File: test_load_state_dict.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (620 lines) | stat: -rw-r--r-- 23,830 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
# Owner(s): ["module: nn"]
import re
import unittest
from copy import deepcopy
from itertools import product

import torch
import torch.nn as nn
from torch.testing._internal.common_nn import NNTestCase
from torch.testing._internal.common_utils import (
    instantiate_parametrized_tests,
    parametrize,
    run_tests,
    skipIfCrossRef,
    skipIfTorchDynamo,
    swap,
    TEST_NUMPY,
    TestCase,
)
from torch.utils._pytree import tree_map


if TEST_NUMPY:
    import numpy as np


class TestLoadStateDict(NNTestCase):
    _do_cuda_memory_leak_check = True
    _do_cuda_non_default_stream = True

    @unittest.skipIf(not TEST_NUMPY, "numpy not found")
    @swap([True, False])
    def test_load_state_dict_invalid(self):
        m = torch.nn.Linear(2, 2, bias=False)

        state_dict = {"weight": np.random.randn(2, 2)}
        with self.assertRaisesRegex(
            RuntimeError,
            "expected torch.Tensor or Tensor-like object from checkpoint but received",
        ):
            m.load_state_dict(state_dict)

        state_dict = {"weight": ((1.0, 1.0), (2.0, 2.0))}
        with self.assertRaisesRegex(
            RuntimeError,
            "expected torch.Tensor or Tensor-like object from checkpoint but received",
        ):
            m.load_state_dict(state_dict)

    @swap([True, False])
    def test_load_state_dict_type(self):
        m = nn.Module()

        with self.assertRaisesRegex(
            TypeError, "Expected state_dict to be dict-like, got"
        ):
            m.load_state_dict("")
        with self.assertRaisesRegex(
            TypeError, "Expected state_dict to be dict-like, got"
        ):
            m.load_state_dict(2)

    @swap([True, False])
    @skipIfTorchDynamo("dynamo installs weakrefs on some params")
    def test_load_state_dict(self):
        l = nn.Linear(5, 5)
        block = nn.Module()
        block.conv1 = nn.Conv2d(3, 3, 3, bias=True)
        block.conv2 = nn.Conv2d(3, 3, 3, bias=False)
        net = nn.Module()
        net.linear1 = l
        net.linear2 = l
        net.bn = nn.BatchNorm2d(2)
        net.block = block
        net.add_module("empty", None)
        conv1_bias_dtype = block.conv1.bias.dtype

        state_dict = net.state_dict()
        state_dict.update(
            {
                "linear1.weight": torch.ones(5, 5),
                "block.conv1.bias": torch.arange(1, 4, dtype=conv1_bias_dtype),
                "bn.running_mean": torch.randn(2),
            }
        )
        # Also test if a DDP state_dict can be loaded from a local model.
        ddp_state_dict = net.state_dict()
        ddp_state_dict.update(
            {
                "module.linear1.weight": torch.ones(5, 5),
                "module.block.conv1.bias": torch.arange(1, 4, dtype=conv1_bias_dtype),
                "module.bn.running_mean": torch.randn(2),
            }
        )
        torch.nn.modules.utils.consume_prefix_in_state_dict_if_present(
            ddp_state_dict, "module."
        )
        for sd in [state_dict, ddp_state_dict]:
            incompatible_keys = net.load_state_dict(sd)
            self.assertEqual(len(incompatible_keys.missing_keys), 0)
            self.assertEqual(len(incompatible_keys.unexpected_keys), 0)
            self.assertNotIn("Incompatible", str(incompatible_keys))
            self.assertEqual(net.linear1.weight, sd["linear1.weight"])
            self.assertEqual(net.block.conv1.bias, sd["block.conv1.bias"])
            self.assertEqual(net.bn.running_mean, sd["bn.running_mean"])

        state_dict = net.state_dict()
        state_dict.update({"extra": torch.ones(5)})
        self.assertRaises(RuntimeError, lambda: net.load_state_dict(state_dict))
        incompatible_keys = net.load_state_dict(state_dict, strict=False)
        self.assertEqual(len(incompatible_keys.missing_keys), 0)
        self.assertEqual(len(incompatible_keys.unexpected_keys), 1)
        self.assertIn("extra", incompatible_keys.unexpected_keys)
        self.assertIn("Incompatible", str(incompatible_keys))

        state_dict = net.state_dict()
        state_dict.update({"extra.param": torch.ones(5)})
        self.assertRaises(RuntimeError, lambda: net.load_state_dict(state_dict))
        incompatible_keys = net.load_state_dict(state_dict, strict=False)
        self.assertEqual(len(incompatible_keys.missing_keys), 0)
        self.assertEqual(len(incompatible_keys.unexpected_keys), 1)
        self.assertIn("extra.param", incompatible_keys.unexpected_keys)

        state_dict = net.state_dict()
        del state_dict["linear1.weight"]
        self.assertRaises(RuntimeError, lambda: net.load_state_dict(state_dict))
        incompatible_keys = net.load_state_dict(state_dict, strict=False)
        self.assertEqual(len(incompatible_keys.missing_keys), 1)
        self.assertEqual(len(incompatible_keys.unexpected_keys), 0)
        self.assertIn("linear1.weight", incompatible_keys.missing_keys)
        state_dict.update({"extra.param": torch.ones(5)})
        self.assertRaises(RuntimeError, lambda: net.load_state_dict(state_dict))
        incompatible_keys = net.load_state_dict(state_dict, strict=False)
        self.assertEqual(len(incompatible_keys.missing_keys), 1)
        self.assertEqual(len(incompatible_keys.unexpected_keys), 1)
        self.assertIn("linear1.weight", incompatible_keys.missing_keys)
        self.assertIn("extra.param", incompatible_keys.unexpected_keys)

        state_dict = net.state_dict()
        state_dict.update({"bn.running_mean": torch.rand(14, 4)})  # wrong size
        self.assertRaises(RuntimeError, lambda: net.load_state_dict(state_dict))
        self.assertRaises(
            RuntimeError, lambda: net.load_state_dict(state_dict, strict=False)
        )

        state_dict = net.state_dict()
        old_state_dict = deepcopy(state_dict)
        state_dict = {
            "linear1.weight": torch.ones(5, 5),
            "block.conv1.bias": torch.arange(1, 4, dtype=conv1_bias_dtype),
            "bn.running_mean": torch.randn(2),
            "nonexistent_key": torch.rand(3),
        }
        net.load_state_dict(state_dict, strict=False)
        self.assertEqual(net.linear1.weight, state_dict["linear1.weight"])
        self.assertEqual(net.block.conv1.bias, state_dict["block.conv1.bias"])
        self.assertEqual(net.bn.running_mean, state_dict["bn.running_mean"])
        new_state_dict = net.state_dict()
        del old_state_dict["linear1.weight"]
        del old_state_dict["block.conv1.bias"]
        del old_state_dict["bn.running_mean"]
        for (
            k,
            v,
        ) in old_state_dict.items():
            self.assertTrue(v.equal(new_state_dict[k]))

    @swap([True, False])
    def test_load_state_dict_BC(self):
        # BatchNormNd
        # Added num_batches_tracked buffer at version 2. For state dict with
        # earlier versions or no versions, it should provide default value of 0.
        bn = nn.BatchNorm2d(3)
        state_dict = bn.state_dict()
        del state_dict["num_batches_tracked"]
        state_dict._metadata[""]["version"] = 1  # version 1
        bn.load_state_dict(state_dict)
        self.assertEqual(bn.num_batches_tracked.dtype, torch.long)
        self.assertEqual(bn.num_batches_tracked.item(), 0)
        del state_dict._metadata[""]["version"]  # no version
        bn.load_state_dict(state_dict)
        self.assertEqual(bn.num_batches_tracked.dtype, torch.long)
        self.assertEqual(bn.num_batches_tracked.item(), 0)

    @swap([True, False])
    def test_load_state_dict_child(self):
        base_module = nn.Linear(1, 1)
        model = base_module
        for _ in range(3):
            model = nn.Sequential(*[deepcopy(model) for _ in range(10)])

        def hook_fn(
            module,
            state_dict,
            prefix,
            local_metadata,
            strict,
            missing_keys,
            unexpected_keys,
            error_msgs,
        ):
            module_state_dict = module.state_dict()
            self.assertEqual(len(module_state_dict.keys()), len(state_dict.keys()))

        model[0][0].register_load_state_dict_pre_hook(hook_fn)
        model.load_state_dict(model.state_dict(), strict=True)

    # fails swapping as LSTM installs weak references on the parameters
    @swap([False])
    @skipIfTorchDynamo("TorchDynamo fails here for unknown reasons")
    def test_load_state_dict_ref_cycle(self):
        # load_state_dict shouldn't cause a reference cycle involving Tensors
        import gc

        m = torch.nn.LSTM(16, 16, bidirectional=True)

        gc.collect()
        m.load_state_dict(deepcopy(m).state_dict())
        refcycles = gc.collect()

        self.assertEqual(refcycles, 0)

    @swap([True, False])
    def test_load_state_dict_custom(self):
        class CustomState(nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.param = torch.nn.Parameter(torch.ones(1))
                self.sub = torch.nn.Linear(5, 5)

            def _save_to_state_dict(self, destination, prefix, keep_vars):
                destination[prefix + "serialized"] = self.param.data + 1

            def _load_from_state_dict(
                self,
                state_dict,
                prefix,
                local_metadata,
                strict,
                missing_keys,
                unexpected_keys,
                error_msgs,
            ):
                # skip some of the error handling
                self.param.data.copy_(state_dict[prefix + "serialized"] - 1)

        # use sequential to verify nesting
        m = nn.Sequential(CustomState())
        with torch.no_grad():
            m[0].param[0] = 10
            m[0].sub.weight[0, 0] = 555
        state_dict = m.state_dict()
        self.assertEqual(state_dict["0.serialized"].item(), 11)
        self.assertIn("0.sub.weight", state_dict)
        self.assertNotIn("0.param", state_dict)
        del m
        mm = nn.Sequential(CustomState())
        self.assertEqual(mm[0].param[0].item(), 1)
        mm.load_state_dict(state_dict)
        self.assertEqual(mm[0].param[0].item(), 10)
        self.assertEqual(mm[0].sub.weight[0, 0].item(), 555)

    @swap([True, False])
    @parametrize("keep_vars", [True, False])
    def test_load_state_dict_assign_meta(self, keep_vars):
        class MyModule(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.fc1 = nn.Linear(3, 5)
                self.bn = nn.BatchNorm1d(5)
                self.x = nn.Parameter(torch.rand(5), requires_grad=False)

            def forward(self, input):
                return self.x + self.bn(self.fc1(input))

        swap = torch.__future__.get_swap_module_params_on_conversion()
        net = MyModule()
        state_dict = net.state_dict(keep_vars=keep_vars)
        for v in state_dict.values():
            v.requires_grad_(False)

        with torch.device("meta"):
            net_meta = MyModule()

        net_meta_state_dict_old = net_meta.state_dict(keep_vars=True)
        net_meta.load_state_dict(state_dict, assign=True)

        # Make sure parameters and persistent buffers were assigned
        net_meta_state_dict = net_meta.state_dict(keep_vars=True)
        for key in state_dict.keys():
            if key in net_meta._parameters:
                if keep_vars and not swap:
                    # state_dict[key] is an nn.Parameter
                    self.assertTrue(state_dict[key] is net_meta_state_dict[key])
                else:
                    if swap:
                        self.assertTrue(
                            net_meta_state_dict[key] is net_meta_state_dict_old[key]
                        )
                    else:
                        # state_dict[key] is not an nn.Parameter so it will be detached when wrapping with a Parameter
                        self.assertTrue(
                            net_meta_state_dict[key] is not net_meta_state_dict_old[key]
                        )
                        self.assertEqual(
                            net_meta_state_dict_old[key].requires_grad,
                            net_meta_state_dict[key].requires_grad,
                        )
                self.assertEqual(
                    net_meta_state_dict_old[key].requires_grad,
                    net_meta_state_dict[key].requires_grad,
                )
                self.assertEqual(state_dict[key], net_meta_state_dict[key])
            elif (
                key in net_meta._buffers
                and key not in net_meta._non_persistent_buffers_set
            ):
                self.assertTrue(state_dict[key] is net_meta_state_dict[key])
                self.assertEqual(state_dict[key], net_meta_state_dict[key])

        # Make sure that ordering of parameters and buffers is preserved
        net_named_parameters = net.named_parameters()
        net_named_buffers = net.named_buffers()
        net_meta_named_parameters = net_meta.named_parameters()
        net_meta_named_buffers = net_meta.named_buffers()

        for (n1, _), (n2, _) in zip(net_named_parameters, net_meta_named_parameters):
            self.assertEqual(n1, n2)

        for (n1, _), (n2, _) in zip(net_named_buffers, net_meta_named_buffers):
            self.assertEqual(n1, n2)

        # Make sure outputs are the same
        t = torch.randn(4, 3)
        out_net = net(t)
        out_net_meta = net_meta(t.clone())

        self.assertEqual(out_net, out_net_meta)

    @swap([True, False])
    def test_load_state_dict_assign_with_optimizer(self):
        class MyModule(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.fc1 = nn.Linear(3, 5)
                self.bn = nn.BatchNorm1d(5)

            def forward(self, input):
                return self.bn(self.fc1(input))

        net = MyModule()
        opt = torch.optim.Adam(net.parameters(), lr=1000)
        x = torch.randn(4, 3)
        num_iters = 3

        for i in range(num_iters):
            opt.zero_grad()
            out = net(x)
            out.sum().backward()
            opt.step()

        opt_state_dict = deepcopy(opt.state_dict())
        net_state_dict = deepcopy(net.state_dict())

        with torch.device("meta"):
            net_meta = MyModule()

        net_meta.load_state_dict(net_state_dict, assign=True)
        # must create optimizer only after loading state_dict when assign=True
        opt2 = torch.optim.Adam(net_meta.parameters(), lr=1000)
        opt2.load_state_dict(opt_state_dict)

        y = x.clone()
        for i in range(num_iters):
            opt.zero_grad()
            out = net(x)
            out.sum().backward()
            opt.step()

            opt2.zero_grad()
            out2 = net_meta(y)
            out2.sum().backward()
            opt2.step()

        self.assertEqual(opt.state_dict(), opt2.state_dict())
        self.assertEqual(net.state_dict(), net_meta.state_dict())

    @swap([True, False])
    def test_load_state_dict_assign_shape_stride(self):
        # Assigned tensor is allowed to have different properties than initial
        # tensor except for shape
        class MyModule(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.fc1 = nn.Linear(3, 5)
                self.bn = nn.BatchNorm1d(5)

            def forward(self, input):
                return self.bn(self.fc1(input))

        net = MyModule()
        state_dict = net.state_dict()
        # loading should be ok if stride is different
        state_dict["fc1.weight"] = torch.randn(3, 5).transpose(0, 1)
        net2 = MyModule()
        net2.load_state_dict(state_dict, strict=False, assign=True)

        state_dict["fc1.weight"] = torch.randn(2, 4)
        with self.assertRaisesRegex(
            RuntimeError, "size mismatch for fc1.weight: copying a param with shape"
        ):
            net2.load_state_dict(state_dict, strict=False, assign=True)

    @swap([True, False])
    def test_load_state_dict_warn_assign(self):
        with torch.device("meta"):
            m = torch.nn.Linear(3, 5)
        state_dict = m.state_dict()
        state_dict["weight"] = torch.empty_like(state_dict["weight"], device="cpu")
        with self.assertWarnsRegex(
            UserWarning,
            "for weight: copying from a non-meta parameter in the checkpoint to a meta",
        ):
            m.load_state_dict(state_dict)

    @swap([True, False])
    def test_load_state_dict_with_unexpected_key(self):
        class MyModule(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.fc1 = torch.nn.Linear(5, 10)

        m = MyModule()

        # Unexpected key & strict = True
        with self.assertRaisesRegex(RuntimeError, "Unexpected key"):
            state_dict = m.state_dict()
            state_dict["fc1.bad_suffix"] = torch.randn(5, 10)
            m.load_state_dict(state_dict)

        # Unexpected key & strict = False
        state_dict = m.load_state_dict(state_dict, strict=False)
        self.assertIn("fc1.bad_suffix", state_dict.unexpected_keys)

        # Unexpected key whose prefix matches a valid key & strict = True
        with self.assertRaisesRegex(RuntimeError, "Unexpected key"):
            state_dict = m.state_dict()
            state_dict["fc1.weight.bad_suffix"] = torch.randn(5, 10)
            m.load_state_dict(state_dict)

        # Unexpected key whose prefix matches a valid key & strict = False
        state_dict = m.load_state_dict(state_dict, strict=False)
        self.assertIn("fc1.weight.bad_suffix", state_dict.unexpected_keys)


def load_torch_function_handler(cls, func, types, args=(), kwargs=None):
    kwargs = {} if kwargs is None else kwargs

    def module_load(dest, src, assign=False):
        if isinstance(dest, cls):
            if assign:
                return src.detach()
            else:
                if type(src) is torch.Tensor:
                    return cls(src)
                elif type(src) is cls:
                    return src.detach()
                else:
                    if isinstance(src, MyWrapperLoadTensor):
                        return cls(src._data)
                    return cls(src)
        else:
            assert isinstance(
                src, cls
            ), f"Expected isinstance(src, {cls}) but got {type(src)}"
            assert (
                type(dest) == torch.Tensor
                or type(dest) == torch.nn.Parameter
                or issubclass(cls, type(dest))
            )
            if assign:
                return src.detach()
            else:
                if isinstance(src, MyWrapperLoadTensor):
                    if type(dest) not in {torch.Tensor, torch.nn.Parameter}:
                        return type(dest)(src._data)
                    else:
                        return src._data.detach()
                else:
                    return torch.Tensor(src)

    if func is torch.Tensor.module_load:
        return module_load(*args, **kwargs)
    else:
        with torch._C.DisableTorchFunctionSubclass():
            # detach must return instance of same subclass for nn.Parameter()
            if func == torch.Tensor.detach:
                ret = func(*args, **kwargs)
                if not isinstance(ret, cls):
                    return cls(ret)
                return ret
            return func(*args, **kwargs)


class MyLoadTensor(torch.Tensor):
    @classmethod
    def __torch_function__(cls, func, types, args=(), kwargs=None):
        return load_torch_function_handler(cls, func, types, args, kwargs)


# We use MyLoadTensor2 to test tensor subclass, wrapper tensor subclass
# where neither inherits from each other
class MyLoadTensor2(torch.Tensor):
    @classmethod
    def __torch_function__(cls, func, types, args=(), kwargs=None):
        return load_torch_function_handler(cls, func, types, args, kwargs)


class MyBrokenLoadTensor(torch.Tensor):
    @classmethod
    def __torch_function__(cls, func, types, args=(), kwargs=None):
        kwargs = {} if kwargs is None else kwargs

        if func is torch.Tensor.module_load:
            # wrong as this doesn't detach!
            return args[1]
        else:
            with torch._C.DisableTorchFunctionSubclass():
                # detach must return instance of same subclass for nn.Parameter()
                if func == torch.Tensor.detach:
                    return cls(func(*args, **kwargs))
                return func(*args, **kwargs)


class MyWrapperLoadTensor(MyLoadTensor):
    @staticmethod
    def __new__(cls, data: torch.Tensor):
        t = torch.Tensor._make_wrapper_subclass(
            cls,
            data.size(),
            dtype=data.dtype,
            layout=data.layout,
            device=data.device,
            requires_grad=data.requires_grad,
            strides=data.stride(),
            storage_offset=data.storage_offset(),
        )
        return t

    def __init__(self, data: torch.Tensor):
        self._data = data

    def __repr__(self):
        return f"MyWrapperLoadTensor({self._data.__repr__()})"

    @classmethod
    def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
        def unwrap(t):
            return t._data if isinstance(t, MyWrapperLoadTensor) else t

        def wrap(t):
            return MyWrapperLoadTensor(t) if isinstance(t, torch.Tensor) else t

        kwargs = {} if kwargs is None else kwargs
        out = func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs))
        return tree_map(wrap, out)


class TestLoadStateDictSwap(TestCase):
    @skipIfCrossRef
    @skipIfTorchDynamo("Can't swap with dynamo as dynamo installs weakrefs")
    @swap([True])
    @parametrize("assign", [True, False])
    def test_swap_subclass(self, assign):
        def _create_model(subclass=None):
            m = torch.nn.Linear(2, 3, bias=False)
            m.buf = torch.nn.Buffer(torch.randn(2, 3))
            if subclass is not None:
                m.weight = torch.nn.Parameter(subclass(m.weight))
                m.buf = subclass(m.buf)
            return m

        def _test(m_subclass=None, sd_subclass=None):
            m = _create_model(m_subclass)
            sd = _create_model(sd_subclass).state_dict()
            m.load_state_dict(sd, assign=assign)
            self.assertEqual(m.weight, sd["weight"])
            self.assertEqual(m.buf, sd["buf"])
            self.assertTrue(isinstance(m.weight, torch.nn.Parameter))
            self.assertTrue(not isinstance(m.buf, torch.nn.Parameter))

            weight_type, buf_type = (torch.nn.Parameter, torch.Tensor)
            if assign:
                if sd_subclass is not None:
                    weight_type, buf_type = (sd_subclass, sd_subclass)
            else:
                if m_subclass is not None:
                    weight_type, buf_type = (m_subclass, m_subclass)

            self.assertTrue(type(m.weight) is weight_type)
            self.assertTrue(type(m.buf) is buf_type)

        # (MyLoadTensor, MyWrapperLoadTensor) tests the behavior of (superclass, subclass)
        subclasses = [None, MyLoadTensor, MyLoadTensor2, MyWrapperLoadTensor]
        for m_s, sd_s in product(subclasses, subclasses):
            _test(m_s, sd_s)

        # MyBrokenLoadTensor should error since its module_load doesn't call .detach()
        with self.assertRaisesRegex(
            RuntimeError, re.escape("Error(s) in loading state_dict for Linear:")
        ):
            _test(None, MyBrokenLoadTensor)


instantiate_parametrized_tests(TestLoadStateDict)
instantiate_parametrized_tests(TestLoadStateDictSwap)

if __name__ == "__main__":
    TestCase._default_dtype_check_enabled = True
    run_tests()