1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
|
# Owner(s): ["module: onnx"]
"""Simple API tests for the ONNX exporter."""
from __future__ import annotations
import os
import numpy as np
from onnxscript import BOOL, FLOAT, ir, opset18 as op
import torch
import torch.onnx._flags
from torch.onnx._internal.exporter import _testing as onnx_testing
from torch.testing._internal import common_utils
class SampleModel(torch.nn.Module):
def forward(self, x):
y = x + 1
z = y.relu()
return (y, z)
class SampleModelTwoInputs(torch.nn.Module):
def forward(self, x, b):
y = x + b
z = y.relu()
return (y, z)
class SampleModelForDynamicShapes(torch.nn.Module):
def forward(self, x, b):
return x.relu(), b.sigmoid()
class NestedModelForDynamicShapes(torch.nn.Module):
def forward(
self,
x: torch.Tensor,
ys: list[torch.Tensor],
zs: dict[str, torch.Tensor],
c: torch.Tensor,
):
y = ys[0] + ys[1] + zs["a"] + zs["b"]
w = 5
if x.shape[0] < 3 and c.shape[0] != 4:
return x + w, x + y, c
else:
return x - w, x - y, c
class TestExportAPIDynamo(common_utils.TestCase):
"""Tests for the ONNX exporter API when dynamo=True."""
def assert_export(self, *args, **kwargs):
onnx_program = torch.onnx.export(*args, **kwargs, dynamo=True)
assert onnx_program is not None
onnx_testing.assert_onnx_program(onnx_program)
def test_args_normalization_with_no_kwargs(self):
self.assert_export(
SampleModelTwoInputs(),
(torch.randn(1, 1, 2), torch.randn(1, 1, 2)),
)
def test_dynamic_axes_enable_dynamic_shapes_with_fully_specified_axes(self):
self.assert_export(
SampleModelForDynamicShapes(),
(torch.randn(2, 2, 3), {"b": torch.randn(2, 2, 3)}),
dynamic_axes={
"x": {0: "customx_dim_0", 1: "customx_dim_1", 2: "customx_dim_2"},
"b": {0: "customb_dim_0", 1: "customb_dim_1", 2: "customb_dim_2"},
},
)
def test_dynamic_axes_enable_dynamic_shapes_with_default_axe_names(self):
self.assert_export(
SampleModelForDynamicShapes(),
(torch.randn(2, 2, 3), {"b": torch.randn(2, 2, 3)}),
dynamic_axes={
"x": [0, 1, 2],
"b": [0, 1, 2],
},
)
def test_dynamic_axes_supports_partial_dynamic_shapes(self):
self.assert_export(
SampleModelForDynamicShapes(),
(torch.randn(2, 2, 3), {"b": torch.randn(2, 2, 3)}),
input_names=["x", "b"],
dynamic_axes={
"b": [0, 1, 2],
},
)
def test_dynamic_axes_supports_output_names(self):
self.assert_export(
SampleModelForDynamicShapes(),
(torch.randn(2, 2, 3), {"b": torch.randn(2, 2, 3)}),
input_names=["x", "b"],
dynamic_axes={
"b": [0, 1, 2],
},
)
onnx_program = torch.onnx.export(
SampleModelForDynamicShapes(),
(
torch.randn(2, 2, 3),
torch.randn(2, 2, 3),
),
input_names=["x", "b"],
output_names=["x_out", "b_out"],
dynamic_axes={"b": [0, 1, 2], "b_out": [0, 1, 2]},
dynamo=True,
)
assert onnx_program is not None
onnx_testing.assert_onnx_program(onnx_program)
def test_saved_f_exists_after_export(self):
with common_utils.TemporaryFileName(suffix=".onnx") as path:
_ = torch.onnx.export(
SampleModel(), (torch.randn(1, 1, 2),), path, dynamo=True
)
self.assertTrue(os.path.exists(path))
def test_export_supports_script_module(self):
class ScriptModule(torch.nn.Module):
def forward(self, x):
return x
self.assert_export(torch.jit.script(ScriptModule()), (torch.randn(1, 1, 2),))
def test_dynamic_shapes_with_fully_specified_axes(self):
exported_program = torch.export.export(
SampleModelForDynamicShapes(),
(
torch.randn(2, 2, 3),
torch.randn(2, 2, 3),
),
dynamic_shapes={
"x": {
0: torch.export.Dim("customx_dim_0"),
1: torch.export.Dim("customx_dim_1"),
2: torch.export.Dim("customx_dim_2"),
},
"b": {
0: torch.export.Dim("customb_dim_0"),
1: torch.export.Dim("customb_dim_1"),
2: torch.export.Dim("customb_dim_2"),
},
},
)
self.assert_export(exported_program)
def test_dynamic_shapes_supports_input_names(self):
self.assert_export(
SampleModelForDynamicShapes(),
(
torch.randn(2, 2, 3),
torch.randn(2, 2, 3),
),
dynamic_shapes={
"custom_x": {
0: torch.export.Dim("customx_dim_0"),
1: torch.export.Dim("customx_dim_1"),
2: torch.export.Dim("customx_dim_2"),
},
"custom_b": {
0: torch.export.Dim("customb_dim_0"),
1: torch.export.Dim("customb_dim_1"),
2: torch.export.Dim("customb_dim_2"),
},
},
input_names=["custom_x", "custom_b"],
fallback=False,
)
def test_partial_dynamic_shapes(self):
self.assert_export(
SampleModelForDynamicShapes(),
(
torch.randn(2, 2, 3),
torch.randn(2, 2, 3),
),
dynamic_shapes={
"x": None,
"b": {
0: torch.export.Dim("customb_dim_0"),
1: torch.export.Dim("customb_dim_1"),
2: torch.export.Dim("customb_dim_2"),
},
},
)
def test_auto_convert_all_axes_to_dynamic_shapes_with_dynamo_export(self):
torch.onnx._flags.USE_EXPERIMENTAL_LOGIC = True
class Nested(torch.nn.Module):
def forward(self, x):
(a0, a1), (b0, b1), (c0, c1, c2) = x
return a0 + a1 + b0 + b1 + c0 + c1 + c2
inputs = (
(1, 2),
(
torch.randn(4, 4),
torch.randn(4, 4),
),
(
torch.randn(4, 4),
torch.randn(4, 4),
torch.randn(4, 4),
),
)
onnx_program = torch.onnx.dynamo_export(
Nested(),
inputs,
export_options=torch.onnx.ExportOptions(dynamic_shapes=True),
)
assert onnx_program is not None
onnx_testing.assert_onnx_program(onnx_program)
def test_dynamic_shapes_supports_nested_input_model_with_input_names_assigned(self):
# kwargs can still be renamed as long as it's in order
input_names = ["input_x", "input_y", "input_z", "d", "e", "f"]
dynamic_axes = {
"input_x": {0: "dim"},
"input_y": {0: "dim"},
"input_z": {0: "dim"},
"d": {0: "dim"},
"e": {0: "dim"},
}
model = NestedModelForDynamicShapes()
input = (
torch.ones(5),
[torch.zeros(5), torch.ones(5)],
{"a": torch.zeros(5), "b": torch.ones(5)},
torch.ones(4),
)
self.assert_export(
model, input, dynamic_axes=dynamic_axes, input_names=input_names
)
# Check whether inputs are dynamically shaped
onnx_program = torch.onnx.export(
model,
input,
dynamic_axes=dynamic_axes,
input_names=input_names,
dynamo=True,
)
self.assertTrue(
all(
[
input.type.tensor_type.shape.dim[0].dim_param
for input in onnx_program.model_proto.graph.input
][:-1]
)
)
def test_refine_dynamic_shapes_with_onnx_export(self):
# NOTE: From test/export/test_export.py
# refine lower, upper bound
class TestRefineDynamicShapeModel(torch.nn.Module):
def forward(self, x, y):
if x.shape[0] >= 6 and y.shape[0] <= 16:
return x * 2.0, y + 1
inps = (torch.randn(16), torch.randn(12))
dynamic_shapes = {
"x": (torch.export.Dim("dx"),),
"y": (torch.export.Dim("dy"),),
}
self.assert_export(
TestRefineDynamicShapeModel(), inps, dynamic_shapes=dynamic_shapes
)
def test_zero_output_aten_node(self):
class Model(torch.nn.Module):
def forward(self, x):
torch.ops.aten._assert_async.msg(torch.tensor(True), "assertion failed")
return x + x
input = torch.randn(2)
self.assert_export(Model(), (input))
class TestCustomTranslationTable(common_utils.TestCase):
def test_custom_translation_table_overrides_ops(self):
from onnxscript import opset18 as op
class Model(torch.nn.Module):
def forward(self, x, y):
return x + y
def custom_add(self, other):
# Replace add with sub
return op.Sub(self, other)
custom_translation_table = {torch.ops.aten.add.Tensor: custom_add}
onnx_program = torch.onnx.export(
Model(),
(torch.randn(2, 2), torch.randn(2, 2)),
custom_translation_table=custom_translation_table,
dynamo=True,
)
all_nodes = [n.op_type for n in onnx_program.model.graph]
self.assertIn("Sub", all_nodes)
self.assertNotIn("Add", all_nodes)
def test_custom_translation_table_supports_overloading_ops(self):
class Model(torch.nn.Module):
def forward(self, x, y):
return torch.ops.aten.logical_and.default(x, y)
def custom_add_bool(self: BOOL, other: BOOL) -> BOOL:
# Replace add with sub
return op.Sub(self, other)
def custom_add(self: FLOAT, other: FLOAT) -> FLOAT:
# Replace add with mul
return op.Mul(self, other)
custom_translation_table = {
torch.ops.aten.logical_and.default: [custom_add, custom_add_bool],
}
onnx_program = torch.onnx.export(
Model(),
(torch.tensor(1, dtype=torch.bool), torch.tensor(1, dtype=torch.bool)),
custom_translation_table=custom_translation_table,
dynamo=True,
)
all_nodes = [n.op_type for n in onnx_program.model.graph]
# The dispatcher should pick the correct overload based on the input types
self.assertIn("Sub", all_nodes)
self.assertNotIn("Add", all_nodes)
self.assertNotIn("Mul", all_nodes)
def test_custom_translation_table_supports_custom_op_as_target(self):
# Define the custom op and use it in the model
@torch.library.custom_op("custom::add", mutates_args=())
def custom_add(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
return a + b
@custom_add.register_fake
def _(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
return torch.empty_like(a) + torch.empty_like(b)
class Model(torch.nn.Module):
def forward(self, x, y):
return custom_add(x, y)
def onnx_add(self: FLOAT, other: FLOAT) -> FLOAT:
# Replace add with Sub
return op.Sub(self, other)
custom_translation_table = {
torch.ops.custom.add.default: onnx_add,
}
onnx_program = torch.onnx.export(
Model(),
(torch.tensor(1, dtype=torch.bool), torch.tensor(1, dtype=torch.bool)),
custom_translation_table=custom_translation_table,
dynamo=True,
)
all_nodes = [n.op_type for n in onnx_program.model.graph]
self.assertIn("Sub", all_nodes)
self.assertNotIn("Add", all_nodes)
class TestFakeTensorExport(common_utils.TestCase):
"""Test exporting in fake mode."""
def test_onnx_program_raises_when_model_defined_in_fake_mode(self):
with torch.onnx.enable_fake_mode():
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.weight = torch.nn.Parameter(torch.tensor(42.0))
def forward(self, x):
return self.weight + x
onnx_program = torch.onnx.export(Model(), (torch.tensor(1.0),), dynamo=True)
assert onnx_program is not None
# Convert to model proto and back to trigger to_bytes method which serializes the tensor
with self.assertRaises(Exception):
# The tensors need to be replaced with real tensors
_ = onnx_program.model_proto
# Convert to model proto and back to trigger to_bytes method which serializes the tensor
with self.assertRaises(Exception):
# It doesn't matter if it is called inside or outside of the enable_fake_mode() context
_ = onnx_program.model_proto
# If we replace with concrete tensors, the serialization will succeed.
# This needs to happen outside of the fake context
onnx_program.apply_weights({"weight": torch.tensor(42.0)})
onnx_model = ir.serde.deserialize_model(onnx_program.model_proto)
np.testing.assert_allclose(
onnx_model.graph.initializers["weight"].const_value.numpy(), 42.0
)
def test_onnx_program_save_raises_when_model_initialized_in_fake_mode(self):
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.weight = torch.nn.Parameter(torch.tensor(42.0))
def forward(self, x):
return self.weight + x
with torch.onnx.enable_fake_mode():
onnx_program = torch.onnx.export(Model(), (torch.tensor(1.0),), dynamo=True)
assert onnx_program is not None
# Convert to model proto and back to trigger to_bytes method which serializes the tensor
with self.assertRaises(Exception):
# The tensors need to be replaced with real tensors
_ = onnx_program.model_proto
with self.assertRaises(Exception):
# It doesn't matter if it is called inside or outside of the enable_fake_mode() context
_ = onnx_program.model_proto
# If we replace with concrete tensors, the serialization will succeed
# This needs to happen outside of the fake context
onnx_program.apply_weights({"weight": torch.tensor(42.0)})
onnx_model = ir.serde.deserialize_model(onnx_program.model_proto)
np.testing.assert_allclose(
onnx_model.graph.initializers["weight"].const_value.numpy(), 42.0
)
def test_onnx_program_save_succeeds_when_export_and_save_in_fake_mode(self):
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.weight = torch.nn.Parameter(torch.tensor(42.0))
def forward(self, x):
return self.weight + x
real_model = Model()
with torch.onnx.enable_fake_mode():
onnx_program = torch.onnx.export(
real_model, (torch.tensor(1.0),), dynamo=True
)
assert onnx_program is not None
# Convert to model proto and back to trigger to_bytes method which serializes the tensor
# Note that even though we are calling .model_proto (equivalently .save()) in fake mode,
# the concrete tensors are maintained.
# This is due to the usage of torch._subclasses.fake_tensor.unset_fake_temporarily() in
# TorchTensor.tobytes()
onnx_model = ir.serde.deserialize_model(onnx_program.model_proto)
np.testing.assert_allclose(
onnx_model.graph.initializers["weight"].const_value.numpy(), 42.0
)
# This works inside or outside the fake mode
onnx_model = ir.serde.deserialize_model(onnx_program.model_proto)
np.testing.assert_allclose(
onnx_model.graph.initializers["weight"].const_value.numpy(), 42.0
)
if __name__ == "__main__":
common_utils.run_tests()
|