1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
|
# Owner(s): ["module: nn"]
import pickle
import unittest
import unittest.mock as mock
import torch
import torch.nn as nn
import torch.nn.utils.prune as prune
from torch.testing._internal.common_nn import NNTestCase
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
run_tests,
TemporaryFileName,
TEST_NUMPY,
)
class TestPruningNN(NNTestCase):
_do_cuda_memory_leak_check = True
_do_cuda_non_default_stream = True
# torch/nn/utils/prune.py
@unittest.skipIf(not TEST_NUMPY, "numpy not found")
def test_validate_pruning_amount_init(self):
r"""Test the first util function that validates the pruning
amount requested by the user the moment the pruning method
is initialized. This test checks that the expected errors are
raised whenever the amount is invalid.
The original function runs basic type checking + value range checks.
It doesn't check the validity of the pruning amount with
respect to the size of the tensor to prune. That's left to
`_validate_pruning_amount`, tested below.
"""
# neither float not int should raise TypeError
with self.assertRaises(TypeError):
prune._validate_pruning_amount_init(amount="I'm a string")
# float not in [0, 1] should raise ValueError
with self.assertRaises(ValueError):
prune._validate_pruning_amount_init(amount=1.1)
with self.assertRaises(ValueError):
prune._validate_pruning_amount_init(amount=20.0)
# negative int should raise ValueError
with self.assertRaises(ValueError):
prune._validate_pruning_amount_init(amount=-10)
# all these should pass without errors because they're valid amounts
prune._validate_pruning_amount_init(amount=0.34)
prune._validate_pruning_amount_init(amount=1500)
prune._validate_pruning_amount_init(amount=0)
prune._validate_pruning_amount_init(amount=0.0)
prune._validate_pruning_amount_init(amount=1)
prune._validate_pruning_amount_init(amount=1.0)
self.assertTrue(True)
@unittest.skipIf(not TEST_NUMPY, "numpy not found")
def test_validate_pruning_amount(self):
r"""Tests the second util function that validates the pruning
amount requested by the user, this time with respect to the size
of the tensor to prune. The rationale is that if the pruning amount,
converted to absolute value of units to prune, is larger than
the number of units in the tensor, then we expect the util function
to raise a value error.
"""
# if amount is int and amount > tensor_size, raise ValueError
with self.assertRaises(ValueError):
prune._validate_pruning_amount(amount=20, tensor_size=19)
# amount is a float so this should not raise an error
prune._validate_pruning_amount(amount=0.3, tensor_size=0)
# this is okay
prune._validate_pruning_amount(amount=19, tensor_size=20)
prune._validate_pruning_amount(amount=0, tensor_size=0)
prune._validate_pruning_amount(amount=1, tensor_size=1)
self.assertTrue(True)
@unittest.skipIf(not TEST_NUMPY, "numpy not found")
def test_compute_nparams_to_prune(self):
r"""Test that requested pruning `amount` gets translated into the
correct absolute number of units to prune.
"""
self.assertEqual(prune._compute_nparams_toprune(amount=0, tensor_size=15), 0)
self.assertEqual(prune._compute_nparams_toprune(amount=10, tensor_size=15), 10)
# if 1 is int, means 1 unit
self.assertEqual(prune._compute_nparams_toprune(amount=1, tensor_size=15), 1)
# if 1. is float, means 100% of units
self.assertEqual(prune._compute_nparams_toprune(amount=1.0, tensor_size=15), 15)
self.assertEqual(prune._compute_nparams_toprune(amount=0.4, tensor_size=17), 7)
def test_random_pruning_sizes(self):
r"""Test that the new parameters and buffers created by the pruning
method have the same size as the input tensor to prune. These, in
fact, correspond to the pruned version of the tensor itself, its
mask, and its original copy, so the size must match.
"""
# fixturize test
# TODO: add other modules
modules = [nn.Linear(5, 7), nn.Conv3d(2, 2, 2)]
names = ["weight", "bias"]
for m in modules:
for name in names:
with self.subTest(m=m, name=name):
original_tensor = getattr(m, name)
prune.random_unstructured(m, name=name, amount=0.1)
# mask has the same size as tensor being pruned
self.assertEqual(
original_tensor.size(), getattr(m, name + "_mask").size()
)
# 'orig' tensor has the same size as the original tensor
self.assertEqual(
original_tensor.size(), getattr(m, name + "_orig").size()
)
# new tensor has the same size as the original tensor
self.assertEqual(original_tensor.size(), getattr(m, name).size())
def test_random_pruning_orig(self):
r"""Test that original tensor is correctly stored in 'orig'
after pruning is applied. Important to make sure we don't
lose info about the original unpruned parameter.
"""
# fixturize test
# TODO: add other modules
modules = [nn.Linear(5, 7), nn.Conv3d(2, 2, 2)]
names = ["weight", "bias"]
for m in modules:
for name in names:
with self.subTest(m=m, name=name):
# tensor prior to pruning
original_tensor = getattr(m, name)
prune.random_unstructured(m, name=name, amount=0.1)
self.assertEqual(original_tensor, getattr(m, name + "_orig"))
def test_random_pruning_new_weight(self):
r"""Test that module.name now contains a pruned version of
the original tensor obtained from multiplying it by the mask.
"""
# fixturize test
# TODO: add other modules
modules = [nn.Linear(5, 7), nn.Conv3d(2, 2, 2)]
names = ["weight", "bias"]
for m in modules:
for name in names:
with self.subTest(m=m, name=name):
# tensor prior to pruning
original_tensor = getattr(m, name)
prune.random_unstructured(m, name=name, amount=0.1)
# weight = weight_orig * weight_mask
self.assertEqual(
getattr(m, name),
getattr(m, name + "_orig")
* getattr(m, name + "_mask").to(dtype=original_tensor.dtype),
)
def test_identity_pruning(self):
r"""Test that a mask of 1s does not change forward or backward."""
input_ = torch.ones(1, 5)
m = nn.Linear(5, 2)
y_prepruning = m(input_) # output prior to pruning
# compute grad pre-pruning and check it's equal to all ones
y_prepruning.sum().backward()
old_grad_weight = m.weight.grad.clone() # don't grab pointer!
self.assertEqual(old_grad_weight, torch.ones_like(m.weight))
old_grad_bias = m.bias.grad.clone()
self.assertEqual(old_grad_bias, torch.ones_like(m.bias))
# remove grads
m.zero_grad()
# force the mask to be made of all 1s
prune.identity(m, name="weight")
# with mask of 1s, output should be identical to no mask
y_postpruning = m(input_)
self.assertEqual(y_prepruning, y_postpruning)
# with mask of 1s, grad should be identical to no mask
y_postpruning.sum().backward()
self.assertEqual(old_grad_weight, m.weight_orig.grad)
self.assertEqual(old_grad_bias, m.bias.grad)
# calling forward twice in a row shouldn't change output
y1 = m(input_)
y2 = m(input_)
self.assertEqual(y1, y2)
def test_random_pruning_0perc(self):
r"""Test that a mask of 1s does not change forward or backward."""
input_ = torch.ones(1, 5)
m = nn.Linear(5, 2)
y_prepruning = m(input_) # output prior to pruning
# compute grad pre-pruning and check it's equal to all ones
y_prepruning.sum().backward()
old_grad_weight = m.weight.grad.clone() # don't grab pointer!
self.assertEqual(old_grad_weight, torch.ones_like(m.weight))
old_grad_bias = m.bias.grad.clone()
self.assertEqual(old_grad_bias, torch.ones_like(m.bias))
# remove grads
m.zero_grad()
# force the mask to be made of all 1s
with mock.patch(
"torch.nn.utils.prune.RandomUnstructured.compute_mask"
) as compute_mask:
compute_mask.return_value = torch.ones_like(m.weight)
prune.random_unstructured(
m, name="weight", amount=0.9
) # amount won't count
# with mask of 1s, output should be identical to no mask
y_postpruning = m(input_)
self.assertEqual(y_prepruning, y_postpruning)
# with mask of 1s, grad should be identical to no mask
y_postpruning.sum().backward()
self.assertEqual(old_grad_weight, m.weight_orig.grad)
self.assertEqual(old_grad_bias, m.bias.grad)
# calling forward twice in a row shouldn't change output
y1 = m(input_)
y2 = m(input_)
self.assertEqual(y1, y2)
def test_random_pruning(self):
input_ = torch.ones(1, 5)
m = nn.Linear(5, 2)
# define custom mask to assign with mock
mask = torch.ones_like(m.weight)
mask[1, 0] = 0
mask[0, 3] = 0
# check grad is zero for masked weights
with mock.patch(
"torch.nn.utils.prune.RandomUnstructured.compute_mask"
) as compute_mask:
compute_mask.return_value = mask
prune.random_unstructured(m, name="weight", amount=0.9)
y_postpruning = m(input_)
y_postpruning.sum().backward()
# weight_orig is the parameter, so it's the tensor that will accumulate the grad
self.assertEqual(m.weight_orig.grad, mask) # all 1s, except for masked units
self.assertEqual(m.bias.grad, torch.ones_like(m.bias))
# make sure that weight_orig update doesn't modify [1, 0] and [0, 3]
old_weight_orig = m.weight_orig.clone()
# update weights
learning_rate = 1.0
for p in m.parameters():
p.data.sub_(p.grad.data * learning_rate)
# since these are pruned, they should not be updated
self.assertEqual(old_weight_orig[1, 0], m.weight_orig[1, 0])
self.assertEqual(old_weight_orig[0, 3], m.weight_orig[0, 3])
def test_random_pruning_forward(self):
r"""check forward with mask (by hand)."""
input_ = torch.ones(1, 5)
m = nn.Linear(5, 2)
# define custom mask to assign with mock
mask = torch.zeros_like(m.weight)
mask[1, 0] = 1
mask[0, 3] = 1
with mock.patch(
"torch.nn.utils.prune.RandomUnstructured.compute_mask"
) as compute_mask:
compute_mask.return_value = mask
prune.random_unstructured(m, name="weight", amount=0.9)
yhat = m(input_)
self.assertEqual(yhat[0, 0], m.weight_orig[0, 3] + m.bias[0])
self.assertEqual(yhat[0, 1], m.weight_orig[1, 0] + m.bias[1])
def test_remove_pruning_forward(self):
r"""Remove pruning and check forward is unchanged from previous
pruned state.
"""
input_ = torch.ones(1, 5)
m = nn.Linear(5, 2)
# define custom mask to assign with mock
mask = torch.ones_like(m.weight)
mask[1, 0] = 0
mask[0, 3] = 0
# check grad is zero for masked weights
with mock.patch(
"torch.nn.utils.prune.RandomUnstructured.compute_mask"
) as compute_mask:
compute_mask.return_value = mask
prune.random_unstructured(m, name="weight", amount=0.9)
y_postpruning = m(input_)
prune.remove(m, "weight")
y_postremoval = m(input_)
self.assertEqual(y_postpruning, y_postremoval)
def test_pruning_id_consistency(self):
r"""Test that pruning doesn't change the id of the parameters, which
would otherwise introduce issues with pre-existing optimizers that
point to old parameters.
"""
m = nn.Linear(5, 2, bias=False)
tensor_id = id(next(iter(m.parameters())))
prune.random_unstructured(m, name="weight", amount=0.9)
self.assertEqual(tensor_id, id(next(iter(m.parameters()))))
prune.remove(m, "weight")
self.assertEqual(tensor_id, id(next(iter(m.parameters()))))
def test_random_pruning_pickle(self):
modules = [nn.Linear(5, 7), nn.Conv3d(2, 2, 2)]
names = ["weight", "bias"]
for m in modules:
for name in names:
with self.subTest(m=m, name=name):
prune.random_unstructured(m, name=name, amount=0.1)
m_new = pickle.loads(pickle.dumps(m))
self.assertIsInstance(m_new, type(m))
def test_multiple_pruning_calls(self):
# if you call pruning twice, the hook becomes a PruningContainer
m = nn.Conv3d(2, 2, 2)
prune.l1_unstructured(m, name="weight", amount=0.1)
weight_mask0 = m.weight_mask # save it for later sanity check
# prune again
prune.ln_structured(m, name="weight", amount=0.3, n=2, dim=0)
hook = next(iter(m._forward_pre_hooks.values()))
self.assertIsInstance(hook, torch.nn.utils.prune.PruningContainer)
# check that container._tensor_name is correctly set no matter how
# many pruning methods are in the container
self.assertEqual(hook._tensor_name, "weight")
# check that the pruning container has the right length
# equal to the number of pruning iters
self.assertEqual(len(hook), 2) # m.weight has been pruned twice
# check that the entries of the pruning container are of the expected
# type and in the expected order
self.assertIsInstance(hook[0], torch.nn.utils.prune.L1Unstructured)
self.assertIsInstance(hook[1], torch.nn.utils.prune.LnStructured)
# check that all entries that are 0 in the 1st mask are 0 in the
# 2nd mask too
self.assertTrue(torch.all(m.weight_mask[weight_mask0 == 0] == 0))
# prune again
prune.ln_structured(m, name="weight", amount=0.1, n=float("inf"), dim=1)
# check that container._tensor_name is correctly set no matter how
# many pruning methods are in the container
hook = next(iter(m._forward_pre_hooks.values()))
self.assertEqual(hook._tensor_name, "weight")
def test_pruning_container(self):
# create an empty container
container = prune.PruningContainer()
container._tensor_name = "test"
self.assertEqual(len(container), 0)
p = prune.L1Unstructured(amount=2)
p._tensor_name = "test"
# test adding a pruning method to a container
container.add_pruning_method(p)
# test error raised if tensor name is different
q = prune.L1Unstructured(amount=2)
q._tensor_name = "another_test"
with self.assertRaises(ValueError):
container.add_pruning_method(q)
# test that adding a non-pruning method object to a pruning container
# raises a TypeError
with self.assertRaises(TypeError):
container.add_pruning_method(10)
with self.assertRaises(TypeError):
container.add_pruning_method("ugh")
def test_pruning_container_compute_mask(self):
r"""Test `compute_mask` of pruning container with a known `t` and
`default_mask`. Indirectly checks that Ln structured pruning is
acting on the right axis.
"""
# create an empty container
container = prune.PruningContainer()
container._tensor_name = "test"
# 1) test unstructured pruning
# create a new pruning method
p = prune.L1Unstructured(amount=2)
p._tensor_name = "test"
# add the pruning method to the container
container.add_pruning_method(p)
# create tensor to be pruned
t = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).to(dtype=torch.float32)
# create prior mask by hand
default_mask = torch.tensor([[1, 1, 1, 0], [1, 1, 0, 1]])
# since we are pruning the two lowest magnitude units, the outcome of
# the calculation should be this:
expected_mask = torch.tensor([[0, 0, 1, 0], [1, 1, 0, 1]], dtype=torch.float32)
computed_mask = container.compute_mask(t, default_mask)
self.assertEqual(expected_mask, computed_mask)
# 2) test structured pruning
q = prune.LnStructured(amount=1, n=2, dim=0)
q._tensor_name = "test"
container.add_pruning_method(q)
# since we are pruning the lowest magnitude one of the two rows, the
# outcome of the calculation should be this:
expected_mask = torch.tensor([[0, 0, 0, 0], [1, 1, 0, 1]], dtype=torch.float32)
computed_mask = container.compute_mask(t, default_mask)
self.assertEqual(expected_mask, computed_mask)
# 2) test structured pruning, along another axis
r = prune.LnStructured(amount=1, n=2, dim=1)
r._tensor_name = "test"
container.add_pruning_method(r)
# since we are pruning the lowest magnitude of the four columns, the
# outcome of the calculation should be this:
expected_mask = torch.tensor([[0, 1, 1, 0], [0, 1, 0, 1]], dtype=torch.float32)
computed_mask = container.compute_mask(t, default_mask)
self.assertEqual(expected_mask, computed_mask)
def test_l1_unstructured_pruning(self):
r"""Test that l1 unstructured pruning actually removes the lowest
entries by l1 norm (by hand). It also checks that applying l1
unstructured pruning more than once respects the previous mask.
"""
m = nn.Linear(4, 2)
# modify its weight matrix by hand
m.weight = torch.nn.Parameter(
torch.tensor([[1, 2, 3, 4], [-4, -3, -2, -1]], dtype=torch.float32)
)
prune.l1_unstructured(m, "weight", amount=2)
expected_weight = torch.tensor(
[[0, 2, 3, 4], [-4, -3, -2, 0]], dtype=m.weight.dtype
)
self.assertEqual(expected_weight, m.weight)
# check that pruning again removes the next two smallest entries
prune.l1_unstructured(m, "weight", amount=2)
expected_weight = torch.tensor(
[[0, 0, 3, 4], [-4, -3, 0, 0]], dtype=m.weight.dtype
)
self.assertEqual(expected_weight, m.weight)
def test_l1_unstructured_pruning_with_importance_scores(self):
r"""Test that l1 unstructured pruning actually removes the lowest
entries of importance scores and not the parameter by l1 norm (by hand).
It also checks that applying l1 unstructured pruning more than once
respects the previous mask.
"""
m = nn.Linear(4, 2)
# modify its weight matrix by hand
m.weight = torch.nn.Parameter(
torch.tensor([[1, 2, 3, 4], [-4, -3, -2, -1]], dtype=torch.float32)
)
importance_scores = torch.tensor(
[[4, 2, 1, 3], [-3, -1, -2, -4]], dtype=torch.float32
)
prune.l1_unstructured(
m, "weight", amount=2, importance_scores=importance_scores
)
expected_weight = torch.tensor(
[[1, 2, 0, 4], [-4, 0, -2, -1]], dtype=m.weight.dtype
)
self.assertEqual(expected_weight, m.weight)
# check that pruning again removes two entries of m.weight that are colocated with
# the next two smallest absolute values of importance scores.
prune.l1_unstructured(
m, "weight", amount=2, importance_scores=importance_scores
)
expected_weight = torch.tensor(
[[1, 0, 0, 4], [-4, 0, 0, -1]], dtype=m.weight.dtype
)
self.assertEqual(expected_weight, m.weight)
def test_unstructured_pruning_same_magnitude(self):
r"""Since it may happen that the tensor to prune has entries with the
same exact magnitude, it is important to check that pruning happens
consistenly based on the bottom % of weights, and not by threshold,
which would instead kill off *all* units with magnitude = threshold.
"""
AMOUNT = 0.2
p = prune.L1Unstructured(amount=AMOUNT)
# create a random tensors with entries in {-2, 0, 2}
t = 2 * torch.randint(low=-1, high=2, size=(10, 7))
nparams_toprune = prune._compute_nparams_toprune(AMOUNT, t.nelement())
computed_mask = p.compute_mask(t, default_mask=torch.ones_like(t))
nparams_pruned = torch.sum(computed_mask == 0)
self.assertEqual(nparams_toprune, nparams_pruned)
def test_random_structured_pruning_amount(self):
AMOUNT = 0.6
AXIS = 2
p = prune.RandomStructured(amount=AMOUNT, dim=AXIS)
t = 2 * torch.randint(low=-1, high=2, size=(5, 4, 2)).to(dtype=torch.float32)
nparams_toprune = prune._compute_nparams_toprune(AMOUNT, t.shape[AXIS])
computed_mask = p.compute_mask(t, default_mask=torch.ones_like(t))
# check that 1 column is fully prune, the others are left untouched
remaining_axes = [_ for _ in range(len(t.shape)) if _ != AXIS]
per_column_sums = sorted(torch.sum(computed_mask == 0, axis=remaining_axes))
assert per_column_sums == [0, 20]
def test_ln_structured_pruning(self):
r"""Check Ln structured pruning by hand."""
m = nn.Conv2d(3, 1, 2)
m.weight.data = torch.tensor(
[
[
[[1.0, 2.0], [1.0, 2.5]],
[[0.5, 1.0], [0.1, 0.1]],
[[-3.0, -5.0], [0.1, -1.0]],
]
]
)
# expected effect of pruning 1 of the 3 channels by L2-norm
expected_mask_axis1 = torch.ones_like(m.weight)
expected_mask_axis1[:, 1] = 0.0
prune.ln_structured(m, "weight", amount=1, n=2, dim=1)
self.assertEqual(expected_mask_axis1, m.weight_mask)
# expected effect of pruning 1 of the 2 columns along axis -1 by L1-norm
expected_mask_axis3 = expected_mask_axis1
expected_mask_axis3[:, :, :, 0] = 0.0
prune.ln_structured(m, "weight", amount=1, n=1, dim=-1)
self.assertEqual(expected_mask_axis3, m.weight_mask)
def test_ln_structured_pruning_importance_scores(self):
r"""Check Ln structured pruning by hand."""
m = nn.Conv2d(3, 1, 2)
m.weight.data = torch.tensor(
[
[
[[1.0, 2.0], [1.0, 2.5]],
[[0.5, 1.0], [0.1, 0.1]],
[[-3.0, -5.0], [0.1, -1.0]],
]
]
)
importance_scores = torch.tensor(
[
[
[[10.0, 1.0], [10.0, 1.0]],
[[30.0, 3.0], [30.0, 3.0]],
[[-20.0, -2.0], [-20.0, -2.0]],
]
]
)
# expected effect of pruning 1 of the 3 channels by L2-norm
expected_mask_axis1 = torch.ones_like(m.weight)
expected_mask_axis1[:, 0] = 0.0
prune.ln_structured(
m, "weight", amount=1, n=2, dim=1, importance_scores=importance_scores
)
self.assertEqual(expected_mask_axis1, m.weight_mask)
# expected effect of pruning 1 of the 2 columns along axis -1 by L1-norm
expected_mask_axis3 = expected_mask_axis1
expected_mask_axis3[:, :, :, 1] = 0.0
prune.ln_structured(
m, "weight", amount=1, n=1, dim=-1, importance_scores=importance_scores
)
self.assertEqual(expected_mask_axis3, m.weight_mask)
def test_remove_pruning(self):
r"""`prune.remove` removes the hook and the reparametrization
and makes the pruning final in the original parameter.
"""
modules = [nn.Linear(5, 7), nn.Conv3d(2, 2, 2)]
names = ["weight", "bias"]
for m in modules:
for name in names:
with self.subTest(m=m, name=name):
# first prune
prune.random_unstructured(m, name, amount=0.5)
self.assertIn(name + "_orig", dict(m.named_parameters()))
self.assertIn(name + "_mask", dict(m.named_buffers()))
self.assertNotIn(name, dict(m.named_parameters()))
self.assertTrue(hasattr(m, name))
pruned_t = getattr(m, name)
# then remove pruning
prune.remove(m, name)
self.assertIn(name, dict(m.named_parameters()))
self.assertNotIn(name + "_orig", dict(m.named_parameters()))
self.assertNotIn(name + "_mask", dict(m.named_buffers()))
final_t = getattr(m, name)
self.assertEqual(pruned_t, final_t)
def test_remove_pruning_exception(self):
r"""Removing from an unpruned tensor throws an assertion error"""
modules = [nn.Linear(5, 7), nn.Conv3d(2, 2, 2)]
names = ["weight", "bias"]
for m in modules:
for name in names:
with self.subTest(m=m, name=name):
# check that the module isn't pruned
self.assertFalse(prune.is_pruned(m))
# since it isn't pruned, pruning can't be removed from it
with self.assertRaises(ValueError):
prune.remove(m, name)
def test_global_pruning(self):
r"""Test that global l1 unstructured pruning over 2 parameters removes
the `amount=4` smallest global weights across the 2 parameters.
"""
m = nn.Linear(4, 2)
n = nn.Linear(3, 1)
# modify the weight matrices by hand
m.weight = torch.nn.Parameter(
torch.tensor([[1, 2, 3, 4], [-4, -3, -2, -1]]).to(dtype=torch.float32)
)
n.weight = torch.nn.Parameter(
torch.tensor([[0, 0.1, -2]]).to(dtype=torch.float32)
)
params_to_prune = (
(m, "weight"),
(n, "weight"),
)
# prune the 4 smallest weights globally by L1 magnitude
prune.global_unstructured(
params_to_prune, pruning_method=prune.L1Unstructured, amount=4
)
expected_mweight = torch.tensor(
[[0, 2, 3, 4], [-4, -3, -2, 0]], dtype=m.weight.dtype
)
self.assertEqual(expected_mweight, m.weight)
expected_nweight = torch.tensor([[0, 0, -2]]).to(dtype=n.weight.dtype)
self.assertEqual(expected_nweight, n.weight)
def test_global_pruning_importance_scores(self):
r"""Test that global l1 unstructured pruning over 2 parameters removes
the `amount=4` smallest global weights across the 2 parameters.
"""
m = nn.Linear(4, 2)
n = nn.Linear(3, 1)
# modify the weight matrices by hand
m.weight = torch.nn.Parameter(
torch.tensor([[1, 2, 3, 4], [-4, -3, -2, -1]]).to(dtype=torch.float32)
)
m_importance_scores = torch.tensor(
[[4, 2, 1, 3], [-3, -1, -2, -4]], dtype=torch.float32
)
n.weight = torch.nn.Parameter(
torch.tensor([[0, 0.1, -2]]).to(dtype=torch.float32)
)
n_importance_scores = torch.tensor([[0, 10.0, -0.2]]).to(dtype=torch.float32)
params_to_prune = (
(m, "weight"),
(n, "weight"),
)
importance_scores = {
(m, "weight"): m_importance_scores,
(n, "weight"): n_importance_scores,
}
# prune the 4 smallest weights globally by L1 magnitude
prune.global_unstructured(
params_to_prune,
pruning_method=prune.L1Unstructured,
amount=4,
importance_scores=importance_scores,
)
expected_m_weight = torch.tensor(
[[1, 2, 0, 4], [-4, 0, -2, -1]], dtype=m.weight.dtype
)
self.assertEqual(expected_m_weight, m.weight)
expected_n_weight = torch.tensor([[0, 0.1, 0]]).to(dtype=n.weight.dtype)
self.assertEqual(expected_n_weight, n.weight)
def test_custom_from_mask_pruning(self):
r"""Test that the CustomFromMask is capable of receiving
as input at instantiation time a custom mask, and combining it with
the previous default mask to generate the correct final mask.
"""
# new mask
mask = torch.tensor([[0, 1, 1, 0], [0, 0, 1, 1]])
# old mask
default_mask = torch.tensor([[0, 0, 0, 0], [1, 1, 1, 1]])
# some tensor (not actually used)
t = torch.rand_like(mask.to(dtype=torch.float32))
p = prune.CustomFromMask(mask=mask)
computed_mask = p.compute_mask(t, default_mask)
expected_mask = torch.tensor(
[[0, 0, 0, 0], [0, 0, 1, 1]], dtype=computed_mask.dtype
)
self.assertEqual(computed_mask, expected_mask)
def test_pruning_rollback(self):
r"""Test that if something fails when the we try to compute the mask,
then the model isn't left in some intermediate half-pruned state.
The try/except statement in `apply` should handle rolling back
to the previous state before pruning began.
"""
modules = [nn.Linear(5, 7), nn.Conv3d(2, 2, 2)]
names = ["weight", "bias"]
for m in modules:
for name in names:
with self.subTest(m=m, name=name):
with mock.patch(
"torch.nn.utils.prune.L1Unstructured.compute_mask"
) as compute_mask:
compute_mask.side_effect = Exception("HA!")
with self.assertRaises(Exception):
prune.l1_unstructured(m, name=name, amount=0.9)
self.assertTrue(name in dict(m.named_parameters()))
self.assertFalse(name + "_mask" in dict(m.named_buffers()))
self.assertFalse(name + "_orig" in dict(m.named_parameters()))
def test_pruning_serialization_model(self):
# create a model
model = torch.nn.Sequential(
torch.nn.Linear(10, 10),
torch.nn.ReLU(),
torch.nn.Linear(10, 1),
)
# check that everything looks normal before pruning
self.assertNotIn("0.weight_orig", model.state_dict())
self.assertNotIn("0.weight_mask", model.state_dict())
self.assertIn("0.weight", model.state_dict())
# prune one of its parameters
prune.l1_unstructured(module=model[0], name="weight", amount=0.9)
# check that the original weight and the new mask are present
self.assertIn("0.weight_orig", model.state_dict())
self.assertIn("0.weight_mask", model.state_dict())
self.assertNotIn("0.weight", model.state_dict())
self.assertTrue(hasattr(model[0], "weight"))
pruned_weight = model[0].weight
with TemporaryFileName() as fname:
torch.save(model, fname)
# weights_only=False as this is legacy code that saves the model
new_model = torch.load(fname, weights_only=False)
# check that the original weight and the new mask are present
self.assertIn("0.weight_orig", new_model.state_dict())
self.assertIn("0.weight_mask", new_model.state_dict())
self.assertNotIn("0.weight", new_model.state_dict())
self.assertTrue(hasattr(new_model[0], "weight"))
self.assertEqual(pruned_weight, new_model[0].weight)
def test_pruning_serialization_state_dict(self):
# create a model
model = torch.nn.Sequential(
torch.nn.Linear(10, 10),
torch.nn.ReLU(),
torch.nn.Linear(10, 1),
)
# check that everything looks normal before pruning
self.assertNotIn("0.weight_orig", model.state_dict())
self.assertNotIn("0.weight_mask", model.state_dict())
self.assertIn("0.weight", model.state_dict())
# prune one of its parameters
prune.l1_unstructured(module=model[0], name="weight", amount=0.9)
# check that the original weight and the new mask are present
self.assertIn("0.weight_orig", model.state_dict())
self.assertIn("0.weight_mask", model.state_dict())
self.assertNotIn("0.weight", model.state_dict())
self.assertTrue(hasattr(model[0], "weight"))
pruned_weight = model[0].weight
# make pruning permanent and restore parameter names as in base
# architecture
prune.remove(module=model[0], name="weight")
# check that the original weight and the new mask are no longer present
self.assertNotIn("0.weight_orig", model.state_dict())
self.assertNotIn("0.weight_mask", model.state_dict())
self.assertIn("0.weight", model.state_dict())
# save the state dict of model and reload it into new_model
new_model = torch.nn.Sequential(
torch.nn.Linear(10, 10),
torch.nn.ReLU(),
torch.nn.Linear(10, 1),
)
with TemporaryFileName() as fname:
torch.save(model.state_dict(), fname)
new_model.load_state_dict(torch.load(fname))
# check that the original weight and the new mask are not present in
# new_model either.
self.assertNotIn("0.weight_orig", new_model.state_dict())
self.assertNotIn("0.weight_mask", new_model.state_dict())
self.assertIn("0.weight", new_model.state_dict())
self.assertEqual(pruned_weight, new_model[0].weight)
def test_prune(self):
# create a new pruning method
p = prune.L1Unstructured(amount=2)
# create tensor to be pruned
t = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).to(dtype=torch.float32)
# create prior mask by hand
default_mask = torch.tensor([[1, 1, 1, 0], [1, 1, 0, 1]])
# since we are pruning the two lowest magnitude units, the outcome of
# the calculation should be this:
expected_mask = torch.tensor([[0, 0, 1, 0], [1, 1, 0, 1]])
pruned_tensor = p.prune(t, default_mask)
self.assertEqual(t * expected_mask, pruned_tensor)
def test_prune_importance_scores(self):
# create a new pruning method
p = prune.L1Unstructured(amount=2)
# create tensor to be pruned
t = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).to(dtype=torch.float32)
importance_scores = torch.tensor([[1, 2, 3, 4], [1.5, 1.6, 1.7, 1.8]]).to(
dtype=torch.float32
)
# create prior mask by hand
default_mask = torch.tensor([[1, 1, 1, 0], [1, 1, 0, 1]])
# since we are pruning the two lowest magnitude units, the outcome of
# the calculation should be this:
expected_mask = torch.tensor([[0, 1, 1, 0], [0, 1, 0, 1]])
pruned_tensor = p.prune(t, default_mask, importance_scores=importance_scores)
self.assertEqual(t * expected_mask, pruned_tensor)
def test_prune_importance_scores_mimic_default(self):
# create a new pruning method
p = prune.L1Unstructured(amount=2)
# create tensor to be pruned
t = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).to(dtype=torch.float32)
# create prior mask by hand
default_mask = torch.tensor([[1, 1, 1, 0], [1, 1, 0, 1]])
# since we are pruning the two lowest magnitude units, the outcome of
# the calculation should be this:
expected_mask = torch.tensor([[0, 0, 1, 0], [1, 1, 0, 1]])
pruned_tensor_without_importance_scores = p.prune(t, default_mask)
pruned_tensor_with_importance_scores = p.prune(
t, default_mask, importance_scores=t
)
self.assertEqual(
pruned_tensor_without_importance_scores,
pruned_tensor_with_importance_scores,
)
self.assertEqual(t * expected_mask, pruned_tensor_without_importance_scores)
def test_rnn_pruning(self):
l = torch.nn.LSTM(32, 32)
# This Module has 4 parameters called:
# 'weight_ih_l0', 'weight_hh_l0', 'bias_ih_l0', 'bias_hh_l0'
# Pruning one of them causes one of the weights to become a tensor
prune.l1_unstructured(l, "weight_ih_l0", 0.5)
assert sum(isinstance(p, torch.nn.Parameter) for p in l._flat_weights) == 3
# Removing the pruning reparametrization restores the Parameter
prune.remove(l, "weight_ih_l0")
assert sum(isinstance(p, torch.nn.Parameter) for p in l._flat_weights) == 4
# Make sure that, upon removal of the reparametrization, the
# `._parameters` and `.named_parameters` contain the right params.
# Specifically, the original weight ('weight_ih_l0') should be placed
# back in the parameters, while the reparametrization component
# ('weight_ih_l0_orig') should be removed.
assert "weight_ih_l0" in l._parameters
assert l._parameters["weight_ih_l0"] is not None
assert "weight_ih_l0_orig" not in l._parameters
assert "weight_ih_l0" in dict(l.named_parameters())
assert dict(l.named_parameters())["weight_ih_l0"] is not None
assert "weight_ih_l0_orig" not in dict(l.named_parameters())
instantiate_parametrized_tests(TestPruningNN)
if __name__ == "__main__":
run_tests()
|