File: test_module.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (66 lines) | stat: -rw-r--r-- 1,481 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Owner(s): ["oncall: package/deploy"]

import torch
from torch.fx import wrap


wrap("a_non_torch_leaf")


class ModWithSubmod(torch.nn.Module):
    def __init__(self, script_mod):
        super().__init__()
        self.script_mod = script_mod

    def forward(self, x):
        return self.script_mod(x)


class ModWithTensor(torch.nn.Module):
    def __init__(self, tensor):
        super().__init__()
        self.tensor = tensor

    def forward(self, x):
        return self.tensor * x


class ModWithSubmodAndTensor(torch.nn.Module):
    def __init__(self, tensor, sub_mod):
        super().__init__()
        self.tensor = tensor
        self.sub_mod = sub_mod

    def forward(self, x):
        return self.sub_mod(x) + self.tensor


class ModWithTwoSubmodsAndTensor(torch.nn.Module):
    def __init__(self, tensor, sub_mod_0, sub_mod_1):
        super().__init__()
        self.tensor = tensor
        self.sub_mod_0 = sub_mod_0
        self.sub_mod_1 = sub_mod_1

    def forward(self, x):
        return self.sub_mod_0(x) + self.sub_mod_1(x) + self.tensor


class ModWithMultipleSubmods(torch.nn.Module):
    def __init__(self, mod1, mod2):
        super().__init__()
        self.mod1 = mod1
        self.mod2 = mod2

    def forward(self, x):
        return self.mod1(x) + self.mod2(x)


class SimpleTest(torch.nn.Module):
    def forward(self, x):
        x = a_non_torch_leaf(x, x)
        return torch.relu(x + 3.0)


def a_non_torch_leaf(a, b):
    return a + b