1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
|
# Owner(s): ["module: nn"]
import math
import random
import string
import unittest
from functools import reduce
from operator import mul
import torch
import torch.nn.functional as F
import torch.nn.init as init
from torch.testing._internal.common_utils import (
run_tests,
skipIfNoLapack,
skipIfTorchDynamo,
slowTest,
TEST_SCIPY,
TestCase,
)
if TEST_SCIPY:
from scipy import stats
class TestNNInit(TestCase):
def setUp(self):
super().setUp()
random.seed(123)
def _is_normal(self, tensor, mean, std):
samples = tensor.view(-1).tolist()
p_value = stats.kstest(samples, "norm", args=(mean, std))[1]
return p_value > 0.0001
def _is_trunc_normal(self, tensor, mean, std, a, b):
# scipy's trunc norm is suited for data drawn from N(0, 1),
# so we need to transform our data to test it using scipy.
z_samples = (tensor.view(-1) - mean) / std
z_samples = z_samples.tolist()
a0 = (a - mean) / std
b0 = (b - mean) / std
p_value = stats.kstest(z_samples, "truncnorm", args=(a0, b0))[1]
return p_value > 0.0001
def _is_uniform(self, tensor, a, b):
samples = tensor.view(-1).tolist()
p_value = stats.kstest(samples, "uniform", args=(a, (b - a)))[1]
return p_value > 0.0001
def _create_random_nd_tensor(self, dims, size_min, size_max):
size = [random.randint(size_min, size_max) for _ in range(dims)]
tensor = torch.zeros(size)
return tensor
def _random_float(self, a, b):
return (b - a) * random.random() + a
def test_calculate_gain_linear(self):
for fn in [
"linear",
"conv1d",
"conv2d",
"conv3d",
"conv_transpose2d",
"conv_transpose2d",
"conv_transpose3d",
]:
gain = init.calculate_gain(fn)
self.assertEqual(gain, 1)
def test_calculate_gain_nonlinear(self):
for fn in ["sigmoid", "tanh", "relu", "leaky_relu"]:
gain = init.calculate_gain(fn)
if fn == "sigmoid":
self.assertEqual(gain, 1)
elif fn == "tanh": # 5 / 3
self.assertEqual(gain, 1.6666666666666667)
elif fn == "relu": # sqrt(2)
self.assertEqual(gain, 1.4142135623730951)
elif fn == "leaky_relu": # sqrt(2 / 1 + slope^2))
self.assertEqual(gain, 1.4141428569978354)
elif fn == "selu":
self.assertEqual(gain, 0.75)
def test_calculate_gain_leaky_relu(self):
for param in [None, 0, 0.01, 10]:
gain = init.calculate_gain("leaky_relu", param)
if param is None: # Default slope is 0.01
self.assertEqual(gain, 1.4141428569978354)
elif param == 0: # No slope = same gain as normal ReLU
self.assertEqual(gain, 1.4142135623730951)
elif param == 0.01:
self.assertEqual(gain, 1.4141428569978354)
elif param == 10:
self.assertEqual(gain, 0.14071950894605836)
def test_calculate_gain_leaky_relu_only_accepts_numbers(self):
for param in [True, [1], {"a": "b"}]:
with self.assertRaises(ValueError):
init.calculate_gain("leaky_relu", param)
def test_calculate_gain_only_accepts_valid_nonlinearities(self):
for n in [2, 5, 25]:
# Generate random strings of lengths that definitely aren't supported
random_string = "".join(
[random.choice(string.ascii_lowercase) for i in range(n)]
)
with self.assertRaises(ValueError):
init.calculate_gain(random_string)
@unittest.skipIf(not TEST_SCIPY, "Scipy not found.")
@skipIfTorchDynamo("scipy.kstest is failing under dynamo")
def test_uniform(self):
for dims in [1, 2, 4]:
input_tensor = self._create_random_nd_tensor(dims, size_min=30, size_max=50)
a = self._random_float(-3, 3)
b = a + self._random_float(1, 5)
init.uniform_(input_tensor, a=a, b=b)
assert self._is_uniform(input_tensor, a, b)
@unittest.skipIf(not TEST_SCIPY, "Scipy not found.")
@skipIfTorchDynamo("scipy.kstest is failing under dynamo")
def test_normal(self):
for dims in [1, 2, 4]:
input_tensor = self._create_random_nd_tensor(dims, size_min=30, size_max=50)
mean = self._random_float(-3, 3)
std = self._random_float(1, 5)
init.normal_(input_tensor, mean=mean, std=std)
assert self._is_normal(input_tensor, mean, std)
@unittest.skipIf(not TEST_SCIPY, "Scipy not found.")
@skipIfTorchDynamo("scipy.kstest is failing under dynamo")
def test_trunc_normal(self):
for dims in [1, 2, 4]:
input_tensor = self._create_random_nd_tensor(dims, size_min=30, size_max=50)
mean = self._random_float(-3, 3)
std = self._random_float(0.01, 1)
a = self._random_float(mean - 2 * std, mean)
b = self._random_float(mean, mean + 2 * std)
init.trunc_normal_(input_tensor, mean=mean, std=std, a=a, b=b)
assert self._is_trunc_normal(input_tensor, mean, std, a, b)
@unittest.skipIf(not TEST_SCIPY, "Scipy not found.")
@skipIfTorchDynamo("scipy.kstest is failing under dynamo")
def test_trunc_normal_generator(self):
gen = torch.Generator()
gen.manual_seed(42)
input_tensor = torch.empty(5)
init.trunc_normal_(input_tensor, generator=gen)
ref = torch.empty(5)
torch.manual_seed(42)
init.trunc_normal_(ref)
self.assertEqual(input_tensor, ref)
assert self._is_trunc_normal(input_tensor, mean=0, std=1, a=0, b=1)
def test_constant(self):
for dims in [1, 2, 4]:
input_tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=5)
val = self._random_float(1, 10)
init.constant_(input_tensor, val)
self.assertEqual(input_tensor, input_tensor.clone().fill_(val))
def test_ones_and_zeros(self):
for init_fn_, val in zip([init.ones_, init.zeros_], [1, 0]):
for dims in [1, 2, 4]:
input_tensor = self._create_random_nd_tensor(
dims, size_min=1, size_max=5
)
init_fn_(input_tensor)
self.assertEqual(input_tensor, input_tensor.clone().fill_(val))
def test_eye(self):
input_tensor = self._create_random_nd_tensor(2, size_min=1, size_max=5)
init.eye_(input_tensor)
# Check every single element
for i in range(input_tensor.size(0)):
for j in range(input_tensor.size(1)):
if i == j:
assert input_tensor[i][j] == 1
else:
assert input_tensor[i][j] == 0
def test_eye_only_works_on_2d_inputs(self):
for dims in [1, 3]:
with self.assertRaises(ValueError):
tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=3)
init.eye_(tensor)
def test_dirac_properties(self):
for dims in [3, 4, 5]:
for groups in [1, 2, 3]:
# prepare random tensor with random sizes, but fits groups
a, c, d, e = (random.randint(1, 5) for _ in range(4))
b = random.randint(
1, 5 * groups
) # same range as a*groups but all range allowed
# make sure first dim divides by groups
input_tensor = torch.randn((a * groups, b, c, d, e)[:dims])
init.dirac_(input_tensor, groups)
c_out, c_in = input_tensor.size(0) // groups, input_tensor.size(1)
min_d = min(c_out, c_in)
# Check number of nonzeros is equivalent to smallest dim (for each group)
assert torch.nonzero(input_tensor).size(0) == min_d * groups
# Check sum of values (can have precision issues, hence assertEqual) is also equivalent
self.assertEqual(input_tensor.sum(), min_d * groups)
def test_dirac_identity(self):
for groups in [1, 3]:
batch, in_c, out_c, size, kernel_size = (
8,
3,
9,
5,
3,
) # in_c, out_c must divide by groups
eff_out_c = out_c // groups
# Test 1D
input_var = torch.randn(batch, in_c, size)
filter_var = torch.zeros(eff_out_c, in_c, kernel_size)
filter_var = torch.cat([filter_var] * groups)
init.dirac_(filter_var, groups)
output_var = F.conv1d(input_var, filter_var)
input_tensor, output_tensor = (
input_var.data,
output_var.data,
) # Variables do not support nonzero
for g in range(groups):
# Assert in_c outputs are preserved (per each group)
self.assertEqual(
input_tensor[:, :, 1:-1],
output_tensor[:, eff_out_c * g : eff_out_c * g + in_c, :],
)
# Assert extra outputs are 0
assert (
torch.nonzero(
output_tensor[:, eff_out_c * g + in_c : eff_out_c * (g + 1), :]
).numel()
== 0
)
# Test 2D
input_var = torch.randn(batch, in_c, size, size)
filter_var = torch.zeros(eff_out_c, in_c, kernel_size, kernel_size)
filter_var = torch.cat([filter_var] * groups)
init.dirac_(filter_var, groups)
output_var = F.conv2d(input_var, filter_var)
input_tensor, output_tensor = (
input_var.data,
output_var.data,
) # Variables do not support nonzero
for g in range(groups):
# Assert in_c outputs are preserved (per each group)
self.assertEqual(
input_tensor[:, :, 1:-1, 1:-1],
output_tensor[:, eff_out_c * g : eff_out_c * g + in_c, :, :],
)
# Assert extra outputs are 0
assert (
torch.nonzero(
output_tensor[
:, eff_out_c * g + in_c : eff_out_c * (g + 1), :, :
]
).numel()
== 0
)
# Test 3D
input_var = torch.randn(batch, in_c, size, size, size)
filter_var = torch.zeros(
eff_out_c, in_c, kernel_size, kernel_size, kernel_size
)
filter_var = torch.cat([filter_var] * groups)
init.dirac_(filter_var, groups)
output_var = F.conv3d(input_var, filter_var)
input_tensor, output_tensor = input_var.data, output_var.data
for g in range(groups):
# Assert in_c outputs are preserved (per each group)
self.assertEqual(
input_tensor[:, :, 1:-1, 1:-1, 1:-1],
output_tensor[:, eff_out_c * g : eff_out_c * g + in_c, :, :, :],
)
# Assert extra outputs are 0
assert (
torch.nonzero(
output_tensor[
:, eff_out_c * g + in_c : eff_out_c * (g + 1), :, :, :
]
).numel()
== 0
)
def test_dirac_only_works_on_3_4_5d_inputs(self):
for dims in [1, 2, 6]:
with self.assertRaises(ValueError):
tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=3)
init.dirac_(tensor)
def test_xavier_uniform_errors_on_inputs_smaller_than_2d(self):
for dims in [0, 1]:
tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=1)
with self.assertRaises(ValueError):
init.xavier_uniform_(tensor)
def test_xavier_normal_errors_on_inputs_smaller_than_2d(self):
for dims in [0, 1]:
tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=1)
with self.assertRaises(ValueError):
init.xavier_normal_(tensor)
@unittest.skipIf(not TEST_SCIPY, "Scipy not found.")
@slowTest
def test_xavier_uniform(self):
for use_gain in [True, False]:
for dims in [2, 4]:
input_tensor = self._create_random_nd_tensor(
dims, size_min=20, size_max=25
)
gain = 1
if use_gain:
gain = self._random_float(0.1, 2)
init.xavier_uniform_(input_tensor, gain=gain)
else:
init.xavier_uniform_(input_tensor)
fan_in = input_tensor.size(1)
fan_out = input_tensor.size(0)
if input_tensor.dim() > 2:
fan_in *= input_tensor[0, 0].numel()
fan_out *= input_tensor[0, 0].numel()
expected_std = gain * math.sqrt(2.0 / (fan_in + fan_out))
bounds = expected_std * math.sqrt(3)
assert self._is_uniform(input_tensor, -bounds, bounds)
@unittest.skipIf(not TEST_SCIPY, "Scipy not found.")
@skipIfTorchDynamo("scipy.kstest is failing under dynamo")
def test_xavier_normal(self):
for use_gain in [True, False]:
for dims in [2, 4]:
input_tensor = self._create_random_nd_tensor(
dims, size_min=20, size_max=25
)
gain = 1
if use_gain:
gain = self._random_float(0.1, 2)
init.xavier_normal_(input_tensor, gain=gain)
else:
init.xavier_normal_(input_tensor)
fan_in = input_tensor.size(1)
fan_out = input_tensor.size(0)
if input_tensor.dim() > 2:
fan_in *= input_tensor[0, 0].numel()
fan_out *= input_tensor[0, 0].numel()
expected_std = gain * math.sqrt(2.0 / (fan_in + fan_out))
assert self._is_normal(input_tensor, 0, expected_std)
def test_kaiming_uniform_errors_on_inputs_smaller_than_2d(self):
for dims in [0, 1]:
with self.assertRaises(ValueError):
tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=1)
init.kaiming_uniform_(tensor)
def test_kaiming_normal_errors_on_inputs_smaller_than_2d(self):
for dims in [0, 1]:
with self.assertRaises(ValueError):
tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=1)
init.kaiming_normal_(tensor)
def test_kaiming_uniform_warning_on_0element_tensor(self):
tensor = torch.empty(0, 1)
with self.assertWarnsRegex(
UserWarning, "Initializing zero-element tensors is a no-op"
):
_ = init.kaiming_uniform_(tensor)
def test_kaiming_normal_warning_on_0element_tensor(self):
tensor = torch.empty(0, 1)
with self.assertWarnsRegex(
UserWarning, "Initializing zero-element tensors is a no-op"
):
_ = init.kaiming_normal_(tensor)
@unittest.skipIf(not TEST_SCIPY, "Scipy not found.")
@skipIfTorchDynamo("scipy.kstest is failing under dynamo")
def test_kaiming_uniform(self):
for use_a in [True, False]:
for dims in [2, 4]:
for mode in ["fan_in", "fan_out"]:
input_tensor = self._create_random_nd_tensor(
dims, size_min=20, size_max=25
)
if use_a:
a = self._random_float(0.1, 2)
init.kaiming_uniform_(input_tensor, a=a, mode=mode)
else:
a = 0
init.kaiming_uniform_(input_tensor, mode=mode)
fan_in = input_tensor.size(1)
fan_out = input_tensor.size(0)
if input_tensor.dim() > 2:
fan_in *= input_tensor[0, 0].numel()
fan_out *= input_tensor[0, 0].numel()
if mode == "fan_in":
n = fan_in
else:
n = fan_out
expected_std = math.sqrt(2.0 / ((1 + a**2) * n))
bounds = expected_std * math.sqrt(3.0)
assert self._is_uniform(input_tensor, -bounds, bounds)
@unittest.skipIf(not TEST_SCIPY, "Scipy not found.")
@skipIfTorchDynamo("scipy.kstest is failing under dynamo")
def test_kaiming_normal(self):
for use_a in [True, False]:
for dims in [2, 4]:
for mode in ["fan_in", "fan_out"]:
input_tensor = self._create_random_nd_tensor(
dims, size_min=20, size_max=25
)
if use_a:
a = self._random_float(0.1, 2)
init.kaiming_normal_(input_tensor, a=a, mode=mode)
else:
a = 0
init.kaiming_normal_(input_tensor, mode=mode)
fan_in = input_tensor.size(1)
fan_out = input_tensor.size(0)
if input_tensor.dim() > 2:
fan_in *= input_tensor[0, 0].numel()
fan_out *= input_tensor[0, 0].numel()
if mode == "fan_in":
n = fan_in
else:
n = fan_out
expected_std = math.sqrt(2.0 / ((1 + a**2) * n))
assert self._is_normal(input_tensor, 0, expected_std)
def test_sparse_only_works_on_2d_inputs(self):
for dims in [1, 3]:
with self.assertRaises(ValueError):
sparsity = self._random_float(0.1, 0.9)
tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=3)
init.sparse_(tensor, sparsity)
@unittest.skipIf(not TEST_SCIPY, "Scipy not found.")
@skipIfTorchDynamo("scipy.kstest is failing under dynamo")
def test_sparse_default_std(self):
for use_random_std in [True, False]:
input_tensor = self._create_random_nd_tensor(2, size_min=30, size_max=35)
rows, cols = input_tensor.size(0), input_tensor.size(1)
sparsity = self._random_float(0.1, 0.2)
std = 0.01 # default std
if use_random_std:
std = self._random_float(0.01, 0.2)
init.sparse_(input_tensor, sparsity=sparsity, std=std)
else:
init.sparse_(input_tensor, sparsity=sparsity)
for col_idx in range(input_tensor.size(1)):
column = input_tensor[:, col_idx]
assert column[column == 0].nelement() >= math.ceil(sparsity * rows)
assert self._is_normal(input_tensor[input_tensor != 0], 0, std)
@skipIfNoLapack
def test_orthogonal(self):
for use_gain in [True, False]:
for tensor_size in [[3, 4], [4, 3], [20, 2, 3, 4], [2, 3, 4, 5]]:
input_tensor = torch.zeros(tensor_size)
gain = 1.0
if use_gain:
gain = self._random_float(0.1, 2)
init.orthogonal_(input_tensor, gain=gain)
else:
init.orthogonal_(input_tensor)
rows, cols = tensor_size[0], reduce(mul, tensor_size[1:])
flattened_tensor = input_tensor.view(rows, cols)
if rows > cols:
self.assertEqual(
torch.mm(flattened_tensor.t(), flattened_tensor),
torch.eye(cols) * gain**2,
atol=1e-6,
rtol=0,
)
else:
self.assertEqual(
torch.mm(flattened_tensor, flattened_tensor.t()),
torch.eye(rows) * gain**2,
atol=1e-6,
rtol=0,
)
def test_deprecation(self):
x = torch.randn(3, 3)
def fn():
init.normal(x)
with self.assertWarnsRegex(
FutureWarning,
"deprecated",
msg="methods not suffixed with underscore should be deprecated",
):
fn()
if __name__ == "__main__":
run_tests()
|