1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
# Owner(s): ["module: onnx"]
import contextlib
import io
import tempfile
import unittest
import numpy as np
import onnx
import parameterized
import pytorch_test_common
from packaging import version
import torch
from torch.onnx import _constants, _experimental, verification
from torch.testing._internal import common_utils
class TestVerification(pytorch_test_common.ExportTestCase):
def test_check_export_model_diff_returns_diff_when_constant_mismatch(self):
class UnexportableModel(torch.nn.Module):
def forward(self, x, y):
# tensor.data() will be exported as a constant,
# leading to wrong model output under different inputs.
return x + y.data
test_input_groups = [
((torch.randn(2, 3), torch.randn(2, 3)), {}),
((torch.randn(2, 3), torch.randn(2, 3)), {}),
]
results = verification.check_export_model_diff(
UnexportableModel(), test_input_groups
)
self.assertRegex(
results,
r"Graph diff:(.|\n)*"
r"First diverging operator:(.|\n)*"
r"prim::Constant(.|\n)*"
r"Former source location:(.|\n)*"
r"Latter source location:",
)
def test_check_export_model_diff_returns_diff_when_dynamic_controlflow_mismatch(
self,
):
class UnexportableModel(torch.nn.Module):
def forward(self, x, y):
for i in range(x.size(0)):
y = x[i] + y
return y
test_input_groups = [
((torch.randn(2, 3), torch.randn(2, 3)), {}),
((torch.randn(4, 3), torch.randn(2, 3)), {}),
]
export_options = _experimental.ExportOptions(
input_names=["x", "y"], dynamic_axes={"x": [0]}
)
results = verification.check_export_model_diff(
UnexportableModel(), test_input_groups, export_options
)
self.assertRegex(
results,
r"Graph diff:(.|\n)*"
r"First diverging operator:(.|\n)*"
r"prim::Constant(.|\n)*"
r"Latter source location:(.|\n)*",
)
def test_check_export_model_diff_returns_empty_when_correct_export(self):
class SupportedModel(torch.nn.Module):
def forward(self, x, y):
return x + y
test_input_groups = [
((torch.randn(2, 3), torch.randn(2, 3)), {}),
((torch.randn(2, 3), torch.randn(2, 3)), {}),
]
results = verification.check_export_model_diff(
SupportedModel(), test_input_groups
)
self.assertEqual(results, "")
def test_compare_ort_pytorch_outputs_no_raise_with_acceptable_error_percentage(
self,
):
ort_outs = [np.array([[1.0, 2.0], [3.0, 4.0]])]
pytorch_outs = [torch.tensor([[1.0, 2.0], [3.0, 1.0]])]
options = verification.VerificationOptions(
rtol=1e-5,
atol=1e-6,
check_shape=True,
check_dtype=False,
ignore_none=True,
acceptable_error_percentage=0.3,
)
verification._compare_onnx_pytorch_outputs(
ort_outs,
pytorch_outs,
options,
)
def test_compare_ort_pytorch_outputs_raise_without_acceptable_error_percentage(
self,
):
ort_outs = [np.array([[1.0, 2.0], [3.0, 4.0]])]
pytorch_outs = [torch.tensor([[1.0, 2.0], [3.0, 1.0]])]
options = verification.VerificationOptions(
rtol=1e-5,
atol=1e-6,
check_shape=True,
check_dtype=False,
ignore_none=True,
acceptable_error_percentage=None,
)
with self.assertRaises(AssertionError):
verification._compare_onnx_pytorch_outputs(
ort_outs,
pytorch_outs,
options,
)
@common_utils.instantiate_parametrized_tests
class TestVerificationOnWrongExport(pytorch_test_common.ExportTestCase):
opset_version: int
def setUp(self):
super().setUp()
def incorrect_add_symbolic_function(g, self, other, alpha):
return self
self.opset_version = _constants.ONNX_DEFAULT_OPSET
torch.onnx.register_custom_op_symbolic(
"aten::add",
incorrect_add_symbolic_function,
opset_version=self.opset_version,
)
def tearDown(self):
super().tearDown()
torch.onnx.unregister_custom_op_symbolic(
"aten::add", opset_version=self.opset_version
)
@common_utils.parametrize(
"onnx_backend",
[
common_utils.subtest(
verification.OnnxBackend.REFERENCE,
decorators=[
unittest.skipIf(
version.Version(onnx.__version__) < version.Version("1.13"),
reason="Reference Python runtime was introduced in 'onnx' 1.13.",
)
],
),
verification.OnnxBackend.ONNX_RUNTIME_CPU,
],
)
def test_verify_found_mismatch_when_export_is_wrong(
self, onnx_backend: verification.OnnxBackend
):
class Model(torch.nn.Module):
def forward(self, x):
return x + 1
with self.assertRaisesRegex(AssertionError, ".*Tensor-likes are not close!.*"):
verification.verify(
Model(),
(torch.randn(2, 3),),
opset_version=self.opset_version,
options=verification.VerificationOptions(backend=onnx_backend),
)
@parameterized.parameterized_class(
[
# TODO: enable this when ONNX submodule catches up to >= 1.13.
# {"onnx_backend": verification.OnnxBackend.ONNX},
{"onnx_backend": verification.OnnxBackend.ONNX_RUNTIME_CPU},
],
class_name_func=lambda cls,
idx,
input_dicts: f"{cls.__name__}_{input_dicts['onnx_backend'].name}",
)
class TestFindMismatch(pytorch_test_common.ExportTestCase):
onnx_backend: verification.OnnxBackend
opset_version: int
graph_info: verification.GraphInfo
def setUp(self):
super().setUp()
self.opset_version = _constants.ONNX_DEFAULT_OPSET
def incorrect_relu_symbolic_function(g, self):
return g.op("Add", self, g.op("Constant", value_t=torch.tensor(1.0)))
torch.onnx.register_custom_op_symbolic(
"aten::relu",
incorrect_relu_symbolic_function,
opset_version=self.opset_version,
)
class Model(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.layers = torch.nn.Sequential(
torch.nn.Linear(3, 4),
torch.nn.ReLU(),
torch.nn.Linear(4, 5),
torch.nn.ReLU(),
torch.nn.Linear(5, 6),
)
def forward(self, x):
return self.layers(x)
self.graph_info = verification.find_mismatch(
Model(),
(torch.randn(2, 3),),
opset_version=self.opset_version,
options=verification.VerificationOptions(backend=self.onnx_backend),
)
def tearDown(self):
super().tearDown()
torch.onnx.unregister_custom_op_symbolic(
"aten::relu", opset_version=self.opset_version
)
delattr(self, "opset_version")
delattr(self, "graph_info")
def test_pretty_print_tree_visualizes_mismatch(self):
f = io.StringIO()
with contextlib.redirect_stdout(f):
self.graph_info.pretty_print_tree()
self.assertExpected(f.getvalue())
def test_preserve_mismatch_source_location(self):
mismatch_leaves = self.graph_info.all_mismatch_leaf_graph_info()
self.assertTrue(len(mismatch_leaves) > 0)
for leaf_info in mismatch_leaves:
f = io.StringIO()
with contextlib.redirect_stdout(f):
leaf_info.pretty_print_mismatch(graph=True)
self.assertRegex(
f.getvalue(),
r"(.|\n)*" r"aten::relu.*/torch/nn/functional.py:[0-9]+(.|\n)*",
)
def test_find_all_mismatch_operators(self):
mismatch_leaves = self.graph_info.all_mismatch_leaf_graph_info()
self.assertEqual(len(mismatch_leaves), 2)
for leaf_info in mismatch_leaves:
self.assertEqual(leaf_info.essential_node_count(), 1)
self.assertEqual(leaf_info.essential_node_kinds(), {"aten::relu"})
def test_find_mismatch_prints_correct_info_when_no_mismatch(self):
self.maxDiff = None
class Model(torch.nn.Module):
def forward(self, x):
return x + 1
f = io.StringIO()
with contextlib.redirect_stdout(f):
verification.find_mismatch(
Model(),
(torch.randn(2, 3),),
opset_version=self.opset_version,
options=verification.VerificationOptions(backend=self.onnx_backend),
)
self.assertExpected(f.getvalue())
def test_export_repro_for_mismatch(self):
mismatch_leaves = self.graph_info.all_mismatch_leaf_graph_info()
self.assertTrue(len(mismatch_leaves) > 0)
leaf_info = mismatch_leaves[0]
with tempfile.TemporaryDirectory() as temp_dir:
repro_dir = leaf_info.export_repro(temp_dir)
with self.assertRaisesRegex(AssertionError, "Tensor-likes are not close!"):
options = verification.VerificationOptions(backend=self.onnx_backend)
verification.OnnxTestCaseRepro(repro_dir).validate(options)
if __name__ == "__main__":
common_utils.run_tests()
|