1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
"""Error reproduction utilities for op consistency tests."""
from __future__ import annotations
import difflib
import pathlib
import platform
import sys
import time
import traceback
import numpy as np
import onnx
import onnxruntime as ort
import onnxscript
import torch
_MISMATCH_MARKDOWN_TEMPLATE = """\
### Summary
The output of ONNX Runtime does not match that of PyTorch when executing test
`{test_name}`, `sample {sample_num}` in ONNX Script `TorchLib`.
To recreate this report, use
```bash
CREATE_REPRODUCTION_REPORT=1 python -m pytest onnxscript/tests/function_libs/torch_lib/ops_test.py -k {short_test_name}
```
### ONNX Model
```
{onnx_model_text}
```
### Inputs
Shapes: `{input_shapes}`
<details><summary>Details</summary>
<p>
```python
kwargs = {kwargs}
inputs = {inputs}
```
</p>
</details>
### Expected output
Shape: `{expected_shape}`
<details><summary>Details</summary>
<p>
```python
expected = {expected}
```
</p>
</details>
### Actual output
Shape: `{actual_shape}`
<details><summary>Details</summary>
<p>
```python
actual = {actual}
```
</p>
</details>
### Difference
<details><summary>Details</summary>
<p>
```diff
{diff}
```
</p>
</details>
### Full error stack
```
{error_stack}
```
### Environment
```
{sys_info}
```
"""
def create_mismatch_report(
test_name: str,
sample_num: int,
onnx_model: onnx.ModelProto,
inputs,
kwargs,
actual,
expected,
error: Exception,
) -> None:
torch.set_printoptions(threshold=sys.maxsize)
error_text = str(error)
error_stack = error_text + "\n" + "".join(traceback.format_tb(error.__traceback__))
short_test_name = test_name.split(".")[-1]
diff = difflib.unified_diff(
str(actual).splitlines(),
str(expected).splitlines(),
fromfile="actual",
tofile="expected",
lineterm="",
)
onnx_model_text = onnx.printer.to_text(onnx_model)
input_shapes = repr(
[
f"Tensor<{inp.shape}, dtype={inp.dtype}>"
if isinstance(inp, torch.Tensor)
else inp
for inp in inputs
]
)
sys_info = f"""\
OS: {platform.platform()}
Python version: {sys.version}
onnx=={onnx.__version__}
onnxruntime=={ort.__version__}
onnxscript=={onnxscript.__version__}
numpy=={np.__version__}
torch=={torch.__version__}"""
markdown = _MISMATCH_MARKDOWN_TEMPLATE.format(
test_name=test_name,
short_test_name=short_test_name,
sample_num=sample_num,
input_shapes=input_shapes,
inputs=inputs,
kwargs=kwargs,
expected=expected,
expected_shape=expected.shape if isinstance(expected, torch.Tensor) else None,
actual=actual,
actual_shape=actual.shape if isinstance(actual, torch.Tensor) else None,
diff="\n".join(diff),
error_stack=error_stack,
sys_info=sys_info,
onnx_model_text=onnx_model_text,
)
markdown_file_name = f'mismatch-{short_test_name.replace("/", "-").replace(":", "-")}-{str(time.time()).replace(".", "_")}.md'
markdown_file_path = save_error_report(markdown_file_name, markdown)
print(f"Created reproduction report at {markdown_file_path}")
def save_error_report(file_name: str, text: str):
reports_dir = pathlib.Path("error_reports")
reports_dir.mkdir(parents=True, exist_ok=True)
file_path = reports_dir / file_name
with open(file_path, "w", encoding="utf-8") as f:
f.write(text)
return file_path
|