1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
# Owner(s): ["oncall: quantization"]
import unittest
import torch
from torch.testing._internal.common_device_type import (
dtypes,
dtypesIfCUDA,
instantiate_device_type_tests,
)
from torch.testing._internal.common_utils import (
DeterministicGuard,
IS_WINDOWS,
parametrize,
run_tests,
subtest,
TestCase,
)
FLOAT8_DTYPES = [
torch.float8_e5m2,
torch.float8_e5m2fnuz,
torch.float8_e4m3fn,
torch.float8_e4m3fnuz,
]
CUDA_FLOAT8_DTYPES = [
torch.float8_e5m2,
torch.float8_e4m3fn,
]
# The following information are not yet provided by torch.finfo.
MANTISSA_BITS = {
torch.float8_e5m2: 2,
torch.float8_e5m2fnuz: 2,
torch.float8_e4m3fn: 3,
torch.float8_e4m3fnuz: 3,
}
# As in np.finfo(dtype).minexp
MINEXP = {
torch.float8_e5m2: -14,
torch.float8_e5m2fnuz: -15,
torch.float8_e4m3fn: -6,
torch.float8_e4m3fnuz: -7,
}
SPECIAL_NUMBERS = {
torch.float8_e5m2: [
("01111100", float("inf"), "inf"),
("11111100", -1.0 * float("inf"), "neg_inf"),
("01111101", float("nan"), "nan"),
("11111101", float("nan"), "nan"),
("01111110", float("nan"), "nan"),
("11111110", float("nan"), "nan"),
("01111111", float("nan"), "nan"),
("11111111", float("nan"), "nan"),
("00000000", 0.0, "zero"),
("10000000", -0.0, "neg_zero"),
("01111011", 57344.0, "max_normal"),
("11111011", -57344.0, "neg_max_normal"),
("00000100", 2**-14, "min_normal"),
("10000100", -1 * (2**-14), "neg_min_normal"),
("00000011", 0.75 * (2**-14), "max_subnorm"),
("10000011", -0.75 * (2**-14), "neg_max_subnorm"),
("00000001", 2**-16, "min_subnorm"),
("10000001", -1 * (2**-16), "neg_min_subnorm"),
],
torch.float8_e5m2fnuz: [
("10000000", float("nan"), "nan"),
("00000000", 0.0, "zero"),
("00000000", -0.0, "neg_zero"),
("01111111", 57344.0, "max_normal"),
("11111111", -57344.0, "neg_max_normal"),
("00000100", 2**-15, "min_normal"),
("10000100", -1 * (2**-15), "neg_min_normal"),
("00000011", 0.75 * (2**-15), "max_subnorm"),
("10000011", -0.75 * (2**-15), "neg_max_subnorm"),
("00000001", 0.25 * (2**-15), "min_subnorm"),
("10000001", -0.25 * (2**-15), "neg_min_subnorm"),
],
torch.float8_e4m3fn: [
("01111111", float("nan"), "nan"),
("11111111", float("nan"), "nan"),
("00000000", 0.0, "zero"),
("10000000", -0.0, "neg_zero"),
("01111110", 448.0, "max_normal"),
("11111110", -448.0, "neg_max_normal"),
("00001000", 2**-6, "min_normal"),
("10001000", -1 * (2**-6), "neg_min_normal"),
("00000111", 0.875 * (2**-6), "max_subnorm"),
("10000111", -0.875 * (2**-6), "neg_max_subnorm"),
("00000001", 2**-9, "min_subnorm"),
("10000001", -1 * (2**-9), "neg_min_subnorm"),
],
torch.float8_e4m3fnuz: [
("10000000", float("nan"), "nan"),
("00000000", 0.0, "zero"),
("00000000", -0.0, "neg_zero"),
("01111111", 240.0, "max_normal"),
("11111111", -240.0, "neg_max_normal"),
("00001000", 2**-7, "min_normal"),
("10001000", -1 * (2**-7), "neg_min_normal"),
("00000111", 0.875 * (2**-7), "max_subnorm"),
("10000111", -0.875 * (2**-7), "neg_max_subnorm"),
("00000001", 0.125 * (2**-7), "min_subnorm"),
("10000001", -0.125 * (2**-7), "neg_min_subnorm"),
],
}
FLOAT8_DTYPES_WITH_INF = [torch.float8_e5m2]
def simulate_fp8_precision(input, variant):
"""Round input (as float32) to the given float8 datatype variant."""
# Constants
dtype = torch.float32
int_type = torch.int32
mbits = MANTISSA_BITS[variant]
minexp = MINEXP[variant] # ml_dtypes.finfo(variant).
input = input.to(dtype)
# Extract bitfield components
signs = torch.sign(input)
input_int = torch.abs(input).view(int_type)
exponent_bits = (input_int & 0x7F800000) >> 23
mantissa_bits = input_int & 0x007FFFFF
exponent_base = exponent_bits - 0x7F
# Add implicit leading 1 to mantissas, i.e. create 1.mmmmmmmm
f32_is_normal = exponent_bits != 0
mantissa_val_base = f32_is_normal * 0x00800000 + mantissa_bits
# Shift mantissa to match minimum exponent - denormals in the lower
# precision dtype remain normal in the higher precision dtype
denormal_bits = torch.maximum(
minexp - exponent_base, torch.tensor(0, dtype=int_type)
)
mantissa_val = mantissa_val_base >> denormal_bits
exponent = exponent_base + denormal_bits
# Round off mantissas
last_unrounded_bit = 1 << (23 - mbits)
rounding_mask = last_unrounded_bit - 1
mantissa_val_rounded = (mantissa_val + (rounding_mask >> 1)) & ~rounding_mask
# Round ties to nearest even
ties = (mantissa_val & rounding_mask) == (last_unrounded_bit >> 1)
is_odd = (mantissa_val_rounded & last_unrounded_bit) != 0
mantissa_val_rounded += (ties & is_odd) * last_unrounded_bit
# Re-compose mantissa and exponent
vals = (mantissa_val_rounded * 2.0 ** (-23 + exponent)).to(dtype)
# Replace overflows with inf/NaN as appropriate (no saturation)
have_inf = variant in FLOAT8_DTYPES_WITH_INF
vals[vals > torch.finfo(variant).max] = torch.inf if have_inf else torch.nan
return vals * signs
ROUND_TRIP_TEST_CASES = (
# A general 'soak test'.
subtest(
lambda dtype, device: torch.rand((100, 100), device=device)
* torch.finfo(dtype).max,
name="soak",
),
# A range below the smallest normal in the lower precision type, to ensure
# these are rounded correctly to their nearest subnormal in that type.
subtest(
lambda dtype, device: torch.rand(1000, device=device)
* 2
* torch.finfo(dtype).smallest_normal,
name="subnormals",
),
# A range of integers to exert rounding to nearest even.
subtest(
lambda dtype, device: torch.arange(
int(torch.finfo(dtype).max), dtype=torch.int, device=device
),
name="rte",
),
# Values around max.
subtest(
lambda dtype, device: torch.finfo(dtype).max
+ (torch.finfo(dtype).eps * torch.finfo(dtype).max)
* torch.arange(-3, 3, 0.25, device=device),
name="extremes",
),
)
class TestFloat8Dtype(TestCase):
"""
Sanity test for zeros comparison
"""
@dtypes(*FLOAT8_DTYPES)
@dtypesIfCUDA(*CUDA_FLOAT8_DTYPES)
def test_creation_with_zeros(self, dtype, device):
"""Sanity test, round-trip casting of zeros."""
x = torch.zeros(8, dtype=torch.float, device=device)
x8 = torch.zeros(8, dtype=dtype, device=device)
self.assertEqual(x, x8.float(), atol=0, rtol=0)
@dtypes(*FLOAT8_DTYPES)
@dtypesIfCUDA(*CUDA_FLOAT8_DTYPES)
@parametrize("get_input", ROUND_TRIP_TEST_CASES)
def test_cast_round_trip(self, dtype, get_input, device):
"""Numerical test of float8 conversion, by performing a round-trip cast
to the float8 dtype and back to float32, comparing against simulated
lower precision."""
x = get_input(dtype, device)
x = torch.cat((x, -x))
x8 = x.to(dtype)
x8_simulated = simulate_fp8_precision(x, dtype)
self.assertEqual(x8_simulated, x8.float())
@dtypes(*FLOAT8_DTYPES)
@dtypesIfCUDA(*CUDA_FLOAT8_DTYPES)
def test_special_numbers(self, dtype, device):
"""Test special numbers."""
def compare_binary_with_decimal(binary, decimal, number_name, dtype, device):
bits_int = int(binary, 2)
tensor_int = torch.tensor([bits_int], dtype=torch.uint8, device=device)
tensor_fp8 = tensor_int.view(dtype)
if number_name == "nan":
assert tensor_fp8.isnan()
else:
tensor_fp32 = tensor_fp8.float()
ref_tensor_fp32 = torch.tensor(
[decimal], dtype=torch.float, device=device
)
self.assertEqual(tensor_fp32, ref_tensor_fp32, atol=0, rtol=0)
for number in SPECIAL_NUMBERS[dtype]:
compare_binary_with_decimal(*number, dtype, device)
@dtypes(*FLOAT8_DTYPES)
@dtypesIfCUDA(*CUDA_FLOAT8_DTYPES)
def test_type_promotion_fails(self, dtype, device):
"""Test that float8 is not promoted to higher precision Float Type."""
for other_dtype in [
torch.float16,
torch.bfloat16,
torch.float32,
torch.float64,
]:
x = torch.randn(8, device=device).to(dtype)
y = torch.randn(8, device=device).to(other_dtype)
with self.assertRaisesRegex(
RuntimeError, "Promotion for Float8 Types is not supported"
):
x + y
@dtypes(*FLOAT8_DTYPES)
@dtypesIfCUDA(*CUDA_FLOAT8_DTYPES)
def test_empty(self, dtype, device):
with DeterministicGuard(torch.are_deterministic_algorithms_enabled()):
for use_deterministic in (True, False):
torch.use_deterministic_algorithms(use_deterministic)
x = torch.empty(4, 4, device=device, dtype=dtype)
instantiate_device_type_tests(TestFloat8Dtype, globals())
class TestFloat8DtypeCPUOnly(TestCase):
"""
Test of mul implementation
NOTE: this is CPU-only for now because adding it to CUDA requires adding yet
another C++ dtype macro, and there is no use case yet for unscaled float8
multiplication - doesn't seem worth it.
"""
@dtypes(*CUDA_FLOAT8_DTYPES)
def test_mul(self, dtype):
shape = (10, 10)
a = torch.randn(shape)
a8_simulated = simulate_fp8_precision(a, dtype)
a8 = a.to(dtype)
b = torch.randn(shape)
b8_simulated = simulate_fp8_precision(b, dtype)
b8 = b.to(dtype)
mul8 = a8 * b8
mul8_simulated = (a8_simulated * b8_simulated).to(dtype)
self.assertEqual(mul8, mul8_simulated)
@unittest.skipIf(IS_WINDOWS, "torch.compile not supported on Windows yet")
@dtypes(*CUDA_FLOAT8_DTYPES)
def test_pt2_traceable_aot_eager(self, dtype):
@torch.compile(backend="aot_eager", fullgraph=True)
def f(x):
x = x.to(dtype)
x = x.float()
return x
x = torch.randn(1).requires_grad_()
f(x).sum().backward()
instantiate_device_type_tests(TestFloat8DtypeCPUOnly, globals(), only_for="cpu")
if __name__ == "__main__":
run_tests()
|