File: test_small_models_e2e.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (151 lines) | stat: -rw-r--r-- 5,170 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Owner(s): ["module: onnx"]
"""Unit tests for the onnx dynamo exporter."""

from __future__ import annotations

import torchvision

import torch
from torch.onnx._internal.exporter import _testing as onnx_testing
from torch.testing._internal import common_utils


@common_utils.instantiate_parametrized_tests
class DynamoExporterTest(common_utils.TestCase):
    def test_insert_contiguous_between_transpose_and_view(self):
        class Model(torch.nn.Module):
            def forward(self, query, key, value):
                res = torch.nn.functional.scaled_dot_product_attention(
                    query, key, value
                )
                rest = res.transpose(0, 1)
                return rest.view(8, 32, 128 * 64)

        model = Model()

        query = torch.rand(32, 8, 128, 64, dtype=torch.float16)
        key = torch.rand(32, 8, 128, 64, dtype=torch.float16)
        value = torch.rand(32, 8, 128, 64, dtype=torch.float16)

        ep = torch.export.export(model, (query, key, value), strict=False)
        self.assertNotIn("call_method", str(ep.graph))

        onnx_program = torch.onnx.export(
            model, (query, key, value), dynamo=True, fallback=False
        )
        onnx_testing.assert_onnx_program(onnx_program, atol=1e-3, rtol=1)

    def test_constant_complex(self):
        class MulModule(torch.nn.Module):
            def forward(self, x):
                y = 2 + 3j
                return torch.ops.aten.mul(x, y)

        # Example usage with complex inputs
        x = torch.tensor(
            [[1.0 + 2.0j, 3.0 + 4.0j], [5.0 + 6.0j, 7.0 + 8.0j]], dtype=torch.complex64
        )

        onnx_program = torch.onnx.export(MulModule(), (x,), dynamo=True)
        onnx_testing.assert_onnx_program(onnx_program)

    def test_pow_does_not_trigger_type_promotion(self):
        class Model(torch.nn.Module):
            def forward(self, x):
                return x**2.0

        x = torch.tensor([1.0, 2.0, 3.0], dtype=torch.float16)

        onnx_program = torch.onnx.export(Model(), (x,), dynamo=True)
        onnx_testing.assert_onnx_program(onnx_program)
        self.assertNotIn("Cast", [node.op_type for node in onnx_program.model.graph])

    def test_onnx_export_control_flow(self):
        class CondModel(torch.nn.Module):
            def forward(self, x):
                def true_fn(x):
                    return x + 1.0

                def false_fn(x):
                    return x - 42.0

                y = torch.cond(x.sum() > 0, true_fn, false_fn, [x])
                return y

        onnx_program = torch.onnx.export(
            CondModel(),
            (torch.tensor([1, 2]),),
            dynamo=True,
            fallback=False,
        )
        onnx_model = onnx_program.model
        self.assertIn("If", [node.op_type for node in onnx_model.graph])
        onnx_testing.assert_onnx_program(onnx_program)
        # Test different branches
        onnx_testing.assert_onnx_program(onnx_program, args=(torch.tensor([-1, -2]),))

    def test_onnx_export_nested_control_flow_and_nested_weights(self):
        class Submodule(torch.nn.Module):
            def __init__(self):
                super().__init__()
                # Nested weight
                self.weight = torch.nn.Parameter(torch.tensor([100.0]))

            def forward(self, x):
                def true_fn(x):
                    return x * self.weight

                def false_fn(x):
                    return x / self.weight

                y = torch.cond(x.sum() <= 0, true_fn, false_fn, [x])
                return y

        class CondModel(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.submodule = Submodule()
                self.weight = torch.nn.Parameter(torch.tensor([42.0]))

            def forward(self, x):
                def true_fn(x):
                    return self.submodule(x - self.weight)

                def false_fn(x):
                    return x - self.weight

                y = torch.cond(x.sum() > 0, true_fn, false_fn, [x])
                return y

        onnx_program = torch.onnx.export(
            CondModel(),
            (torch.tensor([1, 2]),),
            dynamo=True,
            fallback=False,
        )
        onnx_testing.assert_onnx_program(onnx_program)
        onnx_testing.assert_onnx_program(onnx_program, args=(torch.tensor([0, 0]),))
        onnx_testing.assert_onnx_program(onnx_program, args=(torch.tensor([43, 43]),))

    def test_onnx_export_torchvision_ops(self):
        class VisionModel(torch.nn.Module):
            def __init__(self):
                super().__init__()

            def forward(self, *x):
                out = torchvision.ops.nms(x[0], x[1], x[2])
                return out

        args = (
            torch.tensor([[0, 0, 1, 1], [0.5, 0.5, 1, 1]], dtype=torch.float),
            torch.tensor([0.1, 0.2]),
            0,
        )
        onnx_program = torch.onnx.export(VisionModel(), args, dynamo=True)
        onnx_testing.assert_onnx_program(onnx_program)

    # TODO(justinchuby): Test multi-output HOPs


if __name__ == "__main__":
    common_utils.run_tests()