1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
|
# Owner(s): ["module: onnx"]
from __future__ import annotations
import contextlib
import copy
import dataclasses
import os
import sys
import unittest
from typing import Tuple
import onnxruntime
from parameterized import parameterized
import torch
import torch._dynamo.backends.registry
from torch import nn
from torch.onnx import (
_OrtBackend as OrtBackend,
_OrtBackendOptions as OrtBackendOptions,
ExportOptions,
)
from torch.testing._internal import common_utils
from torch.testing._internal.common_utils import skipIfNNModuleInlined
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import onnx_test_common
def make_aot_ort(dynamic: bool = False):
ort_backend = OrtBackend(
options=OrtBackendOptions(
export_options=ExportOptions(
dynamic_shapes=dynamic,
)
)
)
return ort_backend, ort_backend
class TestDynamoWithONNXRuntime(onnx_test_common._TestONNXRuntime):
def setUp(self):
super().setUp()
torch._dynamo.reset()
OrtBackend.clear_cached_instances()
def tearDown(self):
super().tearDown()
torch._dynamo.reset()
OrtBackend.clear_cached_instances()
def test_get_ort_device_type(self):
from onnxruntime.capi import _pybind_state as ORTC
self.assertEqual(
torch.onnx._internal.onnxruntime._get_ort_device_type("cuda"),
ORTC.OrtDevice.cuda(),
)
self.assertEqual(
torch.onnx._internal.onnxruntime._get_ort_device_type("cpu"),
ORTC.OrtDevice.cpu(),
)
self.assertEqual(
torch.onnx._internal.onnxruntime._get_ort_device_type("maia"),
ORTC.OrtDevice.npu(),
)
def test_torch_compile_backend_registration(self):
self.assertIn("onnxrt", torch._dynamo.backends.registry.list_backends())
backend = torch._dynamo.backends.registry.lookup_backend("onnxrt")
self.assertEqual(backend.__module__, "torch.onnx._internal.onnxruntime")
def _test_torch_compile_backend_caching_assert_reused(
self, options: OrtBackendOptions
):
self.assertFalse(OrtBackend.get_cached_instances()) # assert setUp/tearDown
new_backend = OrtBackend.get_cached_instance_for_options(options)
reused_backend = OrtBackend.get_cached_instance_for_options(options)
self.assertEqual(len(OrtBackend.get_cached_instances()), 1)
self.assertIs(reused_backend, new_backend)
if options is None or options.ort_session_options is None:
# OrtBackendOptions.ort_session_options is a pybind11 object that
# cannot be pickled via dataclasses.asdict
self.assertEqual(
new_backend,
OrtBackend.get_cached_instance_for_options(
dataclasses.asdict(options) if options else None
),
)
@parameterized.expand(
[
(None,),
(OrtBackendOptions(),),
(OrtBackendOptions(use_aot_autograd=True),),
(OrtBackendOptions(use_aot_autograd=False),),
(OrtBackendOptions(preallocate_output=True),),
(OrtBackendOptions(preallocate_output=False),),
(OrtBackendOptions(infer_execution_providers=True),),
(OrtBackendOptions(infer_execution_providers=False),),
(OrtBackendOptions(preferred_execution_providers=["A", "B", "C"]),),
(
OrtBackendOptions(
preferred_execution_providers=["A", "B", ("C", {"option": "value"})]
),
),
(OrtBackendOptions(default_execution_providers=["Something"]),),
(
OrtBackendOptions(
export_options=ExportOptions(
dynamic_shapes=True,
)
),
),
]
)
def test_torch_compile_backend_caching_assert_reused(
self, options: OrtBackendOptions
):
self._test_torch_compile_backend_caching_assert_reused(options)
@parameterized.expand(
[
(OrtBackendOptions(ort_session_options=onnxruntime.SessionOptions()),),
]
)
def test_torch_compile_backend_caching_assert_not_reused(
self, options: OrtBackendOptions
):
with self.assertRaises(AssertionError):
self._test_torch_compile_backend_caching_assert_reused(options)
def _test_model_numerically(
self,
model,
dynamo_backend,
example_args_collection,
fullgraph: bool = False,
test_backward: bool = False,
atol: float = 1e-5,
rtol: float = 1e-6,
):
"""Run original and compiled model and compare the results.
Args:
model: The model to test.
dynamo_backend: The dynamo backend to use. Here we use string `onnxrt` or
the first returned value of `make_aot_ort(dynamic=True)`.
example_args_collection: A tuple of example arguments to test. E.g.,
(
(torch.randn(2), torch.randn(2)),
(torch.randn(4), torch.randn(4)),
)
if you want to test
model(torch.randn(2), torch.randn(2)) and
model(torch.randn(4), torch.randn(4))
.
"""
compiled_model = torch.compile(
model if not isinstance(model, torch.nn.Module) else copy.deepcopy(model),
backend=dynamo_backend,
dynamic=True,
fullgraph=fullgraph,
)
for example_args in example_args_collection:
baseline_result = model(*example_args)
result = compiled_model(*example_args)
if isinstance(baseline_result, torch.Tensor):
torch.testing.assert_close(
baseline_result, result, atol=atol, rtol=rtol
)
if test_backward:
baseline_result.sum().backward()
result.sum().backward()
for baseline_param, param in zip(
model.parameters(), compiled_model.parameters()
):
torch.testing.assert_close(
baseline_param.grad, param.grad, atol=atol, rtol=rtol
)
else:
assert (
test_backward is False
), "Calculating backward with multiple outputs is not supported yet."
for baseline_elem, result_elem in zip(baseline_result, result):
torch.testing.assert_close(
baseline_elem, result_elem, atol=atol, rtol=rtol
)
def _assert_counting_information(
self,
ort_backend: OrtBackend,
# Number of session runs.
# If there is no graph break, this should be the same as
# total number of forward calls.
expected_execution_count: int,
# Number of GraphModule's cached.
# With one graph break, a model will be mapped
# to two GraphModule's.
number_of_cached_graph_modules: int,
# Number of ONNX models cached for each GraphModule,
# number_of_exported_onnx_models[i] contains # of ONNX models exported from
# the i-th element (type: torch.fx.GraphModule) in
# OrtBackend._all_ort_execution_info.execution_info_per_graph_module.values().
number_of_exported_onnx_models_for_all_graph_modules: Tuple[int, ...],
):
self.assertEqual(expected_execution_count, ort_backend.execution_count)
self.assertEqual(
len(ort_backend._all_ort_execution_info.execution_info_per_graph_module),
number_of_cached_graph_modules,
)
self.assertEqual(
len(ort_backend._all_ort_execution_info.execution_info_per_graph_module),
len(number_of_exported_onnx_models_for_all_graph_modules),
)
for (
onnx_info,
expected_number_of_onnx_models,
) in zip(
ort_backend._all_ort_execution_info.execution_info_per_graph_module.values(),
number_of_exported_onnx_models_for_all_graph_modules,
):
self.assertEqual(len(onnx_info), expected_number_of_onnx_models)
def _assert_dynamic_input_and_output_shapes_in_all_onnx_models(self, backend):
for (
onnx_session_infos
) in backend._all_ort_execution_info.execution_info_per_graph_module.values():
for onnx_session_info in onnx_session_infos:
inputs_have_dynamic_shapes = False
for input in onnx_session_info.input_value_infos:
if hasattr(input.type, "tensor_type") and hasattr(
input.type.tensor_type, "shape"
):
for dim in input.type.tensor_type.shape.dim:
inputs_have_dynamic_shapes = (
inputs_have_dynamic_shapes or hasattr(dim, "dim_param")
)
output_have_dynamic_shapes = False
for output in onnx_session_info.output_value_infos:
if hasattr(output.type, "tensor_type") and hasattr(
output.type.tensor_type, "shape"
):
for dim in output.type.tensor_type.shape.dim:
output_have_dynamic_shapes = (
output_have_dynamic_shapes or hasattr(dim, "dim_param")
)
self.assertTrue(inputs_have_dynamic_shapes)
self.assertTrue(output_have_dynamic_shapes)
@parameterized.expand(
[
(True,),
(False,),
]
)
def test_elementwise_function_single_output(self, test_local_backend: bool):
example_args_collection = tuple(
(torch.randn(batch, dtype=torch.float32),) for batch in (2, 4, 6, 8, 10)
)
def elementwise_model(x: torch.Tensor):
y = x.relu()
z = y.sigmoid()
return z
if test_local_backend:
local_aot_ort, local_ort = make_aot_ort(dynamic=True)
else:
# This will use the global ONNXRuntime backend registered
# in Dynamo to compile the tested model.
local_aot_ort, local_ort = "onnxrt", None
self._test_model_numerically(
elementwise_model,
local_aot_ort,
example_args_collection,
)
# We can only check local backend's counting information
# since global backend's counting information comes from
# all compiled models.
if test_local_backend:
assert local_ort is not None
self._assert_counting_information(
local_ort,
# OrtBackend._ort_acclerated_call should have been called 5 times because
# we have 5 different batch sizes to test.
expected_execution_count=len(example_args_collection),
# Since this local_ort only compiled one function,
# there should be only one GraphModule in its cached.
number_of_cached_graph_modules=1,
# Since dynamic shape is enabled, we should only have one ONNX model
# to support different batch sizes.
number_of_exported_onnx_models_for_all_graph_modules=(1,),
)
@parameterized.expand(
[
(True,),
(False,),
]
)
def test_elementwise_function_multiple_output(self, test_local_backend: bool):
example_args_collection = tuple(
(torch.randn(batch, dtype=torch.float32),) for batch in (2, 4, 8)
)
def elementwise_model_with_multiple_outputs(w: torch.Tensor):
x = w + w
y = x.relu()
z = y * y
return x, y, z
if test_local_backend:
local_aot_ort, local_ort = make_aot_ort(dynamic=True)
else:
local_aot_ort, local_ort = "onnxrt", None
self._test_model_numerically(
elementwise_model_with_multiple_outputs,
local_aot_ort,
example_args_collection,
)
if test_local_backend:
assert local_ort is not None
self._assert_counting_information(
local_ort,
expected_execution_count=len(example_args_collection),
number_of_cached_graph_modules=1,
number_of_exported_onnx_models_for_all_graph_modules=(1,),
)
@parameterized.expand(
[
(True,),
(False,),
]
)
def test_mlp_with_local_backend(self, test_local_backend: bool):
example_args_collection = tuple(
(torch.randn(batch, 2, dtype=torch.float32),) for batch in (1, 2, 4, 6, 8)
)
class MLP(nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = nn.Linear(2, 4, bias=True)
self.fc2 = nn.Linear(4, 2, bias=True)
def forward(self, tensor_x: torch.Tensor):
tensor_x = self.fc1(tensor_x)
tensor_x = torch.sigmoid(tensor_x)
tensor_x = self.fc2(tensor_x)
tensor_x = torch.sigmoid(tensor_x)
return tensor_x
if test_local_backend:
local_aot_ort, local_ort = make_aot_ort(dynamic=True)
else:
local_aot_ort, local_ort = "onnxrt", None
self._test_model_numerically(
MLP(),
local_aot_ort,
example_args_collection,
)
if test_local_backend:
assert local_ort is not None
self._assert_counting_information(
local_ort,
# OrtBackend._ort_acclerated_call should have been called 5 times because
# we have 5 different batch sizes to test.
expected_execution_count=len(example_args_collection),
# Since this local_ort only compiled one function, there should be only two
# GraphModule's in its cached. One for batch sizes 2, 4, 6, 8 and the other
# for batch size 1.
number_of_cached_graph_modules=2,
# Since dynamic shape is enabled, we should only have one ONNX model
# to support different batch sizes.
number_of_exported_onnx_models_for_all_graph_modules=(1, 1),
)
@parameterized.expand(
[
(True, True),
(True, False),
]
)
@skipIfNNModuleInlined("https://github.com/pytorch/pytorch/issues/129456")
def test_llama_attention_with_local_backend(
self, test_local_backend: bool, test_backward: bool
):
from transformers import LlamaConfig # noqa: F811
from transformers.models.llama.modeling_llama import ( # noqa: F811
LlamaAttention,
)
hidden_size = 16
config = LlamaConfig(
num_hidden_layers=1,
vocab_size=1024,
hidden_size=hidden_size,
intermediate_size=16,
max_position_embeddings=256,
num_attention_heads=2,
hidden_dropout_prob=0.0,
attention_dropout_prob=0.0,
)
class LlamaAttentionWrapper(torch.nn.Module):
def __init__(self, config):
super().__init__()
try:
# New version of LlamaAttention has layer_idx argument.
self.attention = LlamaAttention(config, layer_idx=0)
except TypeError:
# Fall back to old version of LlamaAttention.
self.attention = LlamaAttention(config)
def forward(self, hidden_states, attention_mask, position_ids):
attn_output, _, _ = self.attention(
hidden_states, attention_mask, position_ids
)
return attn_output
def generate_example_inputs(batch: int, seq: int, hidden_size: int):
# shape: batch x seq x hidden_size
hidden_state = torch.randn(batch, seq, hidden_size)
# [0.0000e+00, ..., 0.0000e+00, -3.4028e+38, ...]
# shape: batch x 1 x seq x seq
attention_mask = torch.zeros(batch, 1, seq, seq, dtype=torch.float)
position_ids = torch.arange(0, seq, dtype=torch.int64)
position_ids = position_ids.unsqueeze(0).view(-1, seq)
return hidden_state, attention_mask, position_ids
# Reason for using multiple example argument groups:
# Export model to ONNX with one example argument group
# and test it with other example argument groups.
example_args_collection = (
generate_example_inputs(2, 8, hidden_size),
generate_example_inputs(4, 7, hidden_size),
generate_example_inputs(9, 15, hidden_size),
)
if test_local_backend:
local_aot_ort, local_ort = make_aot_ort(dynamic=True)
else:
local_aot_ort, local_ort = "onnxrt", None
model = LlamaAttentionWrapper(config).eval()
self._test_model_numerically(
model,
local_aot_ort,
example_args_collection,
fullgraph=True,
test_backward=test_backward,
)
if test_local_backend:
assert local_ort is not None
number_of_captured_graphs = 2 if test_backward else 1
execution_count = len(example_args_collection) * number_of_captured_graphs
self._assert_counting_information(
local_ort,
# Number of InferenceSession runs.
expected_execution_count=execution_count,
# Number of GraphModule's seen by ORT.
number_of_cached_graph_modules=number_of_captured_graphs,
# Number of InferenceSession's created per GraphModule.
number_of_exported_onnx_models_for_all_graph_modules=(1,)
* number_of_captured_graphs,
)
self._assert_dynamic_input_and_output_shapes_in_all_onnx_models(local_ort)
@parameterized.expand(
[
(True, False),
(True, True),
]
)
@skipIfNNModuleInlined("https://github.com/pytorch/pytorch/issues/129456")
def test_llama_decoder_with_local_backend(
self, test_local_backend: bool, test_backward: bool
):
from transformers import LlamaConfig # noqa: F811
from transformers.models.llama.modeling_llama import ( # noqa: F811
LlamaDecoderLayer,
)
hidden_size = 16
config = LlamaConfig(
num_hidden_layers=1,
vocab_size=1024,
hidden_size=hidden_size,
intermediate_size=16,
max_position_embeddings=256,
num_attention_heads=2,
hidden_dropout_prob=0.0,
attention_dropout_prob=0.0,
)
class LlamaDecoderWrapper(torch.nn.Module):
def __init__(self, config):
super().__init__()
try:
# New version of LlamaDecoderLayer has layer_idx argument.
self.decoder = LlamaDecoderLayer(config, layer_idx=0)
except TypeError:
# Fall back to old version of LlamaDecoderLayer.
self.decoder = LlamaDecoderLayer(config)
def forward(self, hidden_states, attention_mask, position_ids):
(decoder_output,) = self.decoder(
hidden_states, attention_mask, position_ids
)
return decoder_output
def generate_example_inputs(batch: int, seq: int, hidden_size: int):
# shape: batch x seq x hidden_size
hidden_state = torch.randn(batch, seq, hidden_size)
# [0.0000e+00, ..., 0.0000e+00, -3.4028e+38, ...]
# shape: batch x 1 x seq x seq
attention_mask = torch.zeros(batch, 1, seq, seq, dtype=torch.float)
position_ids = torch.arange(0, seq, dtype=torch.int64)
position_ids = position_ids.unsqueeze(0).view(-1, seq)
return hidden_state, attention_mask, position_ids
# Reason for using multiple example argument groups:
# Export model to ONNX with one example argument group
# and test it with other example argument groups.
example_args_collection = (
generate_example_inputs(2, 8, hidden_size),
generate_example_inputs(4, 7, hidden_size),
generate_example_inputs(9, 15, hidden_size),
)
if test_local_backend:
local_aot_ort, local_ort = make_aot_ort(dynamic=True)
else:
local_aot_ort, local_ort = "onnxrt", None
model = LlamaDecoderWrapper(config).eval()
self._test_model_numerically(
model,
local_aot_ort,
example_args_collection,
fullgraph=True,
test_backward=test_backward,
)
if test_local_backend:
assert local_ort is not None
number_of_captured_graphs = 2 if test_backward else 1
execution_count = len(example_args_collection) * number_of_captured_graphs
self._assert_counting_information(
local_ort,
expected_execution_count=execution_count,
number_of_cached_graph_modules=number_of_captured_graphs,
number_of_exported_onnx_models_for_all_graph_modules=(1,)
* number_of_captured_graphs,
)
self._assert_dynamic_input_and_output_shapes_in_all_onnx_models(local_ort)
@parameterized.expand(
[
(True, False),
(True, True),
]
)
@skipIfNNModuleInlined("https://github.com/pytorch/pytorch/issues/129456")
def test_llama_with_local_backend(
self, test_local_backend: bool, test_backward: bool
):
from transformers import LlamaConfig # noqa: F811
from transformers.models.llama.modeling_llama import LlamaModel # noqa: F811
config = LlamaConfig(
num_hidden_layers=1,
vocab_size=1024,
hidden_size=16,
intermediate_size=16,
max_position_embeddings=256,
num_attention_heads=2,
hidden_dropout_prob=0.0,
attention_dropout_prob=0.0,
)
config._attn_implementation = "eager"
class LlamaModelWrapper(torch.nn.Module):
def __init__(self, config):
super().__init__()
self.llama = LlamaModel(config)
def forward(self, input_ids, attention_mask, position_ids):
decoder_output = self.llama(
input_ids, attention_mask, position_ids, return_dict=False
)
return decoder_output[0]
def generate_example_inputs(batch: int, seq: int):
# shape: batch x seq x hidden_size
input_ids = torch.randint(0, 7, size=(batch, seq), dtype=torch.int64)
# Usually, its shape is a tensor with shape batch x seq x seq.
# However, to bypass some control flow in the model, we use None.
attention_mask = None
position_ids = torch.arange(0, seq, dtype=torch.int64)
position_ids = position_ids.unsqueeze(0).view(-1, seq)
return input_ids, attention_mask, position_ids
# Reason for using multiple example argument groups:
# Export model to ONNX with one example argument group
# and test it with other example argument groups.
example_args_collection = (
generate_example_inputs(2, 8),
generate_example_inputs(4, 7),
generate_example_inputs(9, 15),
)
if test_local_backend:
local_aot_ort, local_ort = make_aot_ort(dynamic=True)
else:
local_aot_ort, local_ort = "onnxrt", None
model = LlamaModelWrapper(config).eval()
self._test_model_numerically(
model,
local_aot_ort,
example_args_collection,
fullgraph=True,
test_backward=test_backward,
atol=1e-4,
rtol=1e-4,
)
if test_local_backend:
assert local_ort is not None
number_of_captured_graphs = 2 if test_backward else 1
execution_count = len(example_args_collection) * number_of_captured_graphs
self._assert_counting_information(
local_ort,
expected_execution_count=execution_count,
number_of_cached_graph_modules=number_of_captured_graphs,
number_of_exported_onnx_models_for_all_graph_modules=(1,)
* number_of_captured_graphs,
)
self._assert_dynamic_input_and_output_shapes_in_all_onnx_models(local_ort)
@parameterized.expand(
[
(True,),
(False,),
]
)
def test_dump_model(self, test_local_backend: bool):
@contextlib.contextmanager
def onnxrt_dump_path(path):
key = "ONNXRT_DUMP_PATH"
before = os.environ.get(key, None)
os.environ[key] = path
yield
if before is None:
del os.environ[key]
else:
os.environ[key] = before
example_args_collection = tuple(
(torch.randn(batch, 2, dtype=torch.float32),) for batch in (1, 2, 4, 6, 8)
)
class MLP(nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = nn.Linear(2, 4, bias=True)
self.fc2 = nn.Linear(4, 2, bias=True)
def forward(self, tensor_x: torch.Tensor):
tensor_x = self.fc1(tensor_x)
tensor_x = torch.sigmoid(tensor_x)
tensor_x = self.fc2(tensor_x)
tensor_x = torch.sigmoid(tensor_x)
return tensor_x
if test_local_backend:
local_aot_ort, local_ort = make_aot_ort(dynamic=True)
else:
local_aot_ort, local_ort = "onnxrt", None
prefix = f"test_dump_model_{'local' if test_local_backend else 'onnxrt'}_"
expected = f"{prefix}0.onnx"
expected_graph = f"{prefix}0.txt"
if os.path.exists(expected):
os.remove(expected)
if os.path.exists(expected_graph):
os.remove(expected_graph)
not_expected = f"{prefix}1.onnx"
self.assertFalse(os.path.exists(not_expected))
model = MLP()
compiled_model = torch.compile(
model if not isinstance(model, torch.nn.Module) else copy.deepcopy(model),
backend=local_aot_ort,
dynamic=True,
)
self.assertFalse(os.path.exists(expected))
self.assertFalse(os.path.exists(not_expected))
with onnxrt_dump_path(prefix):
example_args = example_args_collection[0]
result = compiled_model(*example_args)
self.assertTrue(os.path.exists(expected))
self.assertTrue(os.path.exists(expected_graph))
self.assertFalse(os.path.exists(not_expected))
result = compiled_model(*example_args)
self.assertTrue(os.path.exists(expected))
self.assertFalse(os.path.exists(not_expected))
@unittest.skipIf(not torch.cuda.is_available(), "No CUDA to run mix devicei nputs")
def test_mix_device_inputs(self):
data = torch.randn(4, 8, device="cuda")
ref_data = torch.randn(8, 4, device="cpu")
def reshape_wrapper(data, ref_cpu_data):
# Dummy line to make sure ref_cpu_data
# is included in the captured graph.
ref_cpu_data += 1
shape = ref_cpu_data.shape
# A call with GPU and CPU inputs.
return torch.reshape(data, shape)
compiled_model = torch.compile(
reshape_wrapper,
backend="onnxrt",
dynamic=True,
)
result = compiled_model(data, ref_data)
self.assertTrue(torch.allclose(result, data.view(ref_data.shape)))
def test_no_input(self):
def reshape_wrapper():
# A model without input.
ones = torch.ones(4, 8)
zeros = torch.zeros(4, 8)
return ones + zeros
recorded_models = []
def record_onnx_model_transform(onnx_model):
# Record the ONNX model seen by the transform.
recorded_models.append(onnx_model)
compiled_model = torch.compile(
reshape_wrapper,
backend="onnxrt",
dynamic=True,
options=torch.onnx._OrtBackendOptions(
pre_ort_model_transforms=[
record_onnx_model_transform,
]
),
)
result = compiled_model()
self.assertEqual(len(recorded_models), 1)
# NOTE: Constant folded by optimizer
self.assertTrue(
"Constant" in [node.op_type for node in recorded_models[0].graph.node]
)
self.assertEqual(result, torch.ones(4, 8))
def test_custom_onnx_transform(self):
# This test consists of 2 parts:
# 1. If a registered ONNX transform is called and recorded a model.
# 2. If a registered ONNX transform is called and changed the model
# Part 1: Record the ONNX model seen by the transform.
# This list contains the models recorded by record_onnx_model_transform.
recorded_models = []
def record_onnx_model_transform(onnx_model):
# Record the ONNX model seen by the transform.
recorded_models.append(onnx_model)
def example_model(x: torch.Tensor):
y = torch.sigmoid(x)
z = x + y
return z
compiled_model = torch.compile(
example_model,
backend="onnxrt",
dynamic=True,
options=torch.onnx._OrtBackendOptions(
pre_ort_model_transforms=[record_onnx_model_transform]
),
)
x = torch.randn(2)
assert len(recorded_models) == 0
y = compiled_model(x)
assert len(recorded_models) == 1
# Part 2: Change the ONNX model seen by the transform so that
# ORT receives a different model.
# NOTE: the function is optimized away by optimizer
def replace_relu_with_sigmoid(onnx_model):
for node in onnx_model.graph.node:
if node.op_type == "Relu":
node.op_type = "Sigmoid"
def another_example_model(x: torch.Tensor):
y = torch.relu(x)
z = x + y
return z
another_compiled = torch.compile(
another_example_model,
backend="onnxrt",
dynamic=True,
options=torch.onnx._OrtBackendOptions(
pre_ort_model_transforms=[
replace_relu_with_sigmoid,
record_onnx_model_transform,
]
),
)
another_y = another_compiled(x)
# We have 2 models recorded `record_onnx_model_transform`
# by the 2 torch.compile calls above.
assert len(recorded_models) == 2
# Since we have changed "Relu" to "Sigmoid" in replace_sigmoid_with_relu,
# the result should be the same to previous y.
torch.testing.assert_close(y, another_y)
# another_example_model still uses "Relu", so the result should be different
# than y.
self.assertFalse(torch.allclose(y, another_example_model(x)))
if __name__ == "__main__":
common_utils.run_tests()
|