1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
|
# Owner(s): ["module: nn"]
import gc
import math
import pickle
import unittest
import warnings
import weakref
from collections import namedtuple, OrderedDict
from copy import deepcopy
from functools import partial
from tempfile import NamedTemporaryFile
from typing import Any, Dict, List, Tuple
import torch
import torch.nn as nn
from torch.testing._internal.common_nn import _create_basic_net, NNTestCase
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
IS_WINDOWS,
parametrize as parametrize_test,
run_tests,
skipIfTorchDynamo,
swap,
TestCase,
)
class Net(nn.Module):
def __init__(self) -> None:
super().__init__()
self.seq1 = nn.Sequential(*[nn.Linear(10, 10) for _ in range(2)])
self.seq2 = nn.Sequential(*[nn.Linear(10, 10) for _ in range(2)])
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.seq2(self.seq1(x))
ToyNamedTuple = namedtuple("ToyNamedTuple", "content")
class ToyModel(nn.Module):
def __init__(self, with_named_tuple=False) -> None:
super().__init__()
self.net1 = Net()
self.net2 = Net()
self.with_named_tuple = with_named_tuple
def forward(self, x: torch.Tensor) -> torch.Tensor:
res = self.net2(self.net1(x))
if self.with_named_tuple:
return ToyNamedTuple(res)
else:
return (res,)
def forward_hook(
self: TestCase,
fired_hooks: List[int],
expected_module: nn.Module,
hook_id: int,
module: nn.Module,
inp: Tuple[torch.Tensor],
out: torch.Tensor,
) -> None:
fired_hooks.append(hook_id)
self.assertEqual(id(module), id(expected_module))
self.assertEqual(len(inp), 1)
def forward_pre_hook(
self: TestCase,
fired_hooks: List[int],
expected_module: nn.Module,
hook_id: int,
module: nn.Module,
inp: Tuple[torch.Tensor],
) -> None:
fired_hooks.append(hook_id)
self.assertEqual(id(module), id(expected_module))
self.assertEqual(len(inp), 1)
def full_backward_hook(
self: TestCase,
fired_hooks: List[int],
expected_module: nn.Module,
hook_id: int,
module: nn.Module,
grad_input: Tuple[torch.Tensor],
grad_output: Tuple[torch.Tensor],
) -> None:
fired_hooks.append(hook_id)
self.assertEqual(id(module), id(expected_module))
self.assertEqual(len(grad_input), 1)
self.assertEqual(len(grad_output), 1)
def full_backward_pre_hook(
self: TestCase,
fired_hooks: List[int],
expected_module: nn.Module,
hook_id: int,
module: nn.Module,
grad_input: Tuple[torch.Tensor],
) -> None:
fired_hooks.append(hook_id)
self.assertEqual(id(module), id(expected_module))
self.assertEqual(len(grad_input), 1)
class KwargModel(nn.Module):
def __init__(self) -> None:
super().__init__()
self.net1 = Net()
self.net2 = Net()
def forward(self, x: torch.Tensor, bias: torch.Tensor = None) -> torch.Tensor:
if bias is not None:
x = x + bias
return x
def internal_forward_hook(
self,
module: nn.Module,
args: Tuple[torch.Tensor],
kwargs: Dict[str, Any],
out: torch.Tensor,
):
return out + kwargs["bias"]
class FailsInForwardModel(nn.Module):
def __init__(self) -> None:
super().__init__()
self.net1 = Net()
def forward(self, x: torch.Tensor, fail: bool = True) -> torch.Tensor:
if fail:
raise RuntimeError("failing in forward")
return self.net1(x)
def kwarg_forward_pre_hook(
self: TestCase,
fired_hooks: List[int],
expected_module: nn.Module,
hook_id: int,
module: nn.Module,
args: Tuple[torch.Tensor],
kwargs: Dict[str, Any],
) -> Tuple[Any, Any]:
fired_hooks.append(hook_id)
self.assertEqual(id(module), id(expected_module))
self.assertEqual(len(args), 1)
kwargs["bias"] = 2 * kwargs["bias"]
return args, kwargs
def kwarg_forward_hook(
self: TestCase,
fired_hooks: List[int],
expected_module: nn.Module,
hook_id: int,
module: nn.Module,
args: Tuple[torch.Tensor],
kwargs: Dict[str, Any],
out: torch.Tensor,
) -> Any:
fired_hooks.append(hook_id)
self.assertEqual(id(module), id(expected_module))
self.assertEqual(len(args), 1)
out = out + kwargs["bias"]
return out
class DummyContextManager:
def __init__(self, inp):
self.input = inp
def __enter__(self, *args, **kwargs):
self.input.append(2)
def __exit__(self, *args, **kwargs):
self.input.append(-1)
class TestModuleHooks(TestCase):
@parametrize_test("named_tuple", (True, False))
def test_forward_hooks(self, named_tuple):
fired_hooks: List[int] = []
model = ToyModel(named_tuple)
x = torch.randn(10, 10)
hook = partial(forward_hook, self, fired_hooks, model.net1.seq2)
model.net1.seq2.register_forward_hook(partial(hook, 0))
model.net1.seq2.register_forward_hook(partial(hook, 1), prepend=True)
model.net1.seq2.register_forward_hook(partial(hook, 2))
model.net1.seq2.register_forward_hook(partial(hook, 3))
model.net1.seq2.register_forward_hook(partial(hook, 4), prepend=True)
expected = [4, 1, 0, 2, 3]
self.assertEqual(fired_hooks, [])
out = model(x)
self.assertEqual(fired_hooks, expected)
self.assertIsInstance(out, ToyNamedTuple if named_tuple else tuple)
out[0].sum().backward()
self.assertEqual(fired_hooks, expected)
model(x)[0].sum().backward()
self.assertEqual(fired_hooks, expected + expected)
@parametrize_test("named_tuple", (True, False))
def test_forward_pre_hooks(self, named_tuple):
fired_hooks: List[int] = []
model = ToyModel(named_tuple)
x = torch.randn(10, 10)
hook = partial(forward_pre_hook, self, fired_hooks, model.net2.seq1)
model.net2.seq1.register_forward_pre_hook(partial(hook, 0), prepend=True)
model.net2.seq1.register_forward_pre_hook(partial(hook, 1))
model.net2.seq1.register_forward_pre_hook(partial(hook, 2))
model.net2.seq1.register_forward_pre_hook(partial(hook, 3))
model.net2.seq1.register_forward_pre_hook(partial(hook, 4), prepend=True)
expected = [4, 0, 1, 2, 3]
self.assertEqual(fired_hooks, [])
out = model(x)
self.assertEqual(fired_hooks, expected)
self.assertIsInstance(out, ToyNamedTuple if named_tuple else tuple)
out[0].sum().backward()
self.assertEqual(fired_hooks, expected)
model(x)[0].sum().backward()
self.assertEqual(fired_hooks, expected + expected)
@parametrize_test("named_tuple", (True, False))
def test_full_backward_hooks(self, named_tuple):
fired_hooks: List[int] = []
model = ToyModel(named_tuple)
x = torch.randn(10, 10)
hook = partial(full_backward_hook, self, fired_hooks, model.net1)
model.net1.register_full_backward_hook(partial(hook, 0))
model.net1.register_full_backward_hook(partial(hook, 1))
model.net1.register_full_backward_hook(partial(hook, 2))
model.net1.register_full_backward_hook(partial(hook, 3), prepend=True)
model.net1.register_full_backward_hook(partial(hook, 4), prepend=True)
expected = [4, 3, 0, 1, 2]
self.assertEqual(fired_hooks, [])
out = model(x)
self.assertEqual(fired_hooks, [])
self.assertIsInstance(out, ToyNamedTuple if named_tuple else tuple)
out[0].sum().backward()
self.assertEqual(fired_hooks, expected)
model(x)[0].sum().backward()
self.assertEqual(fired_hooks, expected + expected)
@parametrize_test("named_tuple", (True, False))
def test_full_backward_pre_hooks(self, named_tuple):
fired_hooks: List[int] = []
model = ToyModel(named_tuple)
x = torch.randn(10, 10)
hook = partial(full_backward_pre_hook, self, fired_hooks, model.net1)
model.net1.register_full_backward_pre_hook(partial(hook, 0), prepend=True)
model.net1.register_full_backward_pre_hook(partial(hook, 1), prepend=True)
model.net1.register_full_backward_pre_hook(partial(hook, 2))
model.net1.register_full_backward_pre_hook(partial(hook, 3))
model.net1.register_full_backward_pre_hook(partial(hook, 4))
expected = [1, 0, 2, 3, 4]
self.assertEqual(fired_hooks, [])
out = model(x)
self.assertEqual(fired_hooks, [])
self.assertIsInstance(out, ToyNamedTuple if named_tuple else tuple)
out[0].sum().backward()
self.assertEqual(fired_hooks, expected)
model(x)[0].sum().backward()
self.assertEqual(fired_hooks, expected + expected)
# Backward pre hook can affect subsequent gradient computation
for rg in [True, False]:
a = torch.ones(2, requires_grad=rg)
model = nn.Linear(2, 2)
def fn(_unused_module, grad_output):
return (grad_output[0] * 0,)
model.register_full_backward_pre_hook(fn)
out = model(a)
out.sum().backward()
self.assertEqual(model.weight.grad, torch.zeros(2, 2))
if rg:
self.assertEqual(a.grad, torch.zeros_like(a))
else:
self.assertIsNone(a.grad)
@parametrize_test("named_tuple", (True, False))
def test_mixed_hooks(self, named_tuple):
fired_hooks: List[int] = []
model = ToyModel(named_tuple)
x = torch.randn(10, 10)
model.register_forward_pre_hook(
partial(forward_pre_hook, self, fired_hooks, model, 0)
)
model.register_forward_hook(partial(forward_hook, self, fired_hooks, model, 1))
model.register_full_backward_pre_hook(
partial(full_backward_pre_hook, self, fired_hooks, model, 2)
)
model.register_full_backward_hook(
partial(full_backward_hook, self, fired_hooks, model, 3)
)
self.assertEqual(fired_hooks, [])
out = model(x)
self.assertEqual(fired_hooks, [0, 1])
self.assertIsInstance(out, ToyNamedTuple if named_tuple else tuple)
out[0].sum().backward()
self.assertEqual(fired_hooks, [0, 1, 2, 3])
model(x)[0].sum().backward()
self.assertEqual(fired_hooks, [0, 1, 2, 3, 0, 1, 2, 3])
def test_kwarg_hooks(self):
# 1. test forward pre hook
fired_hooks: List[int] = []
x: torch.Tensor = torch.ones(10, 10)
bias: torch.Tensor = torch.ones(10, 10)
model = KwargModel()
model.register_forward_pre_hook(
partial(kwarg_forward_pre_hook, self, fired_hooks, model, 0),
with_kwargs=True,
)
# forward-pre: bias' = bias * 2
# So, out = x + bias * 2
self.assertEqual(fired_hooks, [])
out = model(x, bias=bias)
self.assertEqual(fired_hooks, [0])
self.assertEqual(out, x + 2 * bias, rtol=0, atol=1e-5)
# 2. test forward pre and forward hooks
fired_hooks: List[int] = []
x: torch.Tensor = torch.ones(10, 10)
bias: torch.Tensor = torch.ones(10, 10)
model = KwargModel()
model.register_forward_hook(
partial(kwarg_forward_hook, self, fired_hooks, model, 1),
with_kwargs=True,
)
model.register_forward_pre_hook(
partial(kwarg_forward_pre_hook, self, fired_hooks, model, 0),
with_kwargs=True,
)
# forward-pre: bias' = bias * 2
# forward: out = x + bias'
# forward-post: out = out + bias'
# So, out = x + bias * 4
self.assertEqual(fired_hooks, [])
out = model(x, bias=bias)
self.assertEqual(fired_hooks, [0, 1])
self.assertEqual(out, x + 4 * bias, rtol=0, atol=1e-5)
# 3. test nn.Module member method as forward-post hook
x: torch.Tensor = torch.ones(10, 10)
bias: torch.Tensor = torch.ones(10, 10)
model = KwargModel()
model.register_forward_hook(model.internal_forward_hook, with_kwargs=True)
# forward: out = x + bias
# forward-post: out = out + bias
# So, out = x + bias * 2
out = model(x, bias=bias)
self.assertEqual(out, x + 2 * bias, rtol=0, atol=1e-5)
def test_remove_kwarg_hooks(self):
# test forward pre and forward hooks
fired_hooks: List[int] = []
x: torch.Tensor = torch.ones(10, 10)
bias: torch.Tensor = torch.ones(10, 10)
model = KwargModel()
forward_hook_handle = model.register_forward_hook(
partial(kwarg_forward_hook, self, fired_hooks, model, 1),
with_kwargs=True,
)
forward_pre_hook_handle = model.register_forward_pre_hook(
partial(kwarg_forward_pre_hook, self, fired_hooks, model, 0),
with_kwargs=True,
)
# forward-pre: bias' = bias * 2
# forward: out = x + bias'
# forward-post: out = out + bias'
# So, out = x + bias * 4
self.assertEqual(fired_hooks, [])
out = model(x, bias=bias)
self.assertEqual(fired_hooks, [0, 1])
self.assertEqual(out, x + 4 * bias, rtol=0, atol=1e-5)
# forward-pre: bias' = bias * 2
# forward: out = x + bias'
# So, out = x + bias * 2
forward_hook_handle.remove()
out = model(x, bias=bias)
self.assertEqual(fired_hooks, [0, 1, 0])
self.assertEqual(out, x + 2 * bias, rtol=0, atol=1e-5)
self.assertFalse(forward_hook_handle.id in model._forward_hooks_with_kwargs)
# forward: out = x + bias
# So, out = x + bias
forward_pre_hook_handle.remove()
out = model(x, bias=bias)
self.assertEqual(fired_hooks, [0, 1, 0])
self.assertEqual(out, x + bias, rtol=0, atol=1e-5)
self.assertFalse(
forward_pre_hook_handle.id in model._forward_pre_hooks_with_kwargs
)
def test_always_called_forward_hooks(self):
x: torch.Tensor = torch.ones(10, 10)
model = FailsInForwardModel()
stack = []
ctx = None
def setup_context():
nonlocal ctx
ctx = DummyContextManager(stack)
def ctx_setup_hook(m, i):
setup_context()
ctx.__enter__()
def ctx_setup_failure_hook(m, i):
setup_context()
ctx.__enter__()
raise RuntimeError("failing in ctx setup")
def ctx_shutdown_hook(m, i, o):
ctx.__exit__()
def ctx_shutdown_failure_hook(m, i, o):
ctx.__exit__()
raise RuntimeError("failing in ctx shutdown")
def throw_hook(m, i, o):
raise RuntimeError("failing in throw")
forward_pre_hook_handle = model.register_forward_pre_hook(ctx_setup_hook)
forward_hook_handle = model.register_forward_hook(
ctx_shutdown_hook, always_call=True
)
self.assertTrue(len(model._forward_hooks_always_called) == 1)
# make sure always_called forward hook runs when model.forward raises RuntimeError
with self.assertRaisesRegex(RuntimeError, "failing in forward"):
model(x)
self.assertEqual(stack, [2, -1])
# make sure that always_called forward hook does not run twice if there is no error
model(x, fail=False)
self.assertEqual(stack, [2, -1, 2, -1])
# make sure always_called forward hook runs when forward pre hook raises RuntimeError
forward_pre_hook_handle.remove()
model.register_forward_pre_hook(ctx_setup_failure_hook)
with self.assertRaisesRegex(RuntimeError, "failing in ctx setup"):
model(x, fail=False)
self.assertEqual(stack, [2, -1, 2, -1, 2, -1])
# make sure always_called hook runs when another always_called forward hook raises an error
forward_hook_handle2 = model.register_forward_hook(
throw_hook, prepend=True, always_call=True
)
# error raised should not be error of the forced hook
with self.assertRaisesRegex(RuntimeError, "failing in ctx setup"):
model(x, fail=False)
self.assertEqual(stack, [2, -1, 2, -1, 2, -1, 2, -1])
# make sure that always called forward hooks are properly removed
forward_hook_handle.remove()
forward_hook_handle2.remove()
self.assertTrue(len(model._forward_hooks_always_called) == 0)
# make sure that always called forward hook is not run twice if it fails while running
forward_hook_handle3 = model.register_forward_hook(
ctx_shutdown_failure_hook, always_call=True
)
with self.assertRaisesRegex(RuntimeError, "failing in ctx setup"):
model(x, fail=False)
self.assertEqual(stack, [2, -1, 2, -1, 2, -1, 2, -1, 2, -1])
forward_hook_handle3.remove()
global_forward_hook_handle = nn.modules.module.register_module_forward_hook(
ctx_shutdown_hook, always_call=True
)
self.assertTrue(len(nn.modules.module._global_forward_hooks_always_called) == 1)
# make sure global forward hook runs when forward pre hook raises RuntimeError
with self.assertRaisesRegex(RuntimeError, "failing in ctx setup"):
model(x, fail=False)
self.assertEqual(stack, [2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1])
# make sure forced global forward hook is properly removed
global_forward_hook_handle.remove()
self.assertTrue(len(nn.modules.module._global_forward_hooks_always_called) == 0)
with self.assertRaisesRegex(RuntimeError, "failing in ctx setup"):
model(x)
self.assertEqual(stack, [2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2])
def test_bw_hook_warning_for_non_tensor_or_tuple(self):
# Test to verify that backward hook raises warning
# if result is not a Tensor or tuple of Tensors.
counter = {"forward": 0, "backward": 0}
def fw_pre_hook(module: nn.Module, _inputs):
counter["forward"] += 1
def fw_hook(module: nn.Module, _inputs, _outputs):
counter["forward"] += 1
def bw_hook(module: nn.Module, _inputs, _outputs):
counter["backward"] += 1
class TestModule(nn.Module):
def forward(self, dict):
inp = dict["x"]
x = torch.nn.functional.softmax(inp, dim=0)
return {"x": x}
x = torch.ones(2, requires_grad=True)
model = TestModule()
model.register_forward_pre_hook(fw_pre_hook)
model.register_forward_hook(fw_hook)
model.register_full_backward_pre_hook(bw_hook)
model.register_full_backward_hook(bw_hook)
with warnings.catch_warnings(record=True) as w:
y = model({"x": x})["x"]
loss = y.sum()
loss.backward()
self.assertEqual(counter["forward"], 2)
self.assertEqual(counter["backward"], 0)
self.assertEqual(len(w), 1)
self.assertTrue("should be a Tensor or a tuple of Tensors" in str(w[0].message))
def _hook_to_pickle(*args, **kwargs):
pass
class TestStateDictHooks(TestCase):
@swap([True, False])
def test_load_state_dict_pre_hook(self):
m = nn.Linear(10, 10)
m_state_dict = m.state_dict()
m_load = nn.Linear(10, 10)
hook_called = 0
def hook_without_module(
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
self.assertEqual(m_state_dict, state_dict)
nonlocal hook_called
hook_called += 1
def hook_with_module(
module,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
self.assertEqual(m_state_dict, state_dict)
self.assertTrue(m_load is module)
nonlocal hook_called
hook_called += 1
hook_called = 0
# Test private API since this sets with_module=False which diverges from public API
m_load._register_load_state_dict_pre_hook(hook_without_module)
m_load.load_state_dict(m_state_dict)
self.assertEqual(1, hook_called)
hook_called = 0
m_load.register_load_state_dict_pre_hook(hook_with_module)
m_load.load_state_dict(m_state_dict)
self.assertEqual(2, hook_called)
# Test private API with with_module=True
hook_called = 0
m_load._register_load_state_dict_pre_hook(hook_with_module, True)
m_load.load_state_dict(m_state_dict)
self.assertEqual(3, hook_called)
def test_no_extra_ref_to_module(self):
try:
gc.disable()
m = nn.Linear(10, 10)
m.register_load_state_dict_pre_hook(_hook_to_pickle)
weak_m = weakref.ref(m)
del m
self.assertEqual(weak_m(), None)
finally:
gc.enable()
def test_pickled_hook(self):
m = nn.Linear(10, 10)
m.register_load_state_dict_pre_hook(_hook_to_pickle)
pickle.loads(pickle.dumps(m))
@swap([True, False])
def test_load_state_dict_module_pre_hook(self):
hook_called = 0
# Test with module instance method as hook
class MyModule(nn.Module):
def __init__(self) -> None:
super().__init__()
self.foo = torch.nn.Parameter(torch.rand(10))
def my_pre_load_hook(
self,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
assert [] == error_msgs
assert [] == unexpected_keys
assert [] == missing_keys
assert strict
nonlocal hook_called
hook_called += 1
def my_pre_load_hook_with_module(
self,
module,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
assert [] == error_msgs
assert [] == unexpected_keys
assert [] == missing_keys
assert strict
assert self is module
nonlocal hook_called
hook_called += 1
# Test that hooks registered on a submodule are also called
# appropriately, i.e. with the submodule as module argument in
# my_pre_load_hook_with_module.
class MyModuleContainer(nn.Module):
def __init__(self, mod):
super().__init__()
self.mod = mod
for ctor in [MyModuleContainer, lambda x: x]:
m = ctor(MyModule())
state_dict = m.state_dict()
if isinstance(m, MyModuleContainer):
mod = m.mod
else:
mod = m
hook_called = 0
# Test private API since this sets with_module=False which diverges from public API
mod._register_load_state_dict_pre_hook(mod.my_pre_load_hook)
m.load_state_dict(state_dict)
self.assertEqual(1, hook_called)
hook_called = 0
mod.register_load_state_dict_pre_hook(mod.my_pre_load_hook_with_module)
m.load_state_dict(state_dict)
self.assertEqual(2, hook_called)
@swap([True, False])
def test_load_state_dict_post_hook(self):
hook_called = 0
class MyModule(nn.Module):
def __init__(self) -> None:
super().__init__()
self.foo = torch.nn.Parameter(torch.rand(10))
def my_post_load_hook(self, module, incompatible_keys):
assert module is self
nonlocal hook_called
incompatible_keys.missing_keys.append("foo")
incompatible_keys.unexpected_keys.append("bar")
hook_called += 1
nested = MyModule()
wrapped = nn.ModuleList([nested])
handle = nested.register_load_state_dict_post_hook(
nested.my_post_load_hook,
)
# Hook must be called even if it is wrapped
ret = wrapped.load_state_dict(wrapped.state_dict(), strict=False)
self.assertEqual(hook_called, 1)
# Ensure that the hook modified missing_keys and unexpected_keys
missing = ret.missing_keys
unexpected = ret.unexpected_keys
self.assertEqual(missing, ["foo"])
self.assertEqual(unexpected, ["bar"])
# When called with strict=True, the error raised should mention the
# missing and unexpected keys the hook added.
with self.assertRaisesRegex(RuntimeError, "foo.*\n.*bar"):
wrapped.load_state_dict(wrapped.state_dict(), strict=True)
self.assertEqual(hook_called, 2)
# Removing the hook via handle.remove() should cause it not to
# fire anymore.
handle.remove()
# Hook did not run so it should not have added any keys
ret = wrapped.load_state_dict(wrapped.state_dict(), strict=False)
self.assertEqual(ret.missing_keys, [])
self.assertEqual(ret.unexpected_keys, [])
# hook_called should not have been incremented
self.assertEqual(hook_called, 2)
def load_hook_clear_incompatible(module, incompatible_keys):
incompatible_keys.missing_keys.clear()
incompatible_keys.unexpected_keys.clear()
nested.register_load_state_dict_post_hook(load_hook_clear_incompatible)
state_dict = wrapped.state_dict()
state_dict["extra"] = torch.ones(1)
# load state_dict with strict=True should not throw.
ret = wrapped.load_state_dict(state_dict, strict=True)
# explicitly ensure that the post hook clearned out incompatible_keys
self.assertEqual([], ret.missing_keys)
self.assertEqual([], ret.unexpected_keys)
@unittest.skipIf(IS_WINDOWS, "Tempfile permission issue on windows")
@swap([True, False])
def test_load_state_dict_post_hook_backward_compatibility(self):
def my_post_load_hook(mod, _):
nonlocal called
called = True
for m in [nn.Softmin(10), nn.Softmax(10), nn.LogSoftmax(10)]:
called = False
sd = deepcopy(m.state_dict())
self.assertTrue(hasattr(m, "_load_state_dict_post_hooks"))
# Simulate an older model that did not have this attr
delattr(m, "_load_state_dict_post_hooks")
# Save and load, and ensure that load_state_dict works (without proper
# BC we would run into errors because this attribute would be expected).
# In particular, Softmax runs into the issue described here:
# https://github.com/pytorch/pytorch/issues/77280
with NamedTemporaryFile() as f:
# Note that torch.save / torch.load is not recommended to save/load
# modules.
torch.save(m, f.name)
# weights_only=False as this is legacy code that saves the model
m = torch.load(f.name, weights_only=False)
m.load_state_dict(sd)
self.assertFalse(called)
# Ensure hooks can be registered and called.
m.register_load_state_dict_post_hook(my_post_load_hook)
m.load_state_dict(sd)
self.assertTrue(called)
def _test_register_state_dict_pre_hook(self, model, submodule):
_state_dict_prefix = "foo."
state_dict_pre_hook_count = 0
keep_var_setting = False
def my_state_dict_pre_hook(module, prefix, keep_vars):
self.assertEqual(keep_vars, keep_var_setting)
nonlocal state_dict_pre_hook_count
state_dict_pre_hook_count += 1
self.assertTrue(prefix.startswith(_state_dict_prefix))
model.register_state_dict_pre_hook(my_state_dict_pre_hook)
# Test to ensure submodules run the hook as well.
submodule.register_state_dict_pre_hook(my_state_dict_pre_hook)
def check_results(model):
nonlocal state_dict_pre_hook_count, keep_var_setting
for keep_var_setting in [True, False]:
_ = model.state_dict(
prefix=_state_dict_prefix, keep_vars=keep_var_setting
)
self.assertEqual(2, state_dict_pre_hook_count)
state_dict_pre_hook_count = 0
# Test state dict works as expected after model construction
check_results(model)
# Test state dict works as expected after forward
model(torch.ones(10, 3))
check_results(model)
def test_register_state_dict_pre_hook(self):
class MyModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.a = nn.Sequential(
nn.Linear(3, 3), nn.Linear(3, 3), nn.Linear(3, 3)
)
def forward(self, x):
return self.a(x)
mod = MyModule()
self._test_register_state_dict_pre_hook(mod, mod.a)
def test_register_state_dict_pre_hook_lazy_module(self):
class MyLazyModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.layer1 = nn.LazyLinear(8)
self.layer2 = nn.LazyLinear(5)
def forward(self, x):
return self.layer2(self.layer1(x))
mod = MyLazyModule()
self._test_register_state_dict_pre_hook(mod, mod.layer1)
@unittest.skipIf(IS_WINDOWS, "Tempfile permission issue on windows")
def test_register_state_dict_pre_hook_backward_compat(self):
called = False
def my_state_dict_pre_hook(*args, **kwargs):
nonlocal called
called = True
m = nn.Linear(1, 1)
self.assertTrue(hasattr(m, "_state_dict_pre_hooks"))
delattr(m, "_state_dict_pre_hooks")
# Save and load, ensure we can still call state_dict
# without running into issues.
with NamedTemporaryFile() as f:
# Note that torch.save / torch.load is not recommended
# to save / load modules.
torch.save(m, f.name)
# weights_only=False as this is legacy code that saves the model
m = torch.load(f.name, weights_only=False)
# Ensure we can run state_dict without issues
_ = m.state_dict()
self.assertFalse(called)
m.register_state_dict_pre_hook(my_state_dict_pre_hook)
_ = m.state_dict()
self.assertTrue(called)
@parametrize_test("private", [True, False])
def test_register_state_dict_post_hook(self, private):
m = nn.Transformer(
d_model=4, nhead=2, num_encoder_layers=2, num_decoder_layers=2
)
def linear_state_dict_post_hook(module, state_dict, prefix, local_metadata):
for name, param in module.named_parameters(recurse=False):
state_dict[prefix + name] = torch.nn.Parameter(
state_dict[prefix + name]
)
def register_linear_hook(module):
if isinstance(module, nn.Linear):
hook_registration_fn = (
module._register_state_dict_hook
if private
else module.register_state_dict_post_hook
)
hook_registration_fn(linear_state_dict_post_hook)
def _check_sd(state_dict):
for k, v in m.state_dict().items():
if "linear" in k or "out_proj" in k:
self.assertTrue(isinstance(v, torch.nn.Parameter))
else:
self.assertFalse(isinstance(v, torch.nn.Parameter))
# verify that return type of hook registered on child submodules has no effect
# regardless of whether using public or private API
m.apply(register_linear_hook)
_check_sd(m.state_dict())
# verify that return type of hook registered root module has no effect
# for public API but has effect for private API
hook_registration_fn = (
m._register_state_dict_hook if private else m.register_state_dict_post_hook
)
def fn(m, s, p, l):
return OrderedDict()
handle = hook_registration_fn(fn)
if private:
self.assertFalse(hasattr(fn, "_from_public_api"))
self.assertTrue(len(m.state_dict()) == 0)
else:
self.assertTrue(hasattr(fn, "_from_public_api"))
with self.assertRaisesRegex(
RuntimeError, "state_dict post-hook must return None"
):
sd = m.state_dict()
with self.assertRaisesRegex(
RuntimeError, "previously registered via register_state_dict_post_hook"
):
m._register_state_dict_hook(fn)
class TestModuleGlobalHooks(TestCase):
def tearDown(self):
nn.modules.module._global_backward_hooks = OrderedDict()
nn.modules.module._global_forward_hooks = OrderedDict()
nn.modules.module._global_forward_pre_hooks = OrderedDict()
@skipIfTorchDynamo("TorchDynamo does not work well with hooks")
def test_module_global_hooks(self):
module = nn.Sigmoid
module_1 = module()
module_2 = module()
module_3 = module()
input = torch.ones(5, 5, requires_grad=True)
counter = {"forwards": 0, "backwards": 0}
def fw_hook(inc, h_module, input, output):
self.assertIsInstance(input, tuple)
self.assertTrue(isinstance(output, torch.Tensor))
self.assertTrue(isinstance(h_module, module))
self.assertEqual(input[0], torch.ones(5, 5))
self.assertEqual(output, torch.empty(5, 5).fill_(1 / (1 + 1 / math.e)))
counter["forwards"] += inc
def bw_hook(inc, h_module, grad_input, grad_output):
self.assertIsInstance(grad_input, tuple)
self.assertIsInstance(grad_output, tuple)
self.assertTrue(isinstance(h_module, module))
self.assertEqual(grad_output[0], torch.ones(5, 5) * 2)
counter["backwards"] += inc
test_fwd = nn.modules.module.register_module_forward_hook(
lambda *args: fw_hook(1, *args)
)
module_1(input)
module_2(input)
module_3(input)
self.assertEqual(counter["forwards"], 3)
self.assertEqual(counter["backwards"], 0)
test_bwd = nn.modules.module.register_module_backward_hook(
lambda *args: bw_hook(1, *args)
)
output_1 = module_1(input)
output_2 = module_2(input)
output_3 = module_3(input)
self.assertEqual(counter["forwards"], 6)
self.assertEqual(counter["backwards"], 0)
output_1.backward(torch.ones(5, 5) * 2, retain_graph=True)
output_2.backward(torch.ones(5, 5) * 2, retain_graph=False)
output_3.backward(torch.ones(5, 5) * 2, retain_graph=False)
self.assertEqual(counter["forwards"], 6)
self.assertEqual(counter["backwards"], 3)
output_1.backward(torch.ones(5, 5) * 2, retain_graph=True)
self.assertEqual(counter["forwards"], 6)
self.assertEqual(counter["backwards"], 4)
test2_fwd = nn.modules.module.register_module_forward_hook(
lambda *args: fw_hook(2, *args)
)
output = module_1(input)
output = module_2(input)
output = module_3(input)
self.assertEqual(counter["forwards"], 15)
self.assertEqual(counter["backwards"], 4)
test2_bwd = nn.modules.module.register_module_backward_hook(
lambda *args: bw_hook(2, *args)
)
module_1(input).backward(torch.ones(5, 5) * 2)
self.assertEqual(counter["forwards"], 18)
self.assertEqual(counter["backwards"], 7)
test2_bwd.remove()
module_2(input).backward(torch.ones(5, 5) * 2)
self.assertEqual(counter["forwards"], 21)
self.assertEqual(counter["backwards"], 8)
test2_fwd.remove()
module_3(input).backward(torch.ones(5, 5) * 2)
self.assertEqual(counter["forwards"], 22)
self.assertEqual(counter["backwards"], 9)
test_fwd.remove()
test_bwd.remove()
def test_module_global_hook_invalid_outputs(self):
module = nn.Sigmoid()
input = torch.randn(5, 5, requires_grad=True)
def bw_fail1(self, grad_input, grad_output):
return grad_input[:-1]
def bw_fail2(self, grad_input, grad_output):
return grad_input + (torch.randn(2, 2),)
with nn.modules.module.register_module_backward_hook(bw_fail1):
with self.assertRaisesRegex(RuntimeError, "got 0, but expected 1"):
module(input).sum().backward()
with nn.modules.module.register_module_backward_hook(bw_fail2):
with self.assertRaisesRegex(RuntimeError, "got 2, but expected 1"):
module(input).sum().backward()
def test_module_backward_global_hook_writeable(self):
module = nn.Sigmoid()
input = torch.randn(5, 5, requires_grad=True)
sig_x = torch.sigmoid(input)
def bw_hook(module, grad_input, grad_output):
for grad in grad_input:
self.assertTrue(isinstance(grad, torch.Tensor))
for grad in grad_output:
self.assertTrue(isinstance(grad, torch.Tensor))
return tuple(gi * 2 for gi in grad_input)
nn.modules.module.register_module_backward_hook(bw_hook)
module(input).backward(torch.ones(5, 5))
expected_grad = sig_x * (1 - sig_x) * 2
self.assertEqual(input.grad, expected_grad)
@skipIfTorchDynamo("TorchDynamo does not work well with hooks")
def test_module_global_forward_preforward_hook_writeable(self):
module = nn.Sigmoid()
input = torch.randn(5, 5, requires_grad=True)
sig_x = torch.sigmoid(input)
def forward_pre_hook(m, input):
return torch.nn.functional.relu(input[0])
def forward_hook(m, input, output):
return -output
nn.modules.module.register_module_forward_pre_hook(forward_pre_hook)
nn.modules.module.register_module_forward_hook(forward_hook)
output = module(input)
expected_res = -torch.sigmoid(torch.nn.functional.relu(input))
self.assertEqual(output, expected_res)
output.backward(torch.ones(5, 5) * 2, retain_graph=True)
mask = input > 0
expected_grad = -sig_x * (1 - sig_x) * 2 * mask
self.assertEqual(input.grad, expected_grad)
def test_module_forward_preforward_hook_removable(self):
"""
This test is to test when multiple pre-forward hook functions can be
registered successfully and used correctly, if the handle can be removable
during the pre-forward hook function call.
"""
module = nn.Sigmoid()
def removable_hook(m, input):
nonlocal handle
handle.remove()
return input
def removable_hook_2(m, input):
nonlocal handle_2
handle_2.remove()
return input
handle = module.register_forward_pre_hook(removable_hook)
handle_2 = module.register_forward_pre_hook(removable_hook_2)
# make sure hook register is successful
self.assertEqual(len(handle.hooks_dict_ref()), 2)
self.assertEqual(len(handle_2.hooks_dict_ref()), 2)
input = torch.randn(2, 2)
output = module(input)
self.assertEqual(torch.sigmoid(input), output)
# make sure hook removal is successful
self.assertFalse(handle.id in handle.hooks_dict_ref())
self.assertFalse(handle_2.id in handle.hooks_dict_ref())
self.assertEqual(len(handle.hooks_dict_ref()), 0)
self.assertEqual(len(handle_2.hooks_dict_ref()), 0)
def test_module_forward_forward_hook_removable(self):
"""
This test is to test when multiple forward hook functions can be registered
successfully and used correctly, if the handle can be removable during the
forward hook function call.
"""
module = nn.Sigmoid()
def removable_hook(m, input, output):
nonlocal handle
handle.remove()
return output
def removable_hook_2(m, input, output):
nonlocal handle_2
handle_2.remove()
return output
handle = module.register_forward_hook(removable_hook)
handle_2 = module.register_forward_hook(removable_hook_2)
# make sure hook register is successful
self.assertEqual(len(handle.hooks_dict_ref()), 2)
self.assertEqual(len(handle_2.hooks_dict_ref()), 2)
input = torch.randn(2, 2)
output = module(input)
self.assertEqual(torch.sigmoid(input), output)
# make sure hook removal is successful
self.assertFalse(handle.id in handle.hooks_dict_ref())
self.assertFalse(handle_2.id in handle.hooks_dict_ref())
self.assertEqual(len(handle.hooks_dict_ref()), 0)
self.assertEqual(len(handle_2.hooks_dict_ref()), 0)
@skipIfTorchDynamo("TorchDynamo does not work well with hooks")
def test_global_and_local_hooks_order(self):
module = nn.Sigmoid()
global_forward_pre_called = False
local_forward_pre_called = False
global_forward_called = False
local_forward_called = False
global_backward_called = False
local_backward_called = False
def global_forward_pre_hook(m, input):
nonlocal global_forward_pre_called
self.assertTrue(not local_forward_pre_called)
global_forward_pre_called = True
return input
def local_forward_pre_hook(m, input):
nonlocal local_forward_pre_called
self.assertTrue(global_forward_pre_called)
local_forward_pre_called = True
return input
def global_forward_hook(m, input, output):
nonlocal global_forward_called
self.assertTrue(not local_forward_called)
global_forward_called = True
return output
def local_forward_hook(m, input, output):
nonlocal local_forward_called
self.assertTrue(global_forward_called)
local_forward_called = True
return output
def global_backward_hook(m, input, output):
nonlocal global_backward_called
self.assertTrue(not local_backward_called)
global_backward_called = True
return input
def local_backward_hook(m, input, output):
nonlocal local_backward_called
self.assertTrue(global_backward_called)
local_backward_called = True
return input
input = torch.randn(5, 5, requires_grad=True)
nn.modules.module.register_module_forward_pre_hook(global_forward_pre_hook)
module.register_forward_pre_hook(local_forward_pre_hook)
nn.modules.module.register_module_forward_hook(global_forward_hook)
module.register_forward_hook(local_forward_hook)
nn.modules.module.register_module_backward_hook(global_backward_hook)
module.register_backward_hook(local_backward_hook)
output = module(input)
self.assertTrue(
local_forward_called
and local_forward_pre_called
and global_forward_called
and global_forward_pre_called
)
output.backward(torch.ones(5, 5), retain_graph=True)
self.assertTrue(local_backward_called and global_backward_called)
@skipIfTorchDynamo("TorchDynamo does not work well with hooks")
def test_module_global_hooks_with_kwargs(self):
def kwarg_global_forward_hook(
module: nn.Module,
args: Tuple[torch.Tensor],
kwargs: Dict[str, Any],
out: torch.Tensor,
) -> Any:
out = out + kwargs["bias"]
return out
model = KwargModel()
nn.modules.module.register_module_forward_hook(
kwarg_global_forward_hook,
with_kwargs=True,
)
x: torch.Tensor = torch.randn(10, 20)
bias: torch.Tensor = torch.randn(10, 20)
out = model(x, bias=bias)
self.assertEqual(out, x + 2 * bias, rtol=0, atol=1e-5)
class TestModuleHookNN(NNTestCase):
_do_cuda_memory_leak_check = True
_do_cuda_non_default_stream = True
def _test_hooks(self, backward_register_fn):
module = nn.Sigmoid()
input = torch.ones(5, 5, requires_grad=True)
counter = {"forwards": 0, "backwards": 0}
def fw_hook(inc, h_module, input, output):
self.assertIsInstance(input, tuple)
self.assertTrue(isinstance(output, torch.Tensor))
self.assertTrue(h_module is module)
self.assertEqual(input[0], torch.ones(5, 5))
self.assertEqual(output, torch.empty(5, 5).fill_(1 / (1 + 1 / math.e)))
counter["forwards"] += inc
def bw_hook(inc, h_module, grad_input, grad_output):
self.assertIsInstance(grad_input, tuple)
self.assertIsInstance(grad_output, tuple)
self.assertTrue(h_module is module)
self.assertEqual(grad_output[0], torch.ones(5, 5) * 2)
counter["backwards"] += inc
# backward_pre_hook expects callback with only `module` and `grad_output`
# as arguments.
def bw_pre_hook(inc, h_module, grad_output):
self.assertIsInstance(grad_output, tuple)
self.assertTrue(h_module is module)
self.assertEqual(grad_output[0], torch.ones(5, 5) * 2)
counter["backwards"] += inc
test_fwd = module.register_forward_hook(lambda *args: fw_hook(1, *args))
module(input)
module(input)
self.assertEqual(counter["forwards"], 2)
self.assertEqual(counter["backwards"], 0)
bw_hook_fn = (
bw_pre_hook
if backward_register_fn == "register_full_backward_pre_hook"
else bw_hook
)
test_bwd = getattr(module, backward_register_fn)(
lambda *args: bw_hook_fn(1, *args)
)
output = module(input)
self.assertEqual(counter["forwards"], 3)
self.assertEqual(counter["backwards"], 0)
output.backward(torch.ones(5, 5) * 2, retain_graph=True)
self.assertEqual(counter["forwards"], 3)
self.assertEqual(counter["backwards"], 1)
output.backward(torch.ones(5, 5) * 2, retain_graph=True)
self.assertEqual(counter["forwards"], 3)
self.assertEqual(counter["backwards"], 2)
test2_fwd = module.register_forward_hook(lambda *args: fw_hook(2, *args))
output = module(input)
self.assertEqual(counter["forwards"], 6)
self.assertEqual(counter["backwards"], 2)
test2_bwd = getattr(module, backward_register_fn)(
lambda *args: bw_hook_fn(2, *args)
)
module(input).backward(torch.ones(5, 5) * 2)
self.assertEqual(counter["forwards"], 9)
self.assertEqual(counter["backwards"], 5)
test2_bwd.remove()
module(input).backward(torch.ones(5, 5) * 2)
self.assertEqual(counter["forwards"], 12)
self.assertEqual(counter["backwards"], 6)
test2_fwd.remove()
module(input).backward(torch.ones(5, 5) * 2)
self.assertEqual(counter["forwards"], 13)
self.assertEqual(counter["backwards"], 7)
test_fwd.remove()
test_bwd.remove()
def test_hooks(self):
self._test_hooks("register_backward_hook")
self._test_hooks("register_full_backward_hook")
self._test_hooks("register_full_backward_pre_hook")
def test_hook_cpp(self):
bn = nn.BatchNorm1d(5)
def hook(module, grad_inputs, grad_outputs):
self.assertEqual(len(grad_inputs), 1)
self.assertEqual(len(grad_outputs), 1)
self.assertEqual(module, bn)
bn.register_full_backward_hook(hook)
output = bn(torch.randn(5, 5, requires_grad=True))
output.sum().backward()
def test_backward_hooks_interaction(self):
# Test to make sure that the grad_outputs
# updated by full_backward_pre_hook are received by
# the full_backward_hook
module = torch.nn.Sigmoid()
cnt = {"backward_cnt": 0}
def bw_pre_hook(m, grad_output):
cnt["backward_cnt"] += 1
return (grad_output[0] * 0.5,)
def bw_hook(m, grad_in, grad_output):
self.assertEqual(torch.full_like(grad_output[0], 0.5), grad_output[0])
cnt["backward_cnt"] += 1
return grad_output
module.register_full_backward_pre_hook(bw_pre_hook)
module.register_full_backward_hook(bw_hook)
t = torch.ones(1, 2, requires_grad=True)
module(t).sum().backward()
self.assertEqual(cnt["backward_cnt"], 2)
def test_hook_invalid_outputs(self):
module = nn.Sigmoid()
input = torch.randn(5, 5, requires_grad=True)
def bw_fail1(self, grad_input, grad_output):
return grad_input[:-1]
def bw_fail2(self, grad_input, grad_output):
return grad_input + (torch.randn(2, 2),)
with module.register_backward_hook(bw_fail1):
with self.assertRaisesRegex(RuntimeError, "got 0, but expected 1"):
module(input).sum().backward()
with module.register_backward_hook(bw_fail2):
with self.assertRaisesRegex(RuntimeError, "got 2, but expected 1"):
module(input).sum().backward()
def bw_pre_fail1(self, grad_output):
return ()
def bw_pre_fail2(self, grad_output):
return grad_output + (torch.randn(2, 2),)
with module.register_full_backward_pre_hook(bw_pre_fail1):
with self.assertRaisesRegex(RuntimeError, "got 0, but expected 1"):
module(input).sum().backward()
with module.register_full_backward_pre_hook(bw_pre_fail2):
with self.assertRaisesRegex(RuntimeError, "got 2, but expected 1"):
module(input).sum().backward()
def test_hook_requires_grad(self):
test_self = self
class MyModule(nn.Module):
def forward(self, arg1, arg2, arg3):
test_self.assertTrue(arg1.requires_grad)
test_self.assertFalse(arg2.requires_grad)
test_self.assertTrue(arg3.requires_grad)
return arg1.sum() + arg2.sum() + arg3.sum()
inp = torch.rand(2, requires_grad=True)
mod = MyModule()
mod(inp, inp.detach(), inp)
# Ensure that requires grad is properly propagated
mod.register_full_backward_hook(lambda mod, gI, gO: None)
mod(inp, inp.detach(), inp)
def test_hook_no_requires_grad(self):
mod = nn.Linear(2, 3)
inp = torch.rand(1, 2)
return_val = "None"
hook_called = [0]
def hook(mod, grad_input, grad_output):
hook_called[0] += 1
for gI in grad_input:
self.assertIsNone(gI)
for gO in grad_output:
self.assertEqual(gO.size(), (1, 3))
if return_val == "grad_input":
return grad_input
elif return_val == "invalid":
# If the inputs were requiring gradients, this would be
# a valid return
return inp
elif return_val == "None":
return None
else:
raise RuntimeError("Invalid return_val string")
mod.register_full_backward_hook(hook)
# This should run and trigger the hook properly
mod(inp).sum().backward()
self.assertEqual(hook_called[0], 1)
return_val = "grad_input"
mod(inp).sum().backward()
self.assertEqual(hook_called[0], 2)
return_val = "invalid"
with self.assertRaisesRegex(RuntimeError, "where no input requires gradient"):
mod(inp).sum().backward()
def test_hook_last_arg_requires_grad(self):
mod = nn.L1Loss()
inp = torch.rand(1, requires_grad=True)
mod.register_full_backward_hook(lambda m, gI, gO: None)
try:
mod(inp.detach(), inp)
except Exception as ex:
self.fail(f"Unexpected exception: {ex}")
def test_hook_extra_input(self):
class MyModule(nn.Module):
def forward(self, non_tensor, tensor):
return tensor.clone(), non_tensor
inp = torch.rand(2, requires_grad=True)
mod = MyModule()
def hook(mod, grad_input, grad_output):
self.assertIsNone(grad_input[0])
self.assertIsInstance(grad_input[1], torch.Tensor)
self.assertIsInstance(grad_output[0], torch.Tensor)
self.assertIsNone(grad_output[1])
mod.register_full_backward_hook(hook)
out, _ = mod(True, inp)
out.sum().backward()
def test_hook_inplace(self):
class MyModule(nn.Module):
def forward(self, inp, do_inplace):
self.inp = inp
if do_inplace:
inp += 1
return inp.clone()
hook_called = [0]
def hook(mod, grad_input, grad_output):
hook_called[0] += 1
def hook_pre(mod, grad_output):
hook_called[0] += 1
inp = torch.rand(10, requires_grad=True)
mod = MyModule()
for hook_fn, register_fn in [
(hook, mod.register_full_backward_hook),
(hook_pre, mod.register_full_backward_pre_hook),
]:
hook_called[0] = 0
with register_fn(hook_fn):
# No inplace should work
mod(inp, False).sum().backward()
self.assertEqual(hook_called[0], 1)
# Input inplace error should throw an error
with self.assertRaisesRegex(
RuntimeError,
"Output 0 of BackwardHookFunctionBackward is "
"a view and is being modified inplace.",
):
mod(inp.clone(), True)
# Input inplace error should throw an error if we try to re-use the view after they have
# been modified
local_inp = inp.clone()
out = mod(local_inp, False)
local_inp[0] *= 1
with self.assertRaisesRegex(
RuntimeError,
"Output 0 of BackwardHookFunctionBackward is "
"a view and its base or another view",
):
# Any operation involving the view will fail here
mod.inp + 2
# Output inplace error should throw an error
out = mod(inp, False)
with self.assertRaisesRegex(
RuntimeError,
"BackwardHookFunctionBackward is a view "
"and is being modified inplace.",
):
out += 1
def test_hook_non_full_warning(self):
def noop(*args):
pass
a = torch.rand(2, requires_grad=True)
b = torch.rand(2, requires_grad=True)
# Check invalid input container
class MyModule(nn.Module):
def forward(self, l):
return l[0].clone(), l[1].clone()
m = MyModule()
m.register_backward_hook(noop)
with self.assertWarnsRegex(
FutureWarning,
"does not take as input a single Tensor or a tuple of Tensors",
):
m([a, b])
# Check invalid output container
class MyModule(nn.Module):
def forward(self, a, b):
return [a.clone(), b.clone()]
m = MyModule()
m.register_backward_hook(noop)
with self.assertWarnsRegex(
FutureWarning, "does not return a single Tensor or a tuple of Tensors"
):
m(a, b)
# Check invalid output from different Nodes
class MyModule(nn.Module):
def forward(self, a, b):
return a.clone(), b.clone()
m = MyModule()
m.register_backward_hook(noop)
with self.assertWarnsRegex(
FutureWarning, "outputs are generated by different autograd Nodes"
):
m(a, b)
# Check invalid forward with multiple Nodes
class MyModule(nn.Module):
def forward(self, a):
return a.clone().clone()
m = MyModule()
m.register_backward_hook(noop)
with self.assertWarnsRegex(
FutureWarning, "the forward contains multiple autograd Nodes"
):
m(a)
def test_hook_backward_size(self):
# Make module with multiple operations in forward
# And different size for input and outputs
class MyModule(nn.Module):
def forward(self, arg1, arg2):
tmp = arg1.sum() * arg2
tmp = tmp + arg2.sum() * arg1.sum()
tmp = tmp.sum().view(1)
tmp = tmp.expand(8).contiguous()
return tmp
module = MyModule()
inp1 = torch.randn(5, 5, requires_grad=True)
inp2 = torch.randn(10, 10, requires_grad=True)
def bw_hook(module, grad_input, grad_output):
self.assertEqual(len(grad_input), 2)
self.assertEqual(grad_input[0].size(), torch.Size([5, 5]))
self.assertEqual(grad_input[1].size(), torch.Size([10, 10]))
self.assertEqual(len(grad_output), 1)
self.assertEqual(grad_output[0].size(), torch.Size([8]))
with module.register_full_backward_hook(bw_hook):
module(inp1, inp2).sum().backward()
def test_hook_backward_writeable(self):
module = nn.Sigmoid()
input = torch.randn(5, 5, requires_grad=True)
sig_x = torch.nn.functional.sigmoid(input)
def bw_hook(module, grad_input, grad_output):
for grad in grad_input:
self.assertTrue(isinstance(grad, torch.Tensor))
for grad in grad_output:
self.assertTrue(isinstance(grad, torch.Tensor))
return tuple(gi * 2 for gi in grad_input)
module.register_backward_hook(bw_hook)
module(input).backward(torch.ones(5, 5))
expected_grad = sig_x * (1 - sig_x) * 2
self.assertEqual(input.grad, expected_grad)
def test_hook_forward_preforward_writable(self):
module = nn.Sigmoid()
input = torch.randn(5, 5, requires_grad=True)
sig_x = torch.nn.functional.sigmoid(input)
def forward_pre_hook(m, input):
return torch.nn.functional.relu(input[0])
def forward_hook(m, input, output):
return -output
module.register_forward_pre_hook(forward_pre_hook)
module.register_forward_hook(forward_hook)
output = module(input)
expected_res = -torch.nn.functional.sigmoid(torch.nn.functional.relu(input))
self.assertEqual(output, expected_res)
output.backward(torch.ones(5, 5) * 2, retain_graph=True)
mask = input > 0
expected_grad = -sig_x * (1 - sig_x) * 2 * mask
self.assertEqual(input.grad, expected_grad)
def test_hook_buffer_registration(self):
for return_buffer in (True, False):
def buffer_registration_hook(module, name, buffer):
buffer.registered = True
if return_buffer:
return buffer
handle = torch.nn.modules.module.register_module_buffer_registration_hook(
buffer_registration_hook
)
try:
l, n, s = _create_basic_net()
for b in s.buffers():
self.assertTrue(getattr(b, "registered", False))
finally:
handle.remove()
def test_hook_submodule_registration(self):
for return_submodule in (True, False):
def module_registration_hook(module, name, submodule):
module.registered = True
submodule.registered = True
if return_submodule:
return submodule
handle = torch.nn.modules.module.register_module_module_registration_hook(
module_registration_hook
)
try:
l, n, s = _create_basic_net()
for m in s.modules():
self.assertTrue(getattr(m, "registered", False))
finally:
handle.remove()
def test_hook_parameter_registration(self):
for return_parameter in (True, False):
def parameter_registration_hook(module, name, parameter):
parameter.registered = True
if return_parameter:
return parameter
handle = (
torch.nn.modules.module.register_module_parameter_registration_hook(
parameter_registration_hook
)
)
try:
l, n, s = _create_basic_net()
for p in s.parameters():
self.assertTrue(getattr(p, "registered", False))
finally:
handle.remove()
instantiate_parametrized_tests(TestModuleHooks)
instantiate_parametrized_tests(TestStateDictHooks)
if __name__ == "__main__":
run_tests()
|