File: rnn_model_with_packed_sequence.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (45 lines) | stat: -rw-r--r-- 1,626 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from torch import nn
from torch.nn.utils import rnn as rnn_utils


class RnnModelWithPackedSequence(nn.Module):
    def __init__(self, model, batch_first):
        super().__init__()
        self.model = model
        self.batch_first = batch_first

    def forward(self, input, *args):
        args, seq_lengths = args[:-1], args[-1]
        input = rnn_utils.pack_padded_sequence(input, seq_lengths, self.batch_first)
        rets = self.model(input, *args)
        ret, rets = rets[0], rets[1:]
        ret, _ = rnn_utils.pad_packed_sequence(ret, self.batch_first)
        return tuple([ret] + list(rets))


class RnnModelWithPackedSequenceWithoutState(nn.Module):
    def __init__(self, model, batch_first):
        super().__init__()
        self.model = model
        self.batch_first = batch_first

    def forward(self, input, seq_lengths):
        input = rnn_utils.pack_padded_sequence(input, seq_lengths, self.batch_first)
        rets = self.model(input)
        ret, rets = rets[0], rets[1:]
        ret, _ = rnn_utils.pad_packed_sequence(ret, self.batch_first)
        return list([ret] + list(rets))


class RnnModelWithPackedSequenceWithState(nn.Module):
    def __init__(self, model, batch_first):
        super().__init__()
        self.model = model
        self.batch_first = batch_first

    def forward(self, input, hx, seq_lengths):
        input = rnn_utils.pack_padded_sequence(input, seq_lengths, self.batch_first)
        rets = self.model(input, hx)
        ret, rets = rets[0], rets[1:]
        ret, _ = rnn_utils.pad_packed_sequence(ret, self.batch_first)
        return list([ret] + list(rets))