1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
# Owner(s): ["module: onnx"]
"""Unit tests for the _building module."""
from __future__ import annotations
import numpy as np
import onnxscript
from onnxscript import ir
import torch
from torch.onnx._internal.exporter import _building, _tensors
from torch.testing._internal import common_utils
class TestOpRecorder(common_utils.TestCase):
def setUp(self):
self.opset_version = 17
self.opset = onnxscript.values.Opset("", self.opset_version)
self.recorder = _building.OpRecorder(opset=self.opset, constant_farm={})
self.model = ir.Model(
graph=ir.Graph(
[],
[],
nodes=[],
opset_imports={
"": self.opset_version,
},
name="main_graph",
),
ir_version=9,
producer_name="pytorch",
producer_version=torch.__version__,
)
def test_skippable_castlike_is_ommited(self):
input_x = _tensors.SymbolicTensor(opset=self.opset, name="input_x")
input_x.dtype = ir.DataType.FLOAT
input_y = _tensors.SymbolicTensor(opset=self.opset, name="input_y")
input_y.dtype = ir.DataType.FLOAT
with onnxscript.evaluator.default_as(tracer := self.recorder):
cast = self.opset.CastLike(input_y, input_x)
_ = self.opset.Add(input_x, cast)
self.assertEqual(len(tracer.nodes), 1)
self.assertEqual(tracer.nodes[0].op_type, "Add")
def test_castlike_is_replaced_with_cast_when_it_is_traced(self):
input_x = _tensors.SymbolicTensor(opset=self.opset, name="input_x")
input_x.dtype = ir.DataType.FLOAT
input_y = _tensors.SymbolicTensor(opset=self.opset, name="input_y")
input_y.dtype = ir.DataType.INT64
with onnxscript.evaluator.default_as(tracer := self.recorder):
cast = self.opset.CastLike(input_y, input_x)
_ = self.opset.Add(input_x, cast)
self.assertEqual(len(tracer.nodes), 2)
self.assertEqual(tracer.nodes[0].op_type, "Cast")
self.assertEqual(tracer.nodes[1].op_type, "Add")
def test_python_constant_added_as_constant_nodes(self):
input_x = _tensors.SymbolicTensor(
opset=self.opset, name="input_x", shape=ir.Shape([2, 3, 4])
)
new_shape = [3, 2, 4]
with onnxscript.evaluator.default_as(tracer := self.recorder):
_ = self.opset.Reshape(input_x, new_shape)
self.assertEqual(len(tracer.nodes), 2)
self.assertEqual(tracer.nodes[0].op_type, "Constant")
self.assertEqual(
tracer.nodes[0].attributes["value"].value.numpy(), np.array(new_shape)
)
self.assertEqual(tracer.nodes[1].op_type, "Reshape")
def test_process_python_sequence_with_allowed_sequence_type(self):
input_x = _tensors.SymbolicTensor(
opset=self.opset, name="input_x", shape=ir.Shape([2, 3])
)
input_y = _tensors.SymbolicTensor(
opset=self.opset, name="input_y", shape=ir.Shape([2, 4])
)
input_z = _tensors.SymbolicTensor(
opset=self.opset, name="input_z", shape=ir.Shape([1, 3])
)
with onnxscript.evaluator.default_as(tracer := self.recorder):
_ = self.opset.SequenceAt([input_x, input_y, input_z], 1)
self.assertEqual(len(tracer.nodes), 3)
self.assertEqual(tracer.nodes[1].op_type, "SequenceConstruct")
def test_process_python_sequence_with_variadic_input(self):
input_x = _tensors.SymbolicTensor(
opset=self.opset, name="input_x", shape=ir.Shape([2, 3])
)
input_y = _tensors.SymbolicTensor(
opset=self.opset, name="input_y", shape=ir.Shape([2, 4])
)
input_z = _tensors.SymbolicTensor(
opset=self.opset, name="input_z", shape=ir.Shape([1, 3])
)
with onnxscript.evaluator.default_as(tracer := self.recorder):
_ = self.opset.Max(input_x, input_y, 0, input_z)
self.assertEqual(len(tracer.nodes), 2)
self.assertEqual(tracer.nodes[0].op_type, "Constant")
def test_process_python_sequence_creates_extra_concat(self):
# Elements in the list must be 0D tensors
input_x = _tensors.SymbolicTensor(
opset=self.opset, name="input_x", shape=ir.Shape([])
)
input_y = _tensors.SymbolicTensor(
opset=self.opset, name="input_y", shape=ir.Shape([])
)
input_z = _tensors.SymbolicTensor(
opset=self.opset, name="input_z", shape=ir.Shape([4, 3])
)
with onnxscript.evaluator.default_as(tracer := self.recorder):
_ = self.opset.Add([input_x, input_y], input_z)
self.assertEqual(len(tracer.nodes), 6)
self.assertEqual(tracer.nodes[-2].op_type, "Concat")
self.assertEqual(tracer.nodes[-2].attributes["axis"].value, 0)
def test_process_python_sequence_mix_symbolic_constant_creates_extra_concat(self):
# Elements in the list must be 0D tensors
input_x = _tensors.SymbolicTensor(
opset=self.opset, name="input_x", shape=ir.Shape([])
)
input_z = _tensors.SymbolicTensor(
opset=self.opset, name="input_z", shape=ir.Shape([4, 3])
)
with onnxscript.evaluator.default_as(tracer := self.recorder):
_ = self.opset.Add([input_x, 42], input_z)
self.assertEqual(len(tracer.nodes), 5)
self.assertEqual(tracer.nodes[-2].op_type, "Concat")
self.assertEqual(tracer.nodes[-2].attributes["axis"].value, 0)
def test_process_python_sequence_mix_constant_symbolic_creates_extra_concat(self):
# Elements in the list must be 0D tensors
input_x = _tensors.SymbolicTensor(
opset=self.opset, name="input_x", shape=ir.Shape([])
)
input_z = _tensors.SymbolicTensor(
opset=self.opset, name="input_z", shape=ir.Shape([4, 3])
)
with onnxscript.evaluator.default_as(tracer := self.recorder):
# Constant first
_ = self.opset.Add([42, input_x], input_z)
self.assertEqual(len(tracer.nodes), 5)
self.assertEqual(tracer.nodes[-2].op_type, "Concat")
self.assertEqual(tracer.nodes[-2].attributes["axis"].value, 0)
if __name__ == "__main__":
common_utils.run_tests()
|