

        # Check every single element
        for i in range(input_tensor.size(0)):
            for j in range(input_tensor.size(1)):
                if i == j:
                    assert input_tensor[i][j] == 1
                else:
                    assert input_tensor[i][j] == 0

    def test_eye_only_works_on_2d_inputs(self):
        for dims in [1, 3]:
            with self.assertRaises(ValueError):
                tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=3)
                init.eye_(tensor)

    def test_dirac_properties(self):
        for dims in [3, 4, 5]:
            for groups in [1, 2, 3]:
                # prepare random tensor with random sizes, but fits groups
                a, c, d, e = (random.randint(1, 5) for _ in range(4))
                b = random.randint(
                    1, 5 * groups
                )  # same range as a*groups but all range allowed
                # make sure first dim divides by groups
                input_tensor = torch.randn((a * groups, b, c, d, e)[:dims])

                init.dirac_(input_tensor, groups)

                c_out, c_in = input_tensor.size(0) // groups, input_tensor.size(1)
                min_d = min(c_out, c_in)
                # Check number of nonzeros is equivalent to smallest dim (for each group)
                assert torch.nonzero(input_tensor).size(0) == min_d * groups
                # Check sum of values (can have precision issues, hence assertEqual) is also equivalent
                self.assertEqual(input_tensor.sum(), min_d * groups)

    def test_dirac_identity(self):
        for groups in [1, 3]:
            batch, in_c, out_c, size, kernel_size = (
                8,
                3,
                9,
                5,
                3,
            )  # in_c, out_c must divide by groups
            eff_out_c = out_c // groups

            # Test 1D
            input_var = torch.randn(batch, in_c, size)
            filter_var = torch.zeros(eff_out_c, in_c, kernel_size)
            filter_var = torch.cat([filter_var] * groups)
            init.dirac_(filter_var, groups)
            output_var = F.conv1d(input_var, filter_var)
            input_tensor, output_tensor = (
                input_var.data,
                output_var.data,
            )  # Variables do not support nonzero
            for g in range(groups):
                # Assert in_c outputs are preserved (per each group)
                self.assertEqual(
                    input_tensor[:, :, 1:-1],
                    output_tensor[:, eff_out_c * g : eff_out_c * g + in_c, :],
                )
                # Assert extra outputs are 0
                assert (
                    torch.nonzero(
                        output_tensor[:, eff_out_c * g + in_c : eff_out_c * (g + 1), :]
                    ).numel()
                    == 0
                )

            # Test 2D
            input_var = torch.randn(batch, in_c, size, size)
            filter_var = torch.zeros(eff_out_c, in_c, kernel_size, kernel_size)
            filter_var = torch.cat([filter_var] * groups)
            init.dirac_(filter_var, groups)
            output_var = F.conv2d(input_var, filter_var)
            input_tensor, output_tensor = (
                input_var.data,
                output_var.data,
            )  # Variables do not support nonzero
            for g in range(groups):
                # Assert in_c outputs are preserved (per each group)
                self.assertEqual(
                    input_tensor[:, :, 1:-1, 1:-1],
                    output_tensor[:, eff_out_c * g : eff_out_c * g + in_c, :, :],
                )
                # Assert extra outputs are 0
                assert (
                    torch.nonzero(
                        output_tensor[
                            :, eff_out_c * g + in_c : eff_out_c * (g + 1), :, :
                        ]
                    ).numel()
                    == 0
                )

            # Test 3D
            input_var = torch.randn(batch, in_c, size, size, size)
            filter_var = torch.zeros(
                eff_out_c, in_c, kernel_size, kernel_size, kernel_size
            )
            filter_var = torch.cat([filter_var] * groups)
            init.dirac_(filter_var, groups)
            output_var = F.conv3d(input_var, filter_var)
            input_tensor, output_tensor = input_var.data, output_var.data
            for g in range(groups):
                # Assert in_c outputs are preserved (per each group)
                self.assertEqual(
                    input_tensor[:, :, 1:-1, 1:-1, 1:-1],
                    output_tensor[:, eff_out_c * g : eff_out_c * g + in_c, :, :, :],
                )
                # Assert extra outputs are 0
                assert (
                    torch.nonzero(
                        output_tensor[
                            :, eff_out_c * g + in_c : eff_out_c * (g + 1), :, :, :
                        ]
                    ).numel()
                    == 0
                )

    def test_dirac_only_works_on_3_4_5d_inputs(self):
        for dims in [1, 2, 6]:
            with self.assertRaises(ValueError):
                tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=3)
                init.dirac_(tensor)

    def test_xavier_uniform_errors_on_inputs_smaller_than_2d(self):
        for dims in [0, 1]:
            tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=1)
            with self.assertRaises(ValueError):
                init.xavier_uniform_(tensor)

    def test_xavier_normal_errors_on_inputs_smaller_than_2d(self):
        for dims in [0, 1]:
            tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=1)
            with self.assertRaises(ValueError):
                init.xavier_normal_(tensor)

    @unittest.skipIf(not TEST_SCIPY, "Scipy not found.")
    @slowTest
    def test_xavier_uniform(self):
        for use_gain in [True, False]:
            for dims in [2, 4]:
                input_tensor = self._create_random_nd_tensor(
                    dims, size_min=20, size_max=25
                )
                gain = 1

                if use_gain:
                    gain = self._random_float(0.1, 2)
                    init.xavier_uniform_(input_tensor, gain=gain)
                else:
                    init.xavier_uniform_(input_tensor)

                fan_in = input_tensor.size(1)
                fan_out = input_tensor.size(0)
                if input_tensor.dim() > 2:
                    fan_in *= input_tensor[0, 0].numel()
                    fan_out *= input_tensor[0, 0].numel()

                expected_std = gain * math.sqrt(2.0 / (fan_in + fan_out))
                bounds = expected_std * math.sqrt(3)
                assert self._is_uniform(input_tensor, -bounds, bounds)

    @unittest.skipIf(not TEST_SCIPY, "Scipy not found.")
    @skipIfTorchDynamo("scipy.kstest is failing under dynamo")
    def test_xavier_normal(self):
        for use_gain in [True, False]:
            for dims in [2, 4]:
                input_tensor = self._create_random_nd_tensor(
                    dims, size_min=20, size_max=25
                )
                gain = 1

                if use_gain:
                    gain = self._random_float(0.1, 2)
                    init.xavier_normal_(input_tensor, gain=gain)
                else:
                    init.xavier_normal_(input_tensor)

                fan_in = input_tensor.size(1)
                fan_out = input_tensor.size(0)
                if input_tensor.dim() > 2:
                    fan_in *= input_tensor[0, 0].numel()
                    fan_out *= input_tensor[0, 0].numel()

                expected_std = gain * math.sqrt(2.0 / (fan_in + fan_out))
                assert self._is_normal(input_tensor, 0, expected_std)

    def test_kaiming_uniform_errors_on_inputs_smaller_than_2d(self):
        for dims in [0, 1]:
            with self.assertRaises(ValueError):
                tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=1)
                init.kaiming_uniform_(tensor)

    def test_kaiming_normal_errors_on_inputs_smaller_than_2d(self):
        for dims in [0, 1]:
            with self.assertRaises(ValueError):
                tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=1)
                init.kaiming_normal_(tensor)

    def test_kaiming_uniform_warning_on_0element_tensor(self):
        tensor = torch.empty(0, 1)
        with self.assertWarnsRegex(
            UserWarning, "Initializing zero-element tensors is a no-op"
        ):
            _ = init.kaiming_uniform_(tensor)

    def test_kaiming_normal_warning_on_0element_tensor(self):
        tensor = torch.empty(0, 1)
        with self.assertWarnsRegex(
            UserWarning, "Initializing zero-element tensors is a no-op"
        ):
            _ = init.kaiming_normal_(tensor)

    @unittest.skipIf(not TEST_SCIPY, "Scipy not found.")
    @skipIfTorchDynamo("scipy.kstest is failing under dynamo")
    def test_kaiming_uniform(self):
        for use_a in [True, False]:
            for dims in [2, 4]:
                for mode in ["fan_in", "fan_out"]:
                    input_tensor = self._create_random_nd_tensor(
                        dims, size_min=20, size_max=25
                    )
                    if use_a:
                        a = self._random_float(0.1, 2)
                        init.kaiming_uniform_(input_tensor, a=a, mode=mode)
                    else:
                        a = 0
                        init.kaiming_uniform_(input_tensor, mode=mode)

                    fan_in = input_tensor.size(1)
                    fan_out = input_tensor.size(0)
                    if input_tensor.dim() > 2:
                        fan_in *= input_tensor[0, 0].numel()
                        fan_out *= input_tensor[0, 0].numel()

                    if mode == "fan_in":
                        n = fan_in
                    else:
                        n = fan_out

                    expected_std = math.sqrt(2.0 / ((1 + a**2) * n))
                    bounds = expected_std * math.sqrt(3.0)
                    assert self._is_uniform(input_tensor, -bounds, bounds)

    @unittest.skipIf(not TEST_SCIPY, "Scipy not found.")
    @skipIfTorchDynamo("scipy.kstest is failing under dynamo")
    def test_kaiming_normal(self):
        for use_a in [True, False]:
            for dims in [2, 4]:
                for mode in ["fan_in", "fan_out"]:
                    input_tensor = self._create_random_nd_tensor(
                        dims, size_min=20, size_max=25
                    )
                    if use_a:
                        a = self._random_float(0.1, 2)
                        init.kaiming_normal_(input_tensor, a=a, mode=mode)
                    else:
                        a = 0
                        init.kaiming_normal_(input_tensor, mode=mode)

                    fan_in = input_tensor.size(1)
                    fan_out = input_tensor.size(0)
                    if input_tensor.dim() > 2:
                        fan_in *= input_tensor[0, 0].numel()
                        fan_out *= input_tensor[0, 0].numel()

                    if mode == "fan_in":
                        n = fan_in
                    else:
                        n = fan_out

                    expected_std = math.sqrt(2.0 / ((1 + a**2) * n))
                    assert self._is_normal(input_tensor, 0, expected_std)

    def test_sparse_only_works_on_2d_inputs(self):
        for dims in [1, 3]:
            with self.assertRaises(ValueError):
                sparsity = self._random_float(0.1, 0.9)
                tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=3)
                init.sparse_(tensor, sparsity)

    @unittest.skipIf(not TEST_SCIPY, "Scipy not found.")
    @skipIfTorchDynamo("scipy.kstest is failing under dynamo")
    def test_sparse_default_std(self):
        for use_random_std in [True, False]:
            input_tensor = self._create_random_nd_tensor(2, size_min=30, size_max=35)
            rows, cols = input_tensor.size(0), input_tensor.size(1)
            sparsity = self._random_float(0.1, 0.2)

            std = 0.01  # default std
            if use_random_std:
                std = self._random_float(0.01, 0.2)
                init.sparse_(input_tensor, sparsity=sparsity, std=std)
            else:
                init.sparse_(input_tensor, sparsity=sparsity)

            for col_idx in range(input_tensor.size(1)):
                column = input_tensor[:, col_idx]
                assert column[column == 0].nelement() >= math.ceil(sparsity * rows)

            assert self._is_normal(input_tensor[input_tensor != 0], 0, std)

    @skipIfNoLapack
    def test_orthogonal(self):
        for use_gain in [True, False]:
            for tensor_size in [[3, 4], [4, 3], [20, 2, 3, 4], [2, 3, 4, 5]]:
                input_tensor = torch.zeros(tensor_size)
                gain = 1.0

                if use_gain:
                    gain = self._random_float(0.1, 2)
                    init.orthogonal_(input_tensor, gain=gain)
                else:
                    init.orthogonal_(input_tensor)

                rows, cols = tensor_size[0], reduce(mul, tensor_size[1:])
                flattened_tensor = input_tensor.view(rows, cols)
                if rows > cols:
                    self.assertEqual(
                        torch.mm(flattened_tensor.t(), flattened_tensor),
                        torch.eye(cols) * gain**2,
                        atol=1e-6,
                        rtol=0,
                    )
                else:
                    self.assertEqual(
                        torch.mm(flattened_tensor, flattened_tensor.t()),
                        torch.eye(rows) * gain**2,
                        atol=1e-6,
                        rtol=0,
                    )

    def test_deprecation(self):
        x = torch.randn(3, 3)

        def fn():
            init.normal(x)

        with self.assertWarnsRegex(
            FutureWarning,
            "deprecated",
            msg="methods not suffixed with underscore should be deprecated",
        ):
            fn()


if __name__ == "__main__":
    run_tests()