File: test_deprecated_jit_quant.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (199 lines) | stat: -rw-r--r-- 7,519 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Owner(s): ["oncall: quantization"]

import torch
from torch.testing._internal.common_quantization import skipIfNoFBGEMM
from torch.testing._internal.jit_utils import JitTestCase


class TestDeprecatedJitQuantized(JitTestCase):
    @skipIfNoFBGEMM
    def test_rnn_cell_quantized(self):
        d_in, d_hid = 2, 2

        for cell in [
            torch.nn.LSTMCell(d_in, d_hid).float(),
            torch.nn.GRUCell(d_in, d_hid).float(),
            torch.nn.RNNCell(d_in, d_hid).float(),
        ]:
            if isinstance(cell, torch.nn.LSTMCell):
                num_chunks = 4
            elif isinstance(cell, torch.nn.GRUCell):
                num_chunks = 3
            elif isinstance(cell, torch.nn.RNNCell):
                num_chunks = 1

            # Replace parameter values s.t. the range of values is exactly
            # 255, thus we will have 0 quantization error in the quantized
            # GEMM call. This i s for testing purposes.
            #
            # Note that the current implementation does not support
            # accumulation values outside of the range representable by a
            # 16 bit integer, instead resulting in a saturated value. We
            # must take care that in our test we do not end up with a dot
            # product that overflows the int16 range, e.g.
            # (255*127+255*127) = 64770. So, we hardcode the test values
            # here and ensure a mix of signedness.
            vals = [
                [100, -155],
                [100, -155],
                [-155, 100],
                [-155, 100],
                [100, -155],
                [-155, 100],
                [-155, 100],
                [100, -155],
            ]
            vals = vals[: d_hid * num_chunks]
            cell.weight_ih = torch.nn.Parameter(
                torch.tensor(vals, dtype=torch.float), requires_grad=False
            )
            cell.weight_hh = torch.nn.Parameter(
                torch.tensor(vals, dtype=torch.float), requires_grad=False
            )

            with self.assertRaisesRegex(
                RuntimeError,
                "quantize_rnn_cell_modules function is no longer supported",
            ):
                cell = torch.jit.quantized.quantize_rnn_cell_modules(cell)

    @skipIfNoFBGEMM
    def test_rnn_quantized(self):
        d_in, d_hid = 2, 2

        for cell in [
            torch.nn.LSTM(d_in, d_hid).float(),
            torch.nn.GRU(d_in, d_hid).float(),
        ]:
            # Replace parameter values s.t. the range of values is exactly
            # 255, thus we will have 0 quantization error in the quantized
            # GEMM call. This i s for testing purposes.
            #
            # Note that the current implementation does not support
            # accumulation values outside of the range representable by a
            # 16 bit integer, instead resulting in a saturated value. We
            # must take care that in our test we do not end up with a dot
            # product that overflows the int16 range, e.g.
            # (255*127+255*127) = 64770. So, we hardcode the test values
            # here and ensure a mix of signedness.
            vals = [
                [100, -155],
                [100, -155],
                [-155, 100],
                [-155, 100],
                [100, -155],
                [-155, 100],
                [-155, 100],
                [100, -155],
            ]
            if isinstance(cell, torch.nn.LSTM):
                num_chunks = 4
            elif isinstance(cell, torch.nn.GRU):
                num_chunks = 3
            vals = vals[: d_hid * num_chunks]
            cell.weight_ih_l0 = torch.nn.Parameter(
                torch.tensor(vals, dtype=torch.float), requires_grad=False
            )
            cell.weight_hh_l0 = torch.nn.Parameter(
                torch.tensor(vals, dtype=torch.float), requires_grad=False
            )

            with self.assertRaisesRegex(
                RuntimeError, "quantize_rnn_modules function is no longer supported"
            ):
                cell_int8 = torch.jit.quantized.quantize_rnn_modules(
                    cell, dtype=torch.int8
                )

            with self.assertRaisesRegex(
                RuntimeError, "quantize_rnn_modules function is no longer supported"
            ):
                cell_fp16 = torch.jit.quantized.quantize_rnn_modules(
                    cell, dtype=torch.float16
                )

    if "fbgemm" in torch.backends.quantized.supported_engines:

        def test_quantization_modules(self):
            K1, N1 = 2, 2

            class FooBar(torch.nn.Module):
                def __init__(self) -> None:
                    super().__init__()
                    self.linear1 = torch.nn.Linear(K1, N1).float()

                def forward(self, x):
                    x = self.linear1(x)
                    return x

            fb = FooBar()
            fb.linear1.weight = torch.nn.Parameter(
                torch.tensor([[-150, 100], [100, -150]], dtype=torch.float),
                requires_grad=False,
            )
            fb.linear1.bias = torch.nn.Parameter(
                torch.zeros_like(fb.linear1.bias), requires_grad=False
            )

            x = (torch.rand(1, K1).float() - 0.5) / 10.0
            value = torch.tensor([[100, -150]], dtype=torch.float)

            y_ref = fb(value)

            with self.assertRaisesRegex(
                RuntimeError, "quantize_linear_modules function is no longer supported"
            ):
                fb_int8 = torch.jit.quantized.quantize_linear_modules(fb)

            with self.assertRaisesRegex(
                RuntimeError, "quantize_linear_modules function is no longer supported"
            ):
                fb_fp16 = torch.jit.quantized.quantize_linear_modules(fb, torch.float16)

    @skipIfNoFBGEMM
    def test_erase_class_tensor_shapes(self):
        class Linear(torch.nn.Module):
            def __init__(self, in_features, out_features):
                super().__init__()
                qweight = torch._empty_affine_quantized(
                    [out_features, in_features],
                    scale=1,
                    zero_point=0,
                    dtype=torch.qint8,
                )
                self._packed_weight = torch.ops.quantized.linear_prepack(qweight)

            @torch.jit.export
            def __getstate__(self):
                return (
                    torch.ops.quantized.linear_unpack(self._packed_weight)[0],
                    self.training,
                )

            def forward(self):
                return self._packed_weight

            @torch.jit.export
            def __setstate__(self, state):
                self._packed_weight = torch.ops.quantized.linear_prepack(state[0])
                self.training = state[1]

            @property
            def weight(self):
                return torch.ops.quantized.linear_unpack(self._packed_weight)[0]

            @weight.setter
            def weight(self, w):
                self._packed_weight = torch.ops.quantized.linear_prepack(w)

        with torch._jit_internal._disable_emit_hooks():
            x = torch.jit.script(Linear(10, 10))
            torch._C._jit_pass_erase_shape_information(x.graph)


if __name__ == "__main__":
    raise RuntimeError(
        "This test file is not meant to be run directly, use:\n\n"
        "\tpython test/test_quantization.py TESTNAME\n\n"
        "instead."
    )