1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
# Owner(s): ["module: onnx"]
from __future__ import annotations
import logging
import tempfile
import onnx
import onnx.inliner
import pytorch_test_common
import transformers # type: ignore[import]
import torch
from torch import nn
from torch._subclasses import fake_tensor
from torch.nn import functional as F
from torch.onnx import dynamo_export, ExportOptions
from torch.testing._internal import common_utils
@common_utils.instantiate_parametrized_tests
class TestFxToOnnx(pytorch_test_common.ExportTestCase):
def setUp(self):
super().setUp()
self.export_options = ExportOptions()
def tearDown(self):
super().tearDown()
def test_simple_function(self):
def func(x):
y = x + 1
z = y.relu()
return (y, z)
_ = dynamo_export(
func, torch.randn(1, 1, 2), export_options=self.export_options
)
def test_empty(self):
# Since `torch.empty` returns tensor with uninitialized data, we cannot
# test this under `test_fx_to_onnx_with_onnxruntime.py` with result comparison.
def func(x):
return torch.empty(x.size(), dtype=torch.int64)
tensor_x = torch.randn(1, 1, 2)
_ = dynamo_export(func, tensor_x, export_options=self.export_options)
def test_args_used_for_export_is_not_converted_to_fake_tensors(self):
def func(x, y):
return x + y
tensor_x = torch.randn(1, 1, 2)
tensor_y = torch.randn(1, 1, 2)
_ = dynamo_export(func, tensor_x, tensor_y, export_options=self.export_options)
self.assertNotIsInstance(tensor_x, fake_tensor.FakeTensor)
self.assertNotIsInstance(tensor_y, fake_tensor.FakeTensor)
def test_mnist_exported_with_no_warnings(self):
class MNISTModel(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1, bias=False)
self.conv2 = nn.Conv2d(32, 64, 3, 1, bias=False)
self.fc1 = nn.Linear(9216, 128, bias=False)
self.fc2 = nn.Linear(128, 10, bias=False)
def forward(self, tensor_x: torch.Tensor):
tensor_x = self.conv1(tensor_x)
tensor_x = F.sigmoid(tensor_x)
tensor_x = self.conv2(tensor_x)
tensor_x = F.sigmoid(tensor_x)
tensor_x = F.max_pool2d(tensor_x, 2)
tensor_x = torch.flatten(tensor_x, 1)
tensor_x = self.fc1(tensor_x)
tensor_x = F.sigmoid(tensor_x)
tensor_x = self.fc2(tensor_x)
output = F.log_softmax(tensor_x, dim=1)
return output
tensor_x = torch.rand((64, 1, 28, 28), dtype=torch.float32)
onnx_program = dynamo_export(MNISTModel(), tensor_x)
assert onnx_program is not None
def test_trace_only_op_with_evaluator(self):
model_input = torch.tensor([[1.0, 2.0, 3.0], [1.0, 1.0, 2.0]])
class ArgminArgmaxModel(torch.nn.Module):
def forward(self, input):
return (
torch.argmin(input),
torch.argmax(input),
torch.argmin(input, keepdim=True),
torch.argmax(input, keepdim=True),
torch.argmin(input, dim=0, keepdim=True),
torch.argmax(input, dim=1, keepdim=True),
)
_ = dynamo_export(
ArgminArgmaxModel(), model_input, export_options=self.export_options
)
def test_multiple_outputs_op_with_evaluator(self):
class TopKModel(torch.nn.Module):
def forward(self, x):
values, _ = torch.topk(x, 3)
return torch.sum(values)
x = torch.arange(1.0, 6.0, requires_grad=True)
_ = dynamo_export(TopKModel(), x, export_options=self.export_options)
def test_dynamo_export_retains_readable_parameter_and_buffer_names(self):
class SubModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv2 = nn.Conv2d(32, 64, 3, 1, bias=False)
self.fc1 = nn.Linear(9216, 128, bias=False)
self.buffer = torch.nn.Buffer(torch.randn(1, 128))
def forward(self, tensor_x: torch.Tensor):
tensor_x = self.conv2(tensor_x)
tensor_x = F.sigmoid(tensor_x)
tensor_x = F.max_pool2d(tensor_x, 2)
tensor_x = torch.flatten(tensor_x, 1)
tensor_x = self.fc1(tensor_x)
tensor_x = tensor_x + self.buffer
tensor_x = F.sigmoid(tensor_x)
return tensor_x
class MNISTModel(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1, bias=False)
self.submodule = SubModule()
self.fc2 = nn.Linear(128, 10, bias=False)
def forward(self, tensor_x: torch.Tensor):
tensor_x = self.conv1(tensor_x)
tensor_x = F.sigmoid(tensor_x)
tensor_x = self.submodule(tensor_x)
tensor_x = self.fc2(tensor_x)
output = F.log_softmax(tensor_x, dim=1)
return output
tensor_x = torch.rand((64, 1, 28, 28), dtype=torch.float32)
model = MNISTModel()
onnx_program = torch.onnx.dynamo_export(model, tensor_x)
model_proto = onnx_program.model_proto
# NOTE: initializers could be optimized away by onnx optimizer
onnx_initilizers = {init.name for init in model_proto.graph.initializer}
torch_weights = {*model.state_dict().keys()}
self.assertTrue(onnx_initilizers.issubset(torch_weights))
def test_fake_tensor_mode_simple(self):
class Model(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(2, 2)
def forward(self, x):
out = self.linear(x)
return out
with torch.onnx.enable_fake_mode() as fake_context:
x = torch.rand(5, 2, 2)
model = Model()
export_options = ExportOptions(fake_context=fake_context)
onnx_program = torch.onnx.dynamo_export(
model, x, export_options=export_options
)
assert (
onnx_program is not None
), "ONNXProgram must be created on successful export"
onnx_program.apply_weights(Model().state_dict())
assert (
onnx_program.model_proto is not None
), "A model protobuf must be created on a successful export"
onnx.checker.check_model(onnx_program.model_proto, full_check=True)
def test_exported_program_torch_distributions_normal_Normal(self):
class Model(torch.nn.Module):
def __init__(self) -> None:
self.normal = torch.distributions.normal.Normal(0, 1)
super().__init__()
def forward(self, x):
return self.normal.sample(x.shape)
x = torch.randn(2, 3)
with torch.no_grad():
exported_program = torch.export.export(Model(), args=(x,))
_ = torch.onnx.dynamo_export(
exported_program,
x,
)
def test_aten_div_no_opmath_type_promotion(self):
class Model(torch.nn.Module):
def forward(self, input):
return input / 2
model = Model()
input = torch.randn(3, 5, requires_grad=True, dtype=torch.float16)
model_proto = torch.onnx.dynamo_export(model, input).model_proto
model_proto = onnx.inliner.inline_local_functions(model_proto)
div_node = next(
node for node in model_proto.graph.node if node.op_type == "Div"
)
# The input of Div node should be the input of the model,
# with no Cast node in between.
self.assertEqual(div_node.input[0], model_proto.graph.input[0].name)
@common_utils.parametrize(
"float8_type",
[
common_utils.subtest(
torch.float8_e5m2,
name="torch_float8_e5m2",
),
common_utils.subtest(
torch.float8_e5m2fnuz,
name="torch_float8_e5m2fnuz",
),
common_utils.subtest(
torch.float8_e4m3fn,
name="torch_float8_e4m3fn",
),
common_utils.subtest(
torch.float8_e4m3fnuz,
name="torch_float8_e4m3fnuz",
),
],
)
def test_float8_support(self, float8_type):
class Float8Module(torch.nn.Module):
def forward(self, input: torch.Tensor):
input = input.to(float8_type)
return input + torch.tensor(1.0, dtype=float8_type)
# NOTE: shape inference error raised in optimizer due to unsupported dtype
with self.assertWarnsOnceRegex(
UserWarning, "ONNXScript optimizer failed. Skipping optimization."
):
_ = torch.onnx.dynamo_export(Float8Module(), torch.randn(1, 2, 3, 4))
def test_export_with_logging_logger(self):
logger = logging.getLogger(__name__)
class LoggingLoggerModule(torch.nn.Module):
def forward(self, x):
logger.log("abc")
return x + 1
input = torch.randn(2, 3)
model = LoggingLoggerModule()
_ = torch.onnx.dynamo_export(model, input)
def test_export_with_hf_logging_logger(self):
logger = transformers.utils.logging.get_logger(__name__)
class HFLoggingLoggerModule(torch.nn.Module):
def forward(self, x):
logger.warning_once("abc")
return x + 1
input = torch.randn(2, 3)
model = HFLoggingLoggerModule()
_ = torch.onnx.dynamo_export(model, input)
def test_checkpoint_cast(self):
model_id = "openai/whisper-large-v3"
feature_extractor = transformers.WhisperFeatureExtractor(feature_size=128)
batch = 4
with torch.onnx.enable_fake_mode() as ctx:
model = transformers.AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, low_cpu_mem_usage=False, use_safetensors=False
)
input = {
"input_features": torch.randn(
(
batch,
feature_extractor.feature_size,
feature_extractor.nb_max_frames,
)
),
"decoder_input_ids": torch.tensor([[1, 1]]) * 8001,
"return_dict": False,
}
export_options = torch.onnx.ExportOptions(fake_context=ctx)
onnx_program = torch.onnx.dynamo_export(
model, **input, export_options=export_options
)
with tempfile.NamedTemporaryFile(suffix=".onnx") as tmp_onnx_file:
onnx_program.save(
tmp_onnx_file.name,
keep_initializers_as_inputs=True,
include_initializers=False,
)
onnx.checker.check_model(tmp_onnx_file.name, full_check=True)
def test_export_with_print(self):
class PrintModule(torch.nn.Module):
def forward(self, x):
print("abc")
return x + 1
input = torch.randn(2, 3)
model = PrintModule()
_ = torch.onnx.dynamo_export(model, input)
if __name__ == "__main__":
common_utils.run_tests()
|