1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
# Owner(s): ["oncall: quantization"]
import copy
import unittest
from typing import Any, Dict
import torch
from torch.ao.quantization.observer import (
HistogramObserver,
MinMaxObserver,
PlaceholderObserver,
)
from torch.ao.quantization.quantize_pt2e import convert_pt2e, prepare_pt2e
from torch.ao.quantization.quantizer import (
QuantizationAnnotation,
QuantizationSpec,
Quantizer,
SharedQuantizationSpec,
)
from torch.ao.quantization.quantizer.xnnpack_quantizer import (
get_symmetric_quantization_config,
)
from torch.ao.quantization.quantizer.xnnpack_quantizer_utils import (
OP_TO_ANNOTATOR,
QuantizationConfig,
)
from torch.export import export_for_training
from torch.testing._internal.common_quantization import QuantizationTestCase
from torch.testing._internal.common_utils import IS_WINDOWS
class TestHelperModules:
class Conv2dWithObsSharingOps(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = torch.nn.Conv2d(3, 3, 3)
self.hardtanh = torch.nn.Hardtanh()
self.adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d((1, 1))
self.linear = torch.nn.Linear(3, 3)
def forward(self, x):
x = self.conv(x)
x = self.adaptive_avg_pool2d(x)
x = self.hardtanh(x)
x = x.view(-1, 3)
x = self.linear(x)
return x
class Conv2dWithSharedDQ(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = torch.nn.Conv2d(3, 3, 3)
self.conv2 = torch.nn.Conv2d(3, 3, 1)
self.linear = torch.nn.Linear(3, 3)
def forward(self, x):
x = self.conv1(x)
z = x.view(-1, 3)
w = self.linear(z)
y = self.conv2(x)
add_output = x + y
extra_output = x * 2
return w, add_output, extra_output
class ModuleForDifferentQconfig(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = torch.nn.Conv2d(3, 3, 3)
self.conv2 = torch.nn.Conv2d(3, 3, 1)
self.adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d((1, 1))
def forward(self, x):
x = self.conv1(x)
w = self.adaptive_avg_pool2d(x)
y = self.conv2(x)
add_output = x + y
extra_output = x + 2
return w, add_output, extra_output
_DEQUANTIZE_OPS = [
torch.ops.quantized_decomposed.dequantize_per_tensor.default,
torch.ops.quantized_decomposed.dequantize_per_tensor.tensor,
torch.ops.quantized_decomposed.dequantize_per_channel.default,
]
@unittest.skipIf(IS_WINDOWS, "Windows not yet supported for torch.compile")
class TestDuplicateDQPass(QuantizationTestCase):
def _test_duplicate_dq(
self,
model,
example_inputs,
quantizer,
):
m_eager = model.eval()
# program capture
m = copy.deepcopy(m_eager)
m = export_for_training(
m,
example_inputs,
).module()
m = prepare_pt2e(m, quantizer)
# Calibrate
m(*example_inputs)
m = convert_pt2e(m)
pt2_quant_output = m(*example_inputs)
for n in m.graph.nodes:
annotation = n.meta.get("quantization_annotation", None)
if annotation is not None:
for arg in n.args:
if isinstance(arg, torch.fx.Node) and arg.target in _DEQUANTIZE_OPS:
self.assertEqual(len(arg.users.keys()), 1)
def test_no_need_for_duplicate_dq(self):
"""
Model under test
conv2d -> avgpool -> hardtanh -> linear
Check quantization tags on conv2d, avgpool and linear are correctly set
"""
class BackendAQuantizer(Quantizer):
def annotate(self, gm: torch.fx.GraphModule) -> torch.fx.GraphModule:
backend_string = "BackendA"
quantization_config = get_symmetric_quantization_config(
is_per_channel=True
)
OP_TO_ANNOTATOR["linear"](gm, quantization_config)
OP_TO_ANNOTATOR["conv"](gm, quantization_config)
OP_TO_ANNOTATOR["adaptive_avg_pool2d"](gm, quantization_config)
def validate(self, model: torch.fx.GraphModule) -> None:
pass
example_inputs = (torch.randn(1, 3, 5, 7),)
self._test_duplicate_dq(
TestHelperModules.Conv2dWithObsSharingOps(),
example_inputs,
BackendAQuantizer(),
)
def test_simple_duplicate_dq(self):
"""
Model under test
conv2d -> conv2d -> add
| |
--------->
|
-----> view_copy --> linear
|
-----> mul
There should be three dq nodes because output for the
first conv2d is fed to next conv2d, add, and view_copy + linear.
All three are quantized.
Thus DQ node is not duplicated for those three uses
"""
class BackendAQuantizer(Quantizer):
def annotate(self, gm: torch.fx.GraphModule) -> torch.fx.GraphModule:
backend_string = "BackendA"
quantization_config = get_symmetric_quantization_config(
is_per_channel=True
)
OP_TO_ANNOTATOR["linear"](gm, quantization_config)
OP_TO_ANNOTATOR["conv"](gm, quantization_config)
OP_TO_ANNOTATOR["add"](gm, quantization_config)
def validate(self, model: torch.fx.GraphModule) -> None:
pass
example_inputs = (torch.randn(1, 3, 5, 7),)
self._test_duplicate_dq(
TestHelperModules.Conv2dWithSharedDQ(),
example_inputs,
BackendAQuantizer(),
)
def test_no_add_quant_duplicate_dq(self):
"""
Model under test
conv2d -> conv2d -> add
| |
--------->
|
-----> view_copy --> linear
|
-----> mul
There should be three dq nodes because output for the
first conv2d is fed to next conv2d, and view_copy + linear.
Both are quantized.
However the skip connection to add and mul are not quantized.
Thus DQ node is not duplicated for those two uses
"""
class BackendAQuantizer(Quantizer):
def annotate(self, gm: torch.fx.GraphModule) -> torch.fx.GraphModule:
backend_string = "BackendA"
quantization_config = get_symmetric_quantization_config(
is_per_channel=True
)
OP_TO_ANNOTATOR["linear"](gm, quantization_config)
OP_TO_ANNOTATOR["conv"](gm, quantization_config)
def validate(self, model: torch.fx.GraphModule) -> None:
pass
example_inputs = (torch.randn(1, 3, 5, 7),)
self._test_duplicate_dq(
TestHelperModules.Conv2dWithSharedDQ(),
example_inputs,
BackendAQuantizer(),
)
def test_avgpool_use_different_qconfig(self):
"""
Model under test
conv2d -> conv2d -> add
| |
--------->
|
-----> adaptive_avgpool2d (different qconfig)
|
-----> add
output
conv2d -> dq -> conv2d -> add
| |
-------> dq ----->
|
-> dq -> q -> dq -----> adaptive_avgpool2d (different qconfig)
|
-> dq -----> add
"""
def _get_uint8_quantization_config():
act_observer_or_fake_quant_ctr = HistogramObserver # type: ignore[assignment]
act_quantization_spec = QuantizationSpec(
dtype=torch.uint8,
quant_min=0,
quant_max=255,
qscheme=torch.per_tensor_affine,
observer_or_fake_quant_ctr=act_observer_or_fake_quant_ctr.with_args(
eps=2**-12
),
)
weight_observer_or_fake_quant_ctr: _ObserverOrFakeQuantizeConstructor = ( # noqa: F821
MinMaxObserver
)
extra_args: Dict[str, Any] = {"eps": 2**-12}
weight_quantization_spec = QuantizationSpec(
dtype=torch.uint8,
quant_min=0,
quant_max=255,
qscheme=torch.per_tensor_affine,
ch_axis=0,
is_dynamic=False,
observer_or_fake_quant_ctr=weight_observer_or_fake_quant_ctr.with_args(
**extra_args
),
)
bias_observer_or_fake_quant_ctr: _ObserverOrFakeQuantizeConstructor = ( # noqa: F821
PlaceholderObserver
)
bias_quantization_spec = QuantizationSpec(
dtype=torch.float,
observer_or_fake_quant_ctr=bias_observer_or_fake_quant_ctr,
)
quantization_config = QuantizationConfig(
act_quantization_spec,
act_quantization_spec,
weight_quantization_spec,
bias_quantization_spec,
)
return quantization_config
class BackendAQuantizer(Quantizer):
def annotate(self, gm: torch.fx.GraphModule) -> torch.fx.GraphModule:
backend_string = "BackendA"
quantization_config = get_symmetric_quantization_config(
is_per_channel=True
)
avgpool_qconfig = _get_uint8_quantization_config()
OP_TO_ANNOTATOR["conv"](gm, quantization_config)
OP_TO_ANNOTATOR["add"](gm, quantization_config)
for n in gm.graph.nodes:
if n.op == "call_function" and n.target == torch.ops.aten.mean.dim:
qspec = avgpool_qconfig.input_activation
input_act = n.args[0]
output_qspec = SharedQuantizationSpec((input_act, n))
n.meta["quantization_annotation"] = QuantizationAnnotation(
input_qspec_map={input_act: qspec},
output_qspec=output_qspec,
_annotated=True,
)
def validate(self, model: torch.fx.GraphModule) -> None:
pass
example_inputs = (torch.randn(1, 3, 5, 7),)
self._test_duplicate_dq(
TestHelperModules.ModuleForDifferentQconfig(),
example_inputs,
BackendAQuantizer(),
)
|