1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
|
# Owner(s): ["module: nn"]
import pickle
from copy import deepcopy
from itertools import product
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
import torch.nn.utils.parametrize as parametrize
from torch import Tensor
from torch.__future__ import get_swap_module_params_on_conversion
from torch.nn import Buffer, Parameter
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_device_type import instantiate_device_type_tests
from torch.testing._internal.common_nn import NNTestCase
from torch.testing._internal.common_utils import (
gradcheck,
instantiate_parametrized_tests,
run_tests,
set_default_dtype,
skipIfNoLapack,
skipIfTorchDynamo,
swap,
TemporaryFileName,
)
from torch.testing._internal.two_tensor import TwoTensor
class TestNNParametrization(NNTestCase):
_do_cuda_memory_leak_check = True
_do_cuda_non_default_stream = True
# FIXME: Rewrite this test using functions not depending on LAPACK
# and remove the `@skipIfNoLapack` (see #70995)
# torch/nn/utils/parametrize
@skipIfNoLapack
@swap([True, False])
def test_register_and_remove_parametrization(self):
r"""Test that it is possible to add a few parametrizations
on a parameter or a buffer and that removing them restores the initial state
It also tests that backpropagating through them works as expected
"""
# Define a couple matrix parametrizations
class Skew(nn.Module):
def forward(self, X):
X = X.tril(-1)
return X - X.T
class Orthogonal(nn.Module):
def forward(self, X):
# Cayley map
# If X is skew-symmetric it returns an orthogonal matrix
Id = torch.eye(X.size(0), device=X.device)
# We call contiguous because solve returns a tensor with strides that are Fortran-contiguous
# and autograd raises a performance warning.
# This happens when we remove the parametrization with leave_parametrized=True,
# which does a set_ with a non-contiguous tensor while the gradient is contiguous
return torch.linalg.solve(Id + X, Id - X).contiguous()
class Resize(nn.Module):
def forward(self, X):
return X[[0]]
class NoResize(nn.Module):
def forward(self, X):
return X
# Define a couple vector parametrizations
class FirstZero(nn.Module):
def forward(self, x):
return torch.cat([x.new_zeros(1), x[1:]])
class LastZero(nn.Module):
def forward(self, x):
return torch.cat([x[:-1], x.new_zeros(1)])
model = nn.Linear(8, 8)
initial_weight_id = id(model.weight)
initial_bias_id = id(model.bias)
initial_model = deepcopy(model)
# Test unsafe flag
with self.assertRaisesRegex(
ValueError,
"Registering a parametrization may not change the shape of the tensor",
):
parametrize.register_parametrization(
model, "weight", Resize()
) # default unsafe = False
model(torch.ones(8, 8))
# One parametrization with unsafe=True
parametrize.register_parametrization(model, "weight", Resize(), unsafe=True)
self.assertTrue(hasattr(model, "parametrizations"))
self.assertTrue(parametrize.is_parametrized(model))
self.assertTrue(parametrize.is_parametrized(model, "weight"))
self.assertFalse(parametrize.is_parametrized(model, "bias"))
self.assertNotIn("weight", model._parameters)
self.assertTrue(model.weight.shape[0] == 1)
parametrize.remove_parametrizations(model, "weight", leave_parametrized=False)
self.assertFalse(hasattr(model, "parametrizations"))
self.assertEqual(model.weight, initial_model.weight)
self.assertEqual(id(model.weight), initial_weight_id)
self.assertEqual(model.__class__, nn.Linear)
# Two parametrizations with unsafe=True
parametrize.register_parametrization(model, "weight", Resize(), unsafe=True)
parametrize.register_parametrization(model, "weight", NoResize(), unsafe=False)
self.assertTrue(hasattr(model, "parametrizations"))
self.assertTrue(parametrize.is_parametrized(model))
self.assertTrue(parametrize.is_parametrized(model, "weight"))
self.assertFalse(parametrize.is_parametrized(model, "bias"))
self.assertNotIn("weight", model._parameters)
self.assertTrue(model.weight.shape[0] == 1)
parametrize.remove_parametrizations(model, "weight", leave_parametrized=False)
self.assertFalse(hasattr(model, "parametrizations"))
self.assertEqual(model.weight, initial_model.weight)
self.assertEqual(id(model.weight), initial_weight_id)
self.assertEqual(model.__class__, nn.Linear)
# Test unsafe flag doesn't change expected behavior
parametrize.register_parametrization(model, "weight", Skew(), unsafe=True)
self.assertTrue(hasattr(model, "parametrizations"))
self.assertTrue(parametrize.is_parametrized(model))
self.assertTrue(parametrize.is_parametrized(model, "weight"))
self.assertFalse(parametrize.is_parametrized(model, "bias"))
self.assertNotIn("weight", model._parameters)
# Result should be skew-symmetric
A = model.weight
self.assertEqual(A, -A.T)
if get_swap_module_params_on_conversion():
# When using the swap_tensors path, this is needed so that the autograd
# graph is not alive anymore.
del A
# Remove and check consistency
parametrize.remove_parametrizations(model, "weight", leave_parametrized=False)
self.assertFalse(hasattr(model, "parametrizations"))
self.assertEqual(model.weight, initial_model.weight)
self.assertEqual(id(model.weight), initial_weight_id)
self.assertEqual(model.__class__, nn.Linear)
# Test one parametrization
parametrize.register_parametrization(model, "weight", Skew())
self.assertTrue(hasattr(model, "parametrizations"))
self.assertTrue(parametrize.is_parametrized(model))
self.assertTrue(parametrize.is_parametrized(model, "weight"))
self.assertFalse(parametrize.is_parametrized(model, "bias"))
self.assertNotIn("weight", model._parameters)
# Result should be skew-symmetric
A = model.weight
self.assertEqual(A, -A.T)
if get_swap_module_params_on_conversion():
# When using the swap_tensors path, this is needed so that the autograd
# graph is not alive anymore.
del A
# Remove and check consistency
parametrize.remove_parametrizations(model, "weight", leave_parametrized=False)
self.assertFalse(hasattr(model, "parametrizations"))
self.assertEqual(model.weight, initial_model.weight)
self.assertEqual(id(model.weight), initial_weight_id)
self.assertEqual(model.__class__, nn.Linear)
# Test two parametrizations at the same time and removing them
parametrize.register_parametrization(model, "weight", Skew())
parametrize.register_parametrization(model, "weight", Orthogonal())
# Result should be orthogonal
X = model.weight
Id = torch.eye(X.size(0), device=X.device)
self.assertEqual(X.T @ X, Id)
if get_swap_module_params_on_conversion():
# When using the swap_tensors path, this is needed so that the autograd
# graph is not alive anymore.
del X
# Structure tests
self.assertTrue(hasattr(model, "parametrizations"))
self.assertTrue(parametrize.is_parametrized(model))
self.assertTrue(parametrize.is_parametrized(model, "weight"))
self.assertFalse(parametrize.is_parametrized(model, "bias"))
self.assertIn("weight", model.parametrizations)
self.assertNotIn("weight", model._parameters)
# Remove
parametrize.remove_parametrizations(model, "weight", leave_parametrized=False)
self.assertEqual(model.weight, initial_model.weight)
self.assertEqual(id(model.weight), initial_weight_id)
self.assertFalse(hasattr(model, "parametrizations"))
self.assertEqual(model.__class__, nn.Linear)
# Add everything
parametrize.register_parametrization(model, "weight", Skew())
parametrize.register_parametrization(model, "weight", Orthogonal())
parametrize.register_parametrization(model, "bias", FirstZero())
parametrize.register_parametrization(model, "bias", LastZero())
# Basic tests
self.assertTrue(parametrize.is_parametrized(model))
self.assertTrue(parametrize.is_parametrized(model, "weight"))
self.assertTrue(parametrize.is_parametrized(model, "bias"))
self.assertEqual(model.bias[0].item(), 0.0)
self.assertEqual(model.bias[-1].item(), 0.0)
self.assertEqual(
len(list(model.parameters())), 2
) # Nothing weird has happpened
# Should not throw
sgd = torch.optim.SGD(model.parameters(), lr=0.01)
weight_copy = model.weight.clone()
bias_copy = model.bias.clone()
sgd.zero_grad()
(model.weight.T @ model.bias).sum().backward()
sgd.step()
self.assertNotEqual(model.weight, weight_copy)
self.assertNotEqual(model.bias, bias_copy)
# Remove first parametrization.
# Check that the model is still parametrized and so is the second parameter
parametrize.remove_parametrizations(model, "weight", leave_parametrized=False)
self.assertTrue(parametrize.is_parametrized(model)) # Still parametrized
self.assertFalse(
parametrize.is_parametrized(model, "weight")
) # Parametrization removed
self.assertTrue(
parametrize.is_parametrized(model, "bias")
) # Still parametrized
self.assertEqual(model.bias[0].item(), 0.0) # Still parametrized
self.assertEqual(model.bias[-1].item(), 0.0) # Still parametrized
self.assertNotEqual(model.weight, initial_model.weight) # Has been updated
self.assertEqual(id(model.weight), initial_weight_id) # Keeps the same id
self.assertEqual(len(list(model.parameters())), 2) # Nothing weird has happened
# Should not throw
weight_copy = model.weight.clone()
bias_copy = model.bias.clone()
sgd.zero_grad()
(model.weight.T @ model.bias).sum().backward()
sgd.step()
self.assertNotEqual(model.weight, weight_copy)
self.assertNotEqual(model.bias, bias_copy)
# Remove the second parametrization.
# Check that the module is not parametrized
parametrize.remove_parametrizations(model, "bias", leave_parametrized=False)
self.assertFalse(parametrize.is_parametrized(model)) # Not parametrized
self.assertNotEqual(model.bias, initial_model.bias) # Has been updated
self.assertNotEqual(model.bias[0].item(), 0.0) # Not parametrized
self.assertNotEqual(model.bias[-1].item(), 0.0) # Not parametrized
self.assertEqual(id(model.bias), initial_bias_id) # Keeps the same id
self.assertFalse(
hasattr(model, "parametrizations")
) # Not parametrized the module
self.assertEqual(model.__class__, nn.Linear) # Resores the previous class
self.assertEqual(len(list(model.parameters())), 2) # Nothing weird has happeed
# Should not throw things are updated
weight_copy = model.weight.clone()
bias_copy = model.bias.clone()
sgd.zero_grad()
(model.weight.T @ model.bias).sum().backward()
sgd.step()
self.assertNotEqual(model.weight, weight_copy)
self.assertNotEqual(model.bias, bias_copy)
if get_swap_module_params_on_conversion():
# When using the swap_tensors path, this is needed so that the autograd
# graph is not alive anymore.
del weight_copy, bias_copy
# Test leave_parametrized=True
for _ in range(2):
parametrize.register_parametrization(model, "weight", Skew())
parametrize.register_parametrization(model, "weight", Orthogonal())
parametrize.remove_parametrizations(
model, "weight", leave_parametrized=True
)
# We didn't change the dtype nor had multiple inputs, so the id should be the same
self.assertEqual(id(model.weight), initial_weight_id)
self.assertEqual(id(model.bias), initial_bias_id)
# Should not throw. Things are updated
weight_copy = model.weight.clone()
bias_copy = model.bias.clone()
sgd.zero_grad()
(model.weight.T @ model.bias).sum().backward()
sgd.step()
self.assertNotEqual(model.weight, weight_copy)
self.assertNotEqual(model.bias, bias_copy)
if get_swap_module_params_on_conversion():
# When using the swap_tensors path, this is needed so that the autograd
# graph is not alive anymore.
del weight_copy, bias_copy
@swap([True, False])
def test_register_and_remove_nested_parametrization(self):
r"""Test that it is possible to nest the parametrizations
meaning that the original param is parametrized again
"""
class Skew(nn.Module):
def forward(self, X):
X = X.tril(-1)
return X - X.T
model = nn.Linear(8, 8)
# Add top level parametrization
parametrize.register_parametrization(model, "weight", Skew())
self.assertTrue(hasattr(model, "parametrizations"))
self.assertTrue(parametrize.is_parametrized(model))
self.assertTrue(parametrize.is_parametrized(model, "weight"))
self.assertFalse(parametrize.is_parametrized(model, "bias"))
self.assertNotIn("weight", model._parameters)
# Result should be skew-symmetric
A = model.weight
self.assertEqual(A, -A.T)
if get_swap_module_params_on_conversion():
# When using the swap_tensors path, this is needed so that the autograd
# graph is not alive anymore.
del A
# Add nested parametrization
param_mod = model.parametrizations.weight
self.assertFalse(hasattr(param_mod, "parametrizations"))
self.assertFalse(parametrize.is_parametrized(param_mod))
self.assertFalse(parametrize.is_parametrized(param_mod, "original"))
parametrize.register_parametrization(param_mod, "original", Skew())
self.assertTrue(hasattr(param_mod, "parametrizations"))
self.assertTrue(parametrize.is_parametrized(param_mod))
self.assertTrue(parametrize.is_parametrized(param_mod, "original"))
self.assertNotIn("original", param_mod._parameters)
# Result should be skew-symmetric
A = param_mod.original
self.assertEqual(A, -A.T)
# Remove nested param and check consistency
parametrize.remove_parametrizations(
param_mod, "original", leave_parametrized=False
)
self.assertFalse(hasattr(param_mod, "parametrizations"))
self.assertEqual(param_mod.__class__, parametrize.ParametrizationList)
# Remove top level and check consistency
parametrize.remove_parametrizations(model, "weight", leave_parametrized=False)
self.assertFalse(hasattr(model, "parametrizations"))
self.assertEqual(model.__class__, nn.Linear)
@swap([True, False])
def test_register_and_remove_buffer_parametrization(self):
r"""Test that it is possible to add and remove parametrizations on buffers"""
# Define a couple vector parametrizations
class FirstZero(nn.Module):
def forward(self, x):
return torch.cat([x.new_zeros(1), x[1:]])
class LastZero(nn.Module):
def forward(self, x):
return torch.cat([x[:-1], x.new_zeros(1)])
model = nn.Linear(8, 8)
# Instantiate parametrizations on buffers. It should work as expected
delattr(model, "bias")
model.bias = Buffer(torch.ones(8))
parametrize.register_parametrization(model, "bias", FirstZero())
parametrize.register_parametrization(model, "bias", LastZero())
self.assertTrue(parametrize.is_parametrized(model))
self.assertTrue(parametrize.is_parametrized(model, "bias"))
self.assertEqual(model.bias[0].item(), 0.0)
self.assertEqual(model.bias[-1].item(), 0.0)
self.assertTrue((model.bias[1:-1] == torch.ones(6)).all())
self.assertEqual(len(list(model.parameters())), 1)
# Remove parametrizations on buffers. It should work as expected
parametrize.remove_parametrizations(model, "bias", leave_parametrized=True)
self.assertFalse(parametrize.is_parametrized(model))
self.assertFalse(parametrize.is_parametrized(model, "bias"))
self.assertEqual(model.bias[0].item(), 0.0)
self.assertEqual(model.bias[-1].item(), 0.0)
self.assertTrue((model.bias[1:-1] == torch.ones(6)).all())
self.assertEqual(len(list(model.parameters())), 1)
# FIXME: Rewrite this test using functions not depending on LAPACK
# and remove the `@skipIfNoLapack` (see #70995)
@skipIfNoLapack
@skipIfTorchDynamo(
"Not applicable; see https://github.com/pytorch/pytorch/issues/127738"
)
@swap([True, False])
def test_serialization_parametrization(self):
r"""Test that it is possible to serialize a parametrized model via state_dict"""
# A stateful parametrization
class Orthogonal(nn.Module):
def __init__(self, n):
super().__init__()
self.id = Buffer(torch.eye(n))
self.B = Buffer(torch.empty(n, n))
init.orthogonal_(self.B)
def forward(self, X):
A = X.triu(1)
A = A - A.T
return self.B @ torch.linalg.solve(self.id + A, self.id - A)
def get_model():
model = torch.nn.Sequential(
torch.nn.Linear(5, 5),
torch.nn.ReLU(),
torch.nn.Linear(5, 1),
)
parametrize.register_parametrization(model[0], "weight", Orthogonal(5))
return model
model = get_model()
prev_weight = model[0].weight
prev_B = model[0].parametrizations.weight[0].B
new_model = get_model()
with TemporaryFileName() as fname:
torch.save(model.state_dict(), fname)
new_model.load_state_dict(torch.load(fname))
# Integrity tests
self.assertTrue(parametrize.is_parametrized(new_model[0], "weight"))
self.assertEqual(prev_weight, new_model[0].weight)
self.assertEqual(prev_B, new_model[0].parametrizations.weight[0].B)
# Trying to save the whole parametrized model raises
with self.assertRaisesRegex(RuntimeError, "state_dict"):
with TemporaryFileName() as fname:
torch.save(model, fname)
# FIXME: Rewrite this test using functions not depending on LAPACK
# and remove the `@skipIfNoLapack` (see #70995)
@skipIfNoLapack
@swap([True, False])
def test_initialization_parametrization(self):
r"""Test that it is possible to initialize a parametrization when it
implements a `right_inverse` method
"""
class Skew(nn.Module):
def forward(self, X):
A = X.triu(1)
return A - A.T
def is_skew(self, A):
return torch.allclose(A, -A.T, atol=1e-6)
def right_inverse(self, X):
if not self.is_skew(X):
raise ValueError("The matrix is not skew-symmetric.")
return X.triu(1)
# Implements a Cayley map where right_inverse is not quite the inverse of forward
class Orthogonal(nn.Module):
def __init__(self, n):
super().__init__()
self.B = Buffer(torch.eye(n))
def forward(self, X):
Id = torch.eye(X.size(0))
return self.B @ torch.linalg.solve(Id + X, Id - X)
def is_orthogonal(self, X):
Id = torch.eye(X.size(0))
return torch.allclose(X.T @ X, Id, atol=1e-4)
def right_inverse(self, X):
if not self.is_orthogonal(X):
raise ValueError("The input is not orthogonal.")
# cayley(0) == Id, so B @ cayley(0) == B
self.B = X
return torch.zeros_like(X)
N = 5
model = nn.Linear(N, N)
# Register the skew-symmetric constraint. The result is now skew-symmetric
skew = Skew()
# Make the weight skew-symmetric before registering the parametrization
with torch.no_grad():
model.weight.set_(skew(model.weight))
parametrize.register_parametrization(model, "weight", skew)
X = torch.rand(N, N)
# X is not skew-symmetric, so it throws an error
with self.assertRaises(ValueError):
model.weight = X
# Make X skew-symmetric
X = X - X.T
model.weight = X
self.assertEqual(model.parametrizations.weight.original, X.triu(1))
self.assertEqual(model.weight, X)
# Having several parametrizations registered should work in the same way
parametrize.register_parametrization(model, "weight", Orthogonal(N))
# Register now the Cayley map. The result is now orthogonal
X = torch.rand(N, N)
# X is not orthogonal, so it throws an error
with self.assertRaises(ValueError):
model.weight = X
init.orthogonal_(X)
model.weight = X
self.assertEqual(model.weight, X)
self.assertEqual(model.parametrizations.weight.original, torch.zeros_like(X))
@swap([True, False])
def test_errors_unparametrized_tensor_parametrization(self):
# Test errors when registering a parametrization on an unparametrized tensor
module = nn.Linear(3, 4)
weight_init = module.weight.clone()
class Identity(nn.Module):
def forward(self, x):
return x
# Register a parametrization on a non-existing parameter throws
with self.assertRaisesRegex(ValueError, "does not have a parameter"):
parametrize.register_parametrization(module, "foo", Identity())
self.assertFalse(parametrize.is_parametrized(module))
# Removing parametrizations from an unparametrized tensor throws
with self.assertRaisesRegex(ValueError, "does not have a parametrization"):
parametrize.remove_parametrizations(module, "bias")
self.assertFalse(parametrize.is_parametrized(module))
# A correct parametrization with several outputs
class Sum(nn.Module):
def forward(self, x, y):
return x + y
def right_inverse(self, z):
return z, torch.zeros_like(z)
parametrize.register_parametrization(module, "weight", Sum())
# Cannot remove a parametrization with several outputs with `leave_parametrized=False`
with self.assertRaisesRegex(ValueError, "leave_parametrized=False"):
parametrize.remove_parametrizations(
module, "weight", leave_parametrized=False
)
parametrize.remove_parametrizations(module, "weight", leave_parametrized=True)
# A parametrization with an incorrect number of outputs
class WrongNumberParams(nn.Module):
def forward(self, x, y, z):
return x + y + z
def right_inverse(self, w):
return w, torch.zeros_like(w)
# Makes param(*param.right_inverse(X)) fail
with self.assertRaisesRegex(TypeError, "positional argument"):
parametrize.register_parametrization(module, "weight", WrongNumberParams())
self.assertFalse(parametrize.is_parametrized(module))
# A parametrization with a right_inverse that does not return a Tensor or Sequence[Tensor]
class WrongRightInverse(Identity):
def right_inverse(self, z):
return None
# right_inverse should return a Tensor or a Sequence[Tensor]
with self.assertRaisesRegex(ValueError, "Tensor or a Sequence of"):
parametrize.register_parametrization(module, "weight", WrongRightInverse())
self.assertFalse(parametrize.is_parametrized(module))
# If it's a sequence, it must to be a sequence of tensors
class WrongRightInverseSequence(nn.Module):
def forward(self, x, y):
return x
def right_inverse(self, z):
return None, z
with self.assertRaisesRegex(ValueError, "of the sequence with type"):
parametrize.register_parametrization(
module, "weight", WrongRightInverseSequence()
)
self.assertFalse(parametrize.is_parametrized(module))
# A parametrization from one tensor to one tensor that changes the dtype
class ChangeDtypeInverse(nn.Module):
def forward(self, x):
return x.float()
def right_inverse(self, w):
return w.bool()
# For parametrizations that return one tensor, right_inverse may not change the dtype
with self.assertRaisesRegex(
ValueError, "outputs one tensor, it may not change the dtype"
):
parametrize.register_parametrization(module, "weight", ChangeDtypeInverse())
self.assertFalse(parametrize.is_parametrized(module))
# Doesn't return a tensor
class NotTensor(nn.Module):
def forward(self, x):
return 2
# Forward must return a tensor
with self.assertRaisesRegex(ValueError, "must return a tensor"):
parametrize.register_parametrization(module, "weight", NotTensor())
self.assertFalse(parametrize.is_parametrized(module))
# A parametrization from one tensor to one tensor that changes the dtype
class ChangeDtype(nn.Module):
def forward(self, x):
return x.bool()
# forward should not change the initial dtype
with self.assertRaisesRegex(ValueError, "may not change the dtype"):
parametrize.register_parametrization(module, "weight", ChangeDtype())
self.assertFalse(parametrize.is_parametrized(module))
# Change shape
class ChangeShape(nn.Module):
def forward(self, x):
return x[:-1]
# forward should not change the original shape
with self.assertRaisesRegex(ValueError, "may not change the shape"):
parametrize.register_parametrization(module, "weight", ChangeShape())
self.assertFalse(parametrize.is_parametrized(module))
# Many to one that changes dtype
class ChangeDtypeMulti(nn.Module):
def forward(self, x, y):
return (x + y).bool()
def right_inverse(self, w):
return w, w + 1
# forward should not change the original shape even for parametrizations with many inputs
with self.assertRaisesRegex(ValueError, "may not change the dtype"):
parametrize.register_parametrization(module, "weight", ChangeDtypeMulti())
self.assertFalse(parametrize.is_parametrized(module))
# Returning a sequence of size one, although weird, it's correct
class SequenceLen1(nn.Module):
def forward(self, x):
return x
def right_inverse(self, w):
return (w,)
parametrize.register_parametrization(module, "weight", SequenceLen1())
self.assertTrue(hasattr(module.parametrizations.weight, "original0"))
self.assertFalse(hasattr(module.parametrizations.weight, "original1"))
_ = module.weight # Does not throw
self.assertTrue(parametrize.is_parametrized(module))
parametrize.remove_parametrizations(module, "weight", leave_parametrized=True)
# None of the operations above should have altered the weight
self.assertFalse(parametrize.is_parametrized(module))
self.assertEqual(module.weight, weight_init)
@swap([True, False])
def test_errors_parametrized_tensor_parametrization(self):
# Test errors when registering a parametrization on a parametrized tensor
class Identity(nn.Module):
def forward(self, x):
return x
module = nn.Linear(3, 4)
parametrize.register_parametrization(module, "weight", Identity())
# Has to return a tensor
class WrongReturn(nn.Module):
def forward(self, x):
return x, x
with self.assertRaisesRegex(ValueError, "must return a tensor"):
parametrize.register_parametrization(module, "weight", WrongReturn())
self.assertTrue(parametrize.is_parametrized(module))
self.assertEqual(len(module.parametrizations.weight), 1)
self.assertTrue(isinstance(module.parametrizations.weight[0], Identity))
# Cannot change dtype
class ChangeDtype(nn.Module):
def forward(self, x):
return x.bool()
with self.assertRaisesRegex(ValueError, "may not change the dtype"):
parametrize.register_parametrization(module, "weight", ChangeDtype())
self.assertTrue(parametrize.is_parametrized(module))
self.assertEqual(len(module.parametrizations.weight), 1)
self.assertTrue(isinstance(module.parametrizations.weight[0], Identity))
# Cannot change shape
class ChangeShape(nn.Module):
def forward(self, x):
return x[:-1]
with self.assertRaisesRegex(ValueError, "may not change the shape"):
parametrize.register_parametrization(module, "weight", ChangeShape())
self.assertTrue(parametrize.is_parametrized(module))
self.assertEqual(len(module.parametrizations.weight), 1)
self.assertTrue(isinstance(module.parametrizations.weight[0], Identity))
# The following checks are mostly due to bugs in the code of the parametrization
# right_inverse has to return a tensor
class WrongReturnInverse(Identity):
def right_inverse(self, x):
return x, x
with self.assertRaisesRegex(ValueError, "right_inverse must return a tensor"):
parametrize.register_parametrization(module, "weight", WrongReturnInverse())
self.assertTrue(parametrize.is_parametrized(module))
self.assertEqual(len(module.parametrizations.weight), 1)
self.assertTrue(isinstance(module.parametrizations.weight[0], Identity))
# Cannot change dtype
class ChangeDtypeInverse(Identity):
def right_inverse(self, x):
return x.bool()
with self.assertRaisesRegex(ValueError, "must have the same dtype"):
parametrize.register_parametrization(module, "weight", ChangeDtypeInverse())
self.assertTrue(parametrize.is_parametrized(module))
self.assertEqual(len(module.parametrizations.weight), 1)
self.assertTrue(isinstance(module.parametrizations.weight[0], Identity))
# Cannot change shape
class ChangeShapeInverse(Identity):
def right_inverse(self, x):
return x[:-1]
with self.assertRaisesRegex(ValueError, "must have the same shape"):
parametrize.register_parametrization(module, "weight", ChangeShapeInverse())
self.assertTrue(parametrize.is_parametrized(module))
self.assertEqual(len(module.parametrizations.weight), 1)
self.assertTrue(isinstance(module.parametrizations.weight[0], Identity))
# FIXME: Rewrite this test using functions not depending on LAPACK
# and remove the `@skipIfNoLapack` (see #70995)
@skipIfNoLapack
@swap([True, False])
def test_multiple_inputs_parametrization(self):
# A parametrization with several outputs
class RankOne(nn.Module):
def forward(self, x, y):
# Form a rank-1 matrix from a pair of vectors
return x.unsqueeze(-1) @ y.unsqueeze(-2)
def right_inverse(self, Y):
# We project the given matrix onto the rank 1 matrices
U, S, Vh = torch.linalg.svd(Y, full_matrices=False)
# S is ordered in a decreasing way.
s0_sqrt = S[0].sqrt().unsqueeze(-1)
return U[..., :, 0] * s0_sqrt, Vh[..., 0, :] * s0_sqrt
# Simple parametrisation
class Double(nn.Module):
def forward(self, x):
return 2.0 * x
def right_inverse(self, w):
return 0.5 * w
model = nn.Linear(3, 3)
# Test one parametrization
parametrize.register_parametrization(model, "weight", RankOne())
self.assertTrue(hasattr(model, "parametrizations"))
self.assertTrue(parametrize.is_parametrized(model))
self.assertTrue(parametrize.is_parametrized(model, "weight"))
self.assertTrue(hasattr(model.parametrizations.weight, "original0"))
self.assertIn("original0", model.parametrizations.weight._parameters)
self.assertTrue(hasattr(model.parametrizations.weight, "original1"))
self.assertIn("original1", model.parametrizations.weight._parameters)
self.assertFalse(parametrize.is_parametrized(model, "bias"))
self.assertNotIn("weight", model._parameters)
# Result should be rank 1
self.assertEqual(torch.linalg.matrix_rank(model.weight).item(), 1)
with self.assertRaisesRegex(ValueError, "leave_parametrized=False"):
# Cannot remove a parametrization with multiple inputs and not leave it parametrized
parametrize.remove_parametrizations(
model, "weight", leave_parametrized=False
)
# Remove parametrization and check consistency
parametrize.remove_parametrizations(model, "weight", leave_parametrized=True)
self.assertFalse(hasattr(model, "parametrizations"))
self.assertEqual(model.__class__, nn.Linear)
self.assertFalse(parametrize.is_parametrized(model))
self.assertEqual(torch.linalg.matrix_rank(model.weight).item(), 1)
self.assertIn("weight", model._parameters)
# Registering parametrizations with one input on top of one with multiple inputs should work
init_weight = model.weight.clone()
parametrize.register_parametrization(model, "weight", RankOne())
# Projecting a rank 1 matrix onto the matrices of rank one does not change the matrix
self.assertEqual(init_weight, model.weight)
parametrize.register_parametrization(model, "weight", Double())
# The matrix now is twice the initial matrix
self.assertEqual(2.0 * init_weight, model.weight)
# Multiplying by a scalar does not change the rank
self.assertEqual(torch.linalg.matrix_rank(model.weight).item(), 1)
# The model has now three parameters
self.assertEqual(len(list(model.parameters())), 3)
sgd = torch.optim.SGD(model.parameters(), lr=0.1)
# Test backward. Should not throw
for _ in range(2):
sgd.zero_grad()
loss = (model.weight.T @ model.bias).sum()
loss.backward()
sgd.step()
# Same drill as before, removing should work as expected
with self.assertRaisesRegex(ValueError, "leave_parametrized=False"):
# Cannot remove a parametrization with multiple inputs and not leave it parametrized
parametrize.remove_parametrizations(
model, "weight", leave_parametrized=False
)
# Remove parametrization and check consistency
parametrize.remove_parametrizations(model, "weight", leave_parametrized=True)
self.assertFalse(hasattr(model, "parametrizations"))
self.assertEqual(model.__class__, nn.Linear)
self.assertFalse(parametrize.is_parametrized(model))
self.assertEqual(torch.linalg.matrix_rank(model.weight).item(), 1)
self.assertIn("weight", model._parameters)
# The model has now two parameters
self.assertEqual(len(list(model.parameters())), 2)
# Test backward. Should not throw
sgd = torch.optim.SGD(model.parameters(), lr=0.1)
for _ in range(2):
sgd.zero_grad()
loss = (model.weight.T @ model.bias).sum()
loss.backward()
sgd.step()
# FIXME: Rewrite this test using functions not depending on LAPACK
# and remove the `@skipIfNoLapack` (see #70995)
@skipIfNoLapack
@swap([True, False])
def test_caching_parametrization(self):
r"""Test the caching system of a parametrization"""
# Define a couple matrix parametrizations
class Skew(nn.Module):
def forward(self, X):
X = X.tril(-1)
return X - X.T
class Orthogonal(nn.Module):
def forward(self, X):
Id = torch.eye(X.size(0), device=X.device)
return torch.linalg.solve(Id + X, Id - X)
model = nn.Linear(5, 5)
parametrize.register_parametrization(model, "weight", Skew())
parametrize.register_parametrization(model, "weight", Orthogonal())
# Test that the caching system works
with parametrize.cached():
X = model.weight
Y = model.weight
self.assertEqual(id(X), id(Y))
# FIXME: Rewrite this test using functions not depending on LAPACK
# and remove the `@skipIfNoLapack` (see #70995)
@skipIfNoLapack
@swap([True, False])
def test_caching_parametrization_with_transfer_parametrizations_and_params(self):
r"""Test that transferring parametrizations doesn't cause issues with caching"""
class Skew(nn.Module):
def forward(self, X):
X = X.tril(-1)
return X - X.T
class Orthogonal(nn.Module):
def forward(self, X):
Id = torch.eye(X.size(0), device=X.device)
return torch.linalg.solve(Id + X, Id - X)
model = nn.Linear(5, 5)
parametrize.register_parametrization(model, "weight", Skew())
parametrize.register_parametrization(model, "weight", Orthogonal())
to_model = nn.Linear(5, 5)
parametrize.transfer_parametrizations_and_params(model, to_model)
with parametrize.cached():
X = model.weight
Y = model.weight
self.assertEqual(id(X), id(Y))
A = to_model.weight
B = to_model.weight
self.assertEqual(id(A), id(B))
# test that the results are distinct objects for each module
self.assertNotEqual(id(A), id(X))
@swap([True, False])
def test_parametrization_same_training_mode(self):
r"""Test training mode updated on parametrization registration"""
class Identity(nn.Module):
def forward(self, X):
return X
module = nn.Linear(4, 4)
module.eval()
parametrize.register_parametrization(module, "weight", Identity())
self.assertFalse(module.parametrizations.weight[0].training)
module.train()
parametrize.register_parametrization(module, "weight", Identity().eval())
self.assertTrue(module.parametrizations.weight[0].training)
self.assertTrue(module.parametrizations.weight[1].training)
@swap([True, False])
def test_type_before_parametrizations(self):
r"""Test that type_before_parametrizations always retrieves original type"""
class Identity(nn.Module):
def forward(self, X):
return X
model = nn.Linear(5, 5)
original_type = type(model)
self.assertTrue(
parametrize.type_before_parametrizations(model) == original_type
)
parametrize.register_parametrization(model, "weight", Identity())
self.assertTrue(
parametrize.type_before_parametrizations(model) == original_type
)
@skipIfTorchDynamo(
"Not applicable; see https://github.com/pytorch/pytorch/issues/127738"
)
@swap([True, False])
def test_deepcopy_after_parametrization(self):
r"""Test that we are able to create a deepcopy of the module when it's parametrized."""
class AddOne(nn.Module):
def forward(self, x):
return x + 1.0
class ModelWithoutDeepcopy(nn.Module):
def __init__(self) -> None:
super().__init__()
self.weight = nn.Parameter(
torch.tensor([1.0, 1.0, 1.0, 1.0]), requires_grad=True
)
self.bias = nn.Parameter(
torch.tensor([0.0, 0.0, 0.0, 0.0]), requires_grad=True
)
self.attr = [1.0, 2.0, 3.0, 4.0]
class ActualModel(ModelWithoutDeepcopy):
# Emulate custom implementation of the deepcopying.
def __deepcopy__(self, memo):
result = self.__new__(self.__class__)
memo[id(self)] = result
result.__dict__ = deepcopy(self.__dict__, memo)
return result
def check_deepcopy(m1: nn.Module, m2: nn.Module):
w1 = m1.parametrizations.weight.original
w2 = m2.parametrizations.weight.original
b1 = (
m1.parametrizations.bias.original
if parametrize.is_parametrized(m1, "bias")
else m1.bias
)
b2 = (
m2.parametrizations.bias.original
if parametrize.is_parametrized(m2, "bias")
else m2.bias
)
# Weights, biases and attributes should be equal but they must be different objects.
self.assertEqual(m1.__dict__.keys(), m2.__dict__.keys())
self.assertIsNot(m1, m2)
self.assertEqual(w1, w2)
self.assertIsNot(w1, w2)
self.assertEqual(b1, b2)
self.assertIsNot(b1, b2)
self.assertEqual(m1.attr, m2.attr)
self.assertIsNot(m1.attr, m2.attr)
for model in (ModelWithoutDeepcopy(), ActualModel()):
# General check that we are able to create deepcopy.
parametrize.register_parametrization(model, "weight", AddOne())
check_deepcopy(model, deepcopy(model))
# Check that this works on models with several parametrized tensors.
parametrize.register_parametrization(model, "bias", AddOne())
check_deepcopy(model, deepcopy(model))
# Check that this works on models where tensors have more than one parametrization.
parametrize.register_parametrization(model, "weight", AddOne())
check_deepcopy(model, deepcopy(model))
@swap([True, False])
def test_transfer_parametrizations_and_params(self):
r"""Test that all parametrizations and their associated parameters are transferred."""
class AddOne(nn.Module):
def forward(self, x):
return x + 1.0
class Double(nn.Module):
def forward(self, x):
return 2.0 * x
def right_inverse(self, x):
return 0.5 * x
class MinusOne(nn.Module):
def forward(self, x):
return x - 1.0
model = nn.Linear(5, 5)
parametrize.register_parametrization(model, "weight", AddOne())
parametrize.register_parametrization(model, "weight", Double())
parametrize.register_parametrization(model, "weight", MinusOne())
hold_weight = model.weight
to_model = torch.ao.nn.qat.Linear(
5, 5, qconfig=torch.ao.quantization.get_default_qconfig()
)
parametrize.transfer_parametrizations_and_params(model, to_model)
# checks that final and original value are correct and the to_model is parametrized
self.assertTrue(torch.nn.utils.parametrize.is_parametrized(to_model, "weight"))
self.assertEqual(model.weight, to_model.weight)
self.assertEqual(
model.parametrizations.weight.original,
to_model.parametrizations.weight.original,
)
# check that the transfer didn't affect the original value
self.assertEqual(hold_weight, model.weight)
if get_swap_module_params_on_conversion():
# When using the swap_tensors path, this is needed so that the autograd
# graph is not alive anymore.
del hold_weight
# testing that changes to one set of parametrizations do not affect the other
parametrize.remove_parametrizations(to_model, "weight")
self.assertFalse(torch.nn.utils.parametrize.is_parametrized(to_model, "weight"))
self.assertTrue(torch.nn.utils.parametrize.is_parametrized(model, "weight"))
# also test that parameters that don't exist in to_model get transferred
model.test_param = Parameter(torch.randn(5, 5))
self.assertTrue(not hasattr(to_model, "test_param"))
parametrize.register_parametrization(model, "test_param", Double())
hold_test_param = model.test_param
parametrize.transfer_parametrizations_and_params(model, to_model, "test_param")
# check that previously missing params got transferred correctly
self.assertEqual(model.test_param, to_model.test_param)
self.assertEqual(
model.parametrizations.test_param.original,
to_model.parametrizations.test_param.original,
)
# check that the new transfer didn't change the value for the from_module
self.assertEqual(hold_test_param, model.test_param)
@swap([True, False])
def test_transfer_parametrizations_and_params_right_inverse(self):
r"""Test that all parametrizations and their associated parameters are transferred."""
class Double(nn.Module):
def forward(self, x):
return 2.0 * x
def right_inverse(self, x):
return 0.5 * x
model = nn.Linear(5, 5)
parametrize.register_parametrization(model, "weight", Double())
hold_weight = model.weight
to_model = torch.ao.nn.qat.Linear(
5, 5, qconfig=torch.ao.quantization.get_default_qconfig()
)
parametrize.transfer_parametrizations_and_params(model, to_model)
# check that transfer occurs successfully
self.assertEqual(model.weight, to_model.weight)
self.assertEqual(
model.parametrizations.weight.original,
to_model.parametrizations.weight.original,
)
# check that transfer doesn't affect the from_model weight
self.assertEqual(hold_weight, model.weight)
@swap([True, False])
def test_transfer_parametrizations_and_params_single_param(self):
r"""Test that all parametrizations and their associated parameters are transferred."""
class AddOne(nn.Module):
def forward(self, x):
return x + 1.0
class Double(nn.Module):
def forward(self, x):
return 2.0 * x
class MinusOne(nn.Module):
def forward(self, x):
return x - 1.0
model = nn.Linear(5, 5, bias=True)
parametrize.register_parametrization(model, "weight", AddOne())
parametrize.register_parametrization(model, "weight", Double())
parametrize.register_parametrization(model, "weight", MinusOne())
parametrize.register_parametrization(model, "bias", AddOne())
parametrize.register_parametrization(model, "bias", Double())
parametrize.register_parametrization(model, "bias", MinusOne())
to_model = torch.ao.nn.qat.Linear(
5, 5, bias=True, qconfig=torch.ao.quantization.get_default_qconfig()
)
parametrize.transfer_parametrizations_and_params(model, to_model, "weight")
# check that weight and only weight was transferred
self.assertEqual(model.weight, to_model.weight)
self.assertEqual(
model.parametrizations.weight.original,
to_model.parametrizations.weight.original,
)
self.assertTrue("bias" not in to_model.parametrizations)
# FIXME: Rewrite this test using functions not depending on LAPACK
# and remove the `@skipIfNoLapack` (see #70995)
@skipIfNoLapack
@swap([True, False])
def test_transfer_parametrizations_and_params_many_to_one(self):
# A parametrization with several outputs
class RankOne(nn.Module):
def forward(self, x, y):
# Form a rank-1 matrix from a pair of vectors
return x.unsqueeze(-1) @ y.unsqueeze(-2)
def right_inverse(self, Y):
# We project the given matrix onto the rank 1 matrices
U, S, Vh = torch.linalg.svd(Y, full_matrices=False)
# S is ordered in a decreasing way.
s0_sqrt = S[0].sqrt().unsqueeze(-1)
return U[..., :, 0] * s0_sqrt, Vh[..., 0, :] * s0_sqrt
class Double(nn.Module):
def forward(self, x):
return 2.0 * x
model = nn.Linear(3, 3)
parametrize.register_parametrization(model, "weight", RankOne())
parametrize.register_parametrization(model, "weight", Double())
hold_weight = model.weight
to_model = torch.ao.nn.qat.Linear(
3, 3, qconfig=torch.ao.quantization.get_default_qconfig()
)
parametrize.transfer_parametrizations_and_params(model, to_model)
# checks that final and original value are correct and the to_model is parametrized
self.assertTrue(torch.nn.utils.parametrize.is_parametrized(to_model, "weight"))
self.assertEqual(model.weight, to_model.weight)
self.assertEqual(
model.parametrizations.weight.original0,
to_model.parametrizations.weight.original0,
)
self.assertEqual(
model.parametrizations.weight.original1,
to_model.parametrizations.weight.original1,
)
# check that the transfer didn't affect the original value
self.assertEqual(hold_weight, model.weight)
# testing that changes to one set of parametrizations do not affect the other
model.test_param = Parameter(torch.randn(3, 3))
self.assertTrue(not hasattr(to_model, "test_param"))
parametrize.register_parametrization(model, "test_param", RankOne())
hold_test_param = model.test_param
parametrize.transfer_parametrizations_and_params(model, to_model, "test_param")
# also check that previously missing params got transferred correctly
self.assertEqual(model.test_param, to_model.test_param)
self.assertEqual(
model.parametrizations.test_param.original0,
to_model.parametrizations.test_param.original0,
)
self.assertEqual(
model.parametrizations.test_param.original1,
to_model.parametrizations.test_param.original1,
)
# check that the new transfer didn't change the value for the from_module
self.assertEqual(hold_test_param, model.test_param)
@swap([True, False])
def test_new_spectral_norm(self):
with set_default_dtype(torch.double):
input = torch.randn(3, 5)
m = nn.Linear(5, 7)
m = torch.nn.utils.parametrizations.spectral_norm(m)
spectral_norm_m = m.parametrizations.weight[0]
self.assertEqual(spectral_norm_m._u.size(), torch.Size([m.weight.size(0)]))
# .parametrizations.weight.original should be trainable
self.assertTrue(hasattr(m.parametrizations.weight, "original"))
self.assertTrue("original" in m.parametrizations.weight._parameters)
# u should be just a reused buffer
self.assertTrue(hasattr(spectral_norm_m, "_u"))
self.assertTrue("_u" in spectral_norm_m._buffers)
self.assertTrue("_v" in spectral_norm_m._buffers)
# weight should be a plain attribute, not counted as a buffer or a param
self.assertIsNotNone(m.weight)
self.assertFalse("weight" in m._buffers)
self.assertFalse("weight" in m._parameters)
# it should also be sharing storage as `weight_orig`
# self.assertEqual(m.parametrizations.weight.original.storage(), m.weight.storage())
self.assertEqual(m.parametrizations.weight.original.size(), m.weight.size())
self.assertEqual(
m.parametrizations.weight.original.stride(), m.weight.stride()
)
m = torch.nn.utils.parametrize.remove_parametrizations(m, "weight")
# spectral_norm is the only parametrization
self.assertFalse(hasattr(m, "parametrizations"))
self.assertTrue("weight" in m._parameters)
# We can register spectral_norm multiple times on the same parameter
# and on multiple parameters in the same module
m = torch.nn.utils.parametrizations.spectral_norm(m, "weight")
m = torch.nn.utils.parametrizations.spectral_norm(m, "weight")
m = torch.nn.utils.parametrizations.spectral_norm(m, "bias")
# If we remove the parametrization on bias, weight is still parametrized
# Removing a parametrization runs forward in eval mode if leave_parametrized=True
m = torch.nn.utils.parametrize.remove_parametrizations(m, "bias")
self.assertTrue("bias" in m._parameters)
self.assertTrue(hasattr(m, "parametrizations"))
self.assertFalse("weight" in m._parameters)
m = torch.nn.utils.parametrize.remove_parametrizations(m, "weight")
# Neither weight and bias are parametrized
self.assertFalse(hasattr(m, "parametrizations"))
self.assertTrue("weight" in m._parameters)
self.assertFalse(torch.nn.utils.parametrize.is_parametrized(m))
# test correctness in training/eval modes and cpu/multi-gpu settings
for apply_dp in (True, False):
if apply_dp:
if not TEST_MULTIGPU:
continue
device = torch.device("cuda:0")
def maybe_wrap(m):
return torch.nn.DataParallel(m, [0, 1])
else:
device = torch.device("cpu")
def maybe_wrap(m):
return m
for requires_grad in (True, False):
def get_modules():
m = nn.Linear(3, 4).to(device)
m.weight.requires_grad_(requires_grad)
m = torch.nn.utils.parametrizations.spectral_norm(m)
wrapped_m = maybe_wrap(m)
spectral_norm_m = m.parametrizations.weight[0]
return m, wrapped_m, spectral_norm_m
input = torch.randn(2, 3, device=device)
m, wrapped_m, spectral_norm_m = get_modules()
self.assertTrue(hasattr(spectral_norm_m, "_u"))
u0 = spectral_norm_m._u.clone()
v0 = spectral_norm_m._v.clone()
# TEST TRAINING BEHAVIOR
# We perform GD first to modify the initial matrix
opt = torch.optim.SGD(wrapped_m.parameters(), lr=0.1)
opt.zero_grad()
wrapped_m(input).sum().backward()
opt.step()
out = wrapped_m(input)
if requires_grad:
# run forward again and assert that u and v are updated
self.assertNotEqual(u0, spectral_norm_m._u)
self.assertNotEqual(v0, spectral_norm_m._v)
# assert that backprop reaches original weight
# can't use gradcheck because the function changes as we
# activate through it in training mode
if requires_grad:
torch.autograd.grad(
out.sum(), m.parametrizations.weight.original
)
# test backward works with multiple forwards
# it uses training mode so we need to reset `u` and `v` vectors
# to same value at beginning for finite difference test to pass
saved_u = spectral_norm_m._u.clone()
saved_v = spectral_norm_m._v.clone()
def fn(input):
spectral_norm_m._u.data.copy_(saved_u)
spectral_norm_m._v.data.copy_(saved_v)
out0 = wrapped_m(input)
out1 = wrapped_m(input)
return out0 + out1
# Make sure we can compute gradients wrt to all the parameters in the case
# of double forward
fn(input.clone().requires_grad_()).sum().backward()
gradcheck(
fn, (input.clone().requires_grad_(),), check_batched_grad=False
)
# test removing
# spectral norm module needs to be in eval mode if we'd like to
# avoid doing another power iteration
m, wrapped_m, _ = get_modules()
pre_remove_out = wrapped_m(input)
if get_swap_module_params_on_conversion():
# When using the swap_tensors path, this is needed so that the autograd
# graph is not alive anymore.
pre_remove_out_ref = pre_remove_out.detach()
del pre_remove_out
else:
pre_remove_out_ref = pre_remove_out
m.eval()
m = torch.nn.utils.parametrize.remove_parametrizations(m, "weight")
self.assertEqual(wrapped_m(input), pre_remove_out_ref)
torch.nn.utils.parametrizations.spectral_norm(m)
for _ in range(3):
pre_remove_out = wrapped_m(input)
if get_swap_module_params_on_conversion():
# When using the swap_tensors path, this is needed so that the autograd
# graph is not alive anymore.
pre_remove_out_ref = pre_remove_out.detach()
del pre_remove_out
else:
pre_remove_out_ref = pre_remove_out
m.eval()
m = torch.nn.utils.parametrize.remove_parametrizations(m, "weight")
self.assertEqual(wrapped_m(input), pre_remove_out_ref)
# TEST EVAL BEHAVIOR
m, wrapped_m, spectral_norm_m = get_modules()
wrapped_m(input)
last_train_out = wrapped_m(input)
last_train_u = spectral_norm_m._u.clone()
last_train_v = spectral_norm_m._v.clone()
wrapped_m.zero_grad()
wrapped_m.eval()
eval_out0 = wrapped_m(input)
# assert eval gives same result as last training iteration
self.assertEqual(eval_out0, last_train_out)
# assert doing more iteartion in eval don't change things
self.assertEqual(eval_out0, wrapped_m(input))
self.assertEqual(last_train_u, spectral_norm_m._u)
self.assertEqual(last_train_v, spectral_norm_m._v)
# FIXME: the code below is flaky when executed with DataParallel
# see https://github.com/pytorch/pytorch/issues/13818
if apply_dp:
continue
# test backward works with multiple forwards in mixed training
# and eval modes
# it uses training mode so we need to reset `u` and `v` vectors
# to same value at beginning for finite difference test to pass
saved_u = spectral_norm_m._u.clone()
saved_v = spectral_norm_m._v.clone()
def fn(input):
spectral_norm_m._u.data.copy_(saved_u)
spectral_norm_m._v.data.copy_(saved_v)
wrapped_m.train()
out0 = wrapped_m(input)
wrapped_m.eval()
out1 = wrapped_m(input)
wrapped_m.train()
out2 = wrapped_m(input)
wrapped_m.eval()
out3 = wrapped_m(input)
return out0 + out1 + out2 + out3
gradcheck(fn, (input.clone().requires_grad_(),))
# assert that backprop reaches weight_orig in eval
if requires_grad:
def fn(weight):
return wrapped_m(input)
gradcheck(fn, (m.parametrizations.weight.original,))
def test_register_parametrization_no_grad(self):
r"""Test that it is possible to register a parametrization without gradient"""
class SplitAndCat(nn.Module):
def right_inverse(self, x):
# split the tensor in two halfs
return torch.split(x, x.shape[1] // 2)
def forward(self, x0, x1):
return torch.cat([x0, x1])
model = nn.Linear(8, 8)
model.weight.requires_grad = False
parametrize.register_parametrization(model, "weight", SplitAndCat())
# making sure the parameterized and decomposed Tensors both have requires_grad == False
self.assertFalse(model.weight.requires_grad)
self.assertFalse(model.parametrizations.weight.original0.requires_grad)
self.assertFalse(model.parametrizations.weight.original1.requires_grad)
@swap([True, False])
def test_new_spectral_norm_load_state_dict(self):
for activate_times in (0, 3):
inp = torch.randn(2, 3)
m = nn.Linear(3, 5)
snm = torch.nn.utils.parametrizations.spectral_norm(m)
snm.train()
for _ in range(activate_times):
snm(inp)
state_dict = deepcopy(snm.state_dict())
self.assertEqual(
{
"parametrizations.weight.original",
"bias",
"parametrizations.weight.0._v",
"parametrizations.weight.0._u",
},
set(state_dict.keys()),
)
# test that non-strict loading works
non_strict_state_dict = deepcopy(state_dict)
non_strict_state_dict["nonsense"] = "nonsense"
with self.assertRaisesRegex(
RuntimeError, r'Unexpected key\(s\) in state_dict: "nonsense"'
):
snm.load_state_dict(non_strict_state_dict, strict=True)
snm.load_state_dict(non_strict_state_dict, strict=False)
del non_strict_state_dict["parametrizations.weight.original"]
snm.load_state_dict(non_strict_state_dict, strict=False)
del non_strict_state_dict["parametrizations.weight.0._u"]
snm.load_state_dict(non_strict_state_dict, strict=False)
del non_strict_state_dict["parametrizations.weight.0._v"]
snm.load_state_dict(non_strict_state_dict, strict=False)
non_strict_state_dict[
"weight"
] = snm.weight.detach().clone() # set W as a buffer
snm.load_state_dict(non_strict_state_dict, strict=False)
del non_strict_state_dict._metadata[
"parametrizations.weight.0"
] # remove metadata info
snm.load_state_dict(non_strict_state_dict, strict=False)
del non_strict_state_dict["weight"] # remove W buffer
snm.load_state_dict(non_strict_state_dict, strict=False)
del non_strict_state_dict["bias"]
snm.load_state_dict(non_strict_state_dict, strict=False)
# normal state_dict
# test that re-wrapping does not matter
m = torch.nn.utils.parametrize.remove_parametrizations(snm, "weight")
snm = torch.nn.utils.parametrizations.spectral_norm(m)
snm.load_state_dict(state_dict)
with torch.no_grad():
snm.eval()
out0_eval = snm(inp)
snm.train()
out1_train = snm(inp)
out2_train = snm(inp)
snm.eval()
out3_eval = snm(inp)
# test that re-wrapping does not matter
m = torch.nn.utils.parametrize.remove_parametrizations(snm, "weight")
snm = torch.nn.utils.parametrizations.spectral_norm(m)
# Test normal loading
snm.load_state_dict(state_dict)
with torch.no_grad():
snm.eval()
self.assertEqual(out0_eval, snm(inp))
snm.train()
self.assertEqual(out1_train, snm(inp))
self.assertEqual(out2_train, snm(inp))
snm.eval()
self.assertEqual(out3_eval, snm(inp))
@swap([True, False])
def test_new_spectral_norm_dim(self):
inp = torch.randn(2, 3, 10, 12)
m = nn.ConvTranspose2d(3, 4, (5, 6))
m = torch.nn.utils.parametrizations.spectral_norm(m)
snm = m.parametrizations.weight[0]
# this should not run into incompatible shapes
x = m(inp)
# check that u refers to the same dimension
self.assertEqual(
snm._u.shape, m.parametrizations.weight.original[0, :, 0, 0].shape
)
@swap([True, False])
def test_new_spectral_norm_forward(self):
input = torch.randn(3, 5)
m = nn.Linear(5, 7)
m = torch.nn.utils.parametrizations.spectral_norm(m)
snm = m.parametrizations.weight[0]
# naive forward
_weight = m.parametrizations.weight.original
_bias, _v = m.bias, snm._v
_weight_mat = _weight.view(_weight.size(0), -1)
_u = torch.mv(_weight_mat, _v)
_u = F.normalize(_u, dim=0, eps=1e-12)
_v = torch.mv(_weight_mat.t(), _u)
_v = F.normalize(_v, dim=0, eps=1e-12)
_weight.data /= torch.dot(_u, torch.matmul(_weight_mat, _v))
out_hat = torch.nn.functional.linear(input, _weight, _bias)
expect_out = m(input)
self.assertEqual(expect_out, out_hat)
@swap([True, False])
@skipIfTorchDynamo("Test does not work with TorchDynamo")
def test_new_spectral_norm_value(self):
# a test that the spectral norm (= top singular value)
# is in fact properly calculated, using example of a simple diagonal matrix.
for dtype in (torch.float, torch.cfloat):
m = nn.Linear(2, 2, dtype=dtype)
with torch.no_grad():
# set weight to be diagonal
x = torch.diagonal(m.weight)
m.weight = nn.Parameter(torch.diag(x))
torch.nn.utils.parametrizations.spectral_norm(m)
# weights should be rescaled by spectral norm, (i.e., largest diagonal element in norm)
expected = torch.diag(x / x.abs().max())
self.assertEqual(m.weight.data, expected)
@skipIfNoLapack
@swap([True, False])
def test_orthogonal_parametrization(self):
# Orthogonal implements 6 algorithms (3x parametrizations times 2 options of use_trivialization)
def assert_is_orthogonal(X):
n, k = X.size(-2), X.size(-1)
if n < k:
X = X.mT
n, k = k, n
Id = torch.eye(k, dtype=X.dtype, device=X.device).expand(
*(X.size()[:-2]), k, k
)
eps = 10 * n * torch.finfo(X.dtype).eps
torch.testing.assert_close(X.mH @ X, Id, atol=eps, rtol=0.0)
def assert_weight_allclose_Q(weight, W):
# Test that weight is equal to the Q part of the QR decomposition of W
# (or of its transpose if the matrix is wide)
wide_matrix = W.size(-2) < W.size(-1)
if wide_matrix:
W = W.mT
Q, R = torch.linalg.qr(W)
Q *= R.diagonal(dim1=-2, dim2=-1).sgn().unsqueeze(-2)
if wide_matrix:
Q = Q.mT
torch.testing.assert_close(Q, weight, atol=1e-5, rtol=0.0)
for shape, dtype, use_linear in product(
((4, 4), (5, 3), (3, 5)), # square/ tall / wide
(torch.float32, torch.complex64),
(True, False),
):
# Conv2d does not support complex yet
if not use_linear:
continue
if use_linear:
input = torch.randn(3, shape[0], dtype=dtype)
else:
input = torch.randn(2, 2, shape[0] + 2, shape[1] + 1, dtype=dtype)
for parametrization, use_trivialization in product(
("matrix_exp", "cayley", "householder"), (False, True)
):
# right_inverse for Cayley and matrix_exp not implemented for use_trivialization=False
# See Note [right_inverse expm cayley]
can_initialize = use_trivialization or parametrization == "householder"
# We generate them every time to always start with fresh weights
if use_linear:
m = nn.Linear(*shape, dtype=dtype)
else:
m = nn.Conv2d(2, 3, shape, dtype=dtype)
# We do not support householder for complex inputs
# See Note [Householder complex]
# When using the swap_tensors path, this is needed so that the autograd
# graph is not alive anymore.
if get_swap_module_params_on_conversion():
w_init = m.weight.detach().clone()
else:
w_init = m.weight.clone()
if parametrization == "householder" and m.weight.is_complex():
msg = "householder parametrization does not support complex tensors"
with self.assertRaisesRegex(ValueError, msg):
torch.nn.utils.parametrizations.orthogonal(
m,
"weight",
parametrization,
use_trivialization=use_trivialization,
)
continue
wide_matrix = w_init.size(-2) < w_init.size(-1)
torch.nn.utils.parametrizations.orthogonal(
m, "weight", parametrization, use_trivialization=use_trivialization
)
# Forwards works as expected
self.assertEqual(w_init.shape, m.weight.shape)
assert_is_orthogonal(m.weight)
if can_initialize:
assert_weight_allclose_Q(m.weight, w_init)
# Intializing with a given orthogonal matrix works
X = torch.randn_like(m.weight)
if wide_matrix:
X = X.mT
w_new = torch.linalg.qr(X).Q
if wide_matrix:
w_new = w_new.mT
if can_initialize:
m.weight = w_new
torch.testing.assert_close(w_new, m.weight, atol=1e-5, rtol=0.0)
else:
msg = (
"assign to the matrix exponential or the Cayley parametrization"
)
with self.assertRaisesRegex(NotImplementedError, msg):
m.weight = w_new
# Intializing with a non-orthogonal matrix makes m.weight be the Q part of the given matrix
w_new = torch.randn_like(m.weight)
if can_initialize:
m.weight = w_new
assert_weight_allclose_Q(m.weight, w_new)
else:
msg = (
"assign to the matrix exponential or the Cayley parametrization"
)
with self.assertRaisesRegex(NotImplementedError, msg):
m.weight = w_new
opt = torch.optim.SGD(m.parameters(), lr=0.1)
for _ in range(2):
opt.zero_grad()
m(input).norm().backward()
grad = m.parametrizations.weight.original.grad
self.assertIsNotNone(grad)
# We do not update the upper triangular part of the matrix if tall tril if wide
if grad.size(-2) >= grad.size(-1):
zeros_grad = grad.triu(1)
else:
zeros_grad = grad.tril(-1)
self.assertEqual(zeros_grad, torch.zeros_like(zeros_grad))
# The gradient in the diagonal can only be imaginary because a skew-Hermitian
# matrix has imaginary diagonal
diag_grad = grad.diagonal(dim1=-2, dim2=-1)
if grad.is_complex():
diag_grad = diag_grad.real
self.assertEqual(diag_grad, torch.zeros_like(diag_grad))
opt.step()
assert_is_orthogonal(m.weight)
@skipIfNoLapack
@swap([True, False])
def test_orthogonal_errors(self):
m = nn.Linear(3, 4)
with self.assertRaisesRegex(ValueError, "has to be one of"):
torch.nn.utils.parametrizations.orthogonal(m, "weight", "foo")
with self.assertRaisesRegex(ValueError, "Expected a matrix"):
torch.nn.utils.parametrizations.orthogonal(m, "bias")
torch.nn.utils.parametrizations.orthogonal(m, "weight")
with self.assertRaisesRegex(ValueError, "matrices of shape"):
m.weight = torch.randn(5, 5)
torch.nn.utils.parametrize.remove_parametrizations(m, "weight")
@swap([True, False])
def test_weight_norm_state_dict_compat(self):
m = nn.Linear(4, 5)
m = torch.nn.utils.weight_norm(m)
old_dict = m.state_dict()
m2 = nn.Linear(4, 5)
m2 = torch.nn.utils.parametrizations.weight_norm(m2)
m2.load_state_dict(old_dict)
input = torch.randn(3, 4)
self.assertEqual(m(input), m2(input))
@swap([True, False])
def test_weight_norm_pickle(self):
m = nn.Linear(4, 5)
m = torch.nn.utils.parametrizations.weight_norm(m)
with self.assertRaisesRegex(RuntimeError, "state_dict"):
pickle.dumps(m)
@swap([True, False])
def test_weight_norm_deepcopy(self):
m = nn.Linear(4, 5)
m = torch.nn.utils.parametrizations.weight_norm(m)
m2 = deepcopy(m)
input = torch.randn(3, 4)
self.assertEqual(m(input), m2(input))
@swap([True])
def test_wrapper_subclass_parametrization(self):
class Subclassify(nn.Module):
def forward(self, X):
return TwoTensor(X, X)
class UnSubclassify(nn.Module):
def forward(self, X):
return X.a
class IdentityWithRightInverse(nn.Module):
def forward(self, X):
return X
def right_inverse(self, X):
return TwoTensor(X, X)
def _check_parametrization(
parametrization,
type_before_registration,
type_after_registration,
leave_parametrized=False,
type_after_right_inverse=None,
):
model = nn.Linear(2, 2)
buf = torch.randn(2, 2)
model.buf = torch.nn.Buffer(buf)
if (
type_before_registration == TwoTensor
and type_after_registration == Tensor
):
model._apply(lambda t: TwoTensor(t, t))
initial_weight = model.weight.detach().clone()
initial_weight_id = id(model.weight)
initial_buf = model.buf.detach().clone()
initial_buf_id = id(model.buf)
type_original_weight = (
type_before_registration
if type_after_right_inverse is None
else type_after_right_inverse
)
type_original_buf = (
Tensor if type_original_weight is nn.Parameter else type_original_weight
)
type_after_removal_buf = (
type_after_registration if leave_parametrized else type_original_buf
)
if leave_parametrized:
if type_after_registration is Tensor:
type_after_removal_weight = nn.Parameter
else:
type_after_removal_weight = type_after_registration
else:
type_after_removal_weight = type_original_weight
parametrize.register_parametrization(model, "weight", parametrization())
parametrize.register_parametrization(model, "buf", parametrization())
self.assertTrue(hasattr(model, "parametrizations"))
self.assertTrue(parametrize.is_parametrized(model))
self.assertFalse(parametrize.is_parametrized(model, "bias"))
# checks for weight
self.assertTrue(parametrize.is_parametrized(model, "weight"))
self.assertTrue(
isinstance(model.parametrizations.weight.original, nn.Parameter)
)
self.assertTrue(
type(model.parametrizations.weight.original) is type_original_weight
)
self.assertNotIn("weight", model._parameters)
self.assertTrue(type(model.weight) is type_after_registration)
# checks for buf
self.assertTrue(parametrize.is_parametrized(model, "buf"))
self.assertFalse(
isinstance(model.parametrizations.buf.original, nn.Parameter)
)
self.assertTrue(
type(model.parametrizations.buf.original) is type_original_buf
)
self.assertTrue(type(model.buf) is type_after_registration)
parametrize.remove_parametrizations(
model, "weight", leave_parametrized=leave_parametrized
)
parametrize.remove_parametrizations(
model, "buf", leave_parametrized=leave_parametrized
)
self.assertFalse(hasattr(model, "parametrizations"))
self.assertEqual(model.__class__, nn.Linear)
# checks for weight
self.assertTrue(type(model.weight) is type_after_removal_weight)
self.assertTrue(isinstance(model.weight, nn.Parameter))
self.assertEqual(id(model.weight), initial_weight_id)
# checks for buf
self.assertTrue(type(model.buf) is type_after_removal_buf)
self.assertFalse(isinstance(model.buf, nn.Parameter))
self.assertEqual(id(model.buf), initial_buf_id)
if not leave_parametrized and type_after_right_inverse is None:
self.assertEqual(model.weight, initial_weight)
self.assertEqual(model.buf, initial_buf)
_check_parametrization(Subclassify, nn.Parameter, TwoTensor)
_check_parametrization(UnSubclassify, TwoTensor, Tensor)
_check_parametrization(
IdentityWithRightInverse,
nn.Parameter,
TwoTensor,
type_after_right_inverse=TwoTensor,
)
_check_parametrization(
Subclassify, nn.Parameter, TwoTensor, leave_parametrized=True
)
_check_parametrization(
UnSubclassify, TwoTensor, Tensor, leave_parametrized=True
)
_check_parametrization(
IdentityWithRightInverse,
nn.Parameter,
TwoTensor,
leave_parametrized=True,
type_after_right_inverse=TwoTensor,
)
class TestNNParametrizationDevice(NNTestCase):
@swap([True, False])
def test_weight_norm_parametrization(self, device):
for dtype in [torch.float, torch.bfloat16]:
input = torch.randn(3, 4, dtype=dtype, device=device)
m = nn.Linear(4, 5, dtype=dtype, device=device)
expected_output = m(input)
# add weight normalization
m = torch.nn.utils.parametrizations.weight_norm(m)
self.assertEqual(
m.parametrizations.weight.original1.size(), m.weight.size()
)
self.assertEqual(m.parametrizations.weight.original0.size(), (5, 1))
self.assertEqual(m(input), expected_output)
# remove weight norm
torch.nn.utils.parametrize.remove_parametrizations(m, "weight")
self.assertFalse(hasattr(m, "parametrizations"))
self.assertEqual(m(input), expected_output)
# test with dim=1
m = torch.nn.utils.parametrizations.weight_norm(m, dim=1)
self.assertEqual(
m.parametrizations.weight.original1.size(), m.weight.size()
)
self.assertEqual(m.parametrizations.weight.original0.size(), (1, 4))
self.assertEqual(m(input), expected_output)
# test with dim=None
m = nn.Linear(4, 5, dtype=dtype, device=device)
expected_output = m(input)
m = torch.nn.utils.parametrizations.weight_norm(m, dim=None)
self.assertEqual(m(input), expected_output)
only_for = ("cpu", "cuda")
instantiate_device_type_tests(TestNNParametrizationDevice, globals(), only_for=only_for)
instantiate_parametrized_tests(TestNNParametrization)
if __name__ == "__main__":
run_tests()
|