File: test_duplicate_dq.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (311 lines) | stat: -rw-r--r-- 10,923 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
# Owner(s): ["oncall: quantization"]
import copy
import unittest
from typing import Any, Dict

import torch
from torch.ao.quantization.observer import (
    HistogramObserver,
    MinMaxObserver,
    PlaceholderObserver,
)
from torch.ao.quantization.quantize_pt2e import convert_pt2e, prepare_pt2e
from torch.ao.quantization.quantizer import (
    QuantizationAnnotation,
    QuantizationSpec,
    Quantizer,
    SharedQuantizationSpec,
)
from torch.ao.quantization.quantizer.xnnpack_quantizer import (
    get_symmetric_quantization_config,
)
from torch.ao.quantization.quantizer.xnnpack_quantizer_utils import (
    OP_TO_ANNOTATOR,
    QuantizationConfig,
)
from torch.export import export_for_training
from torch.testing._internal.common_quantization import QuantizationTestCase
from torch.testing._internal.common_utils import IS_WINDOWS


class TestHelperModules:
    class Conv2dWithObsSharingOps(torch.nn.Module):
        def __init__(self) -> None:
            super().__init__()
            self.conv = torch.nn.Conv2d(3, 3, 3)
            self.hardtanh = torch.nn.Hardtanh()
            self.adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d((1, 1))
            self.linear = torch.nn.Linear(3, 3)

        def forward(self, x):
            x = self.conv(x)
            x = self.adaptive_avg_pool2d(x)
            x = self.hardtanh(x)
            x = x.view(-1, 3)
            x = self.linear(x)
            return x

    class Conv2dWithSharedDQ(torch.nn.Module):
        def __init__(self) -> None:
            super().__init__()
            self.conv1 = torch.nn.Conv2d(3, 3, 3)
            self.conv2 = torch.nn.Conv2d(3, 3, 1)
            self.linear = torch.nn.Linear(3, 3)

        def forward(self, x):
            x = self.conv1(x)
            z = x.view(-1, 3)
            w = self.linear(z)

            y = self.conv2(x)
            add_output = x + y

            extra_output = x * 2
            return w, add_output, extra_output

    class ModuleForDifferentQconfig(torch.nn.Module):
        def __init__(self) -> None:
            super().__init__()
            self.conv1 = torch.nn.Conv2d(3, 3, 3)
            self.conv2 = torch.nn.Conv2d(3, 3, 1)
            self.adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d((1, 1))

        def forward(self, x):
            x = self.conv1(x)
            w = self.adaptive_avg_pool2d(x)

            y = self.conv2(x)
            add_output = x + y

            extra_output = x + 2
            return w, add_output, extra_output


_DEQUANTIZE_OPS = [
    torch.ops.quantized_decomposed.dequantize_per_tensor.default,
    torch.ops.quantized_decomposed.dequantize_per_tensor.tensor,
    torch.ops.quantized_decomposed.dequantize_per_channel.default,
]


@unittest.skipIf(IS_WINDOWS, "Windows not yet supported for torch.compile")
class TestDuplicateDQPass(QuantizationTestCase):
    def _test_duplicate_dq(
        self,
        model,
        example_inputs,
        quantizer,
    ):
        m_eager = model.eval()

        # program capture
        m = copy.deepcopy(m_eager)
        m = export_for_training(
            m,
            example_inputs,
        ).module()

        m = prepare_pt2e(m, quantizer)
        # Calibrate
        m(*example_inputs)
        m = convert_pt2e(m)

        pt2_quant_output = m(*example_inputs)
        for n in m.graph.nodes:
            annotation = n.meta.get("quantization_annotation", None)
            if annotation is not None:
                for arg in n.args:
                    if isinstance(arg, torch.fx.Node) and arg.target in _DEQUANTIZE_OPS:
                        self.assertEqual(len(arg.users.keys()), 1)

    def test_no_need_for_duplicate_dq(self):
        """
        Model under test
        conv2d -> avgpool -> hardtanh -> linear
        Check quantization tags on conv2d, avgpool and linear are correctly set
        """

        class BackendAQuantizer(Quantizer):
            def annotate(self, gm: torch.fx.GraphModule) -> torch.fx.GraphModule:
                backend_string = "BackendA"
                quantization_config = get_symmetric_quantization_config(
                    is_per_channel=True
                )
                OP_TO_ANNOTATOR["linear"](gm, quantization_config)
                OP_TO_ANNOTATOR["conv"](gm, quantization_config)
                OP_TO_ANNOTATOR["adaptive_avg_pool2d"](gm, quantization_config)

            def validate(self, model: torch.fx.GraphModule) -> None:
                pass

        example_inputs = (torch.randn(1, 3, 5, 7),)
        self._test_duplicate_dq(
            TestHelperModules.Conv2dWithObsSharingOps(),
            example_inputs,
            BackendAQuantizer(),
        )

    def test_simple_duplicate_dq(self):
        """
        Model under test
        conv2d -> conv2d -> add
             |          |
              --------->
             |
              -----> view_copy --> linear
             |
              -----> mul
        There should be three dq nodes because output for the
        first conv2d is fed to next conv2d, add, and view_copy + linear.
        All three are quantized.
        Thus DQ node is not duplicated for those three uses
        """

        class BackendAQuantizer(Quantizer):
            def annotate(self, gm: torch.fx.GraphModule) -> torch.fx.GraphModule:
                backend_string = "BackendA"
                quantization_config = get_symmetric_quantization_config(
                    is_per_channel=True
                )
                OP_TO_ANNOTATOR["linear"](gm, quantization_config)
                OP_TO_ANNOTATOR["conv"](gm, quantization_config)
                OP_TO_ANNOTATOR["add"](gm, quantization_config)

            def validate(self, model: torch.fx.GraphModule) -> None:
                pass

        example_inputs = (torch.randn(1, 3, 5, 7),)
        self._test_duplicate_dq(
            TestHelperModules.Conv2dWithSharedDQ(),
            example_inputs,
            BackendAQuantizer(),
        )

    def test_no_add_quant_duplicate_dq(self):
        """
        Model under test
        conv2d -> conv2d -> add
             |          |
              --------->
             |
              -----> view_copy --> linear
             |
              -----> mul
        There should be three dq nodes because output for the
        first conv2d is fed to next conv2d, and view_copy + linear.
        Both are quantized.
        However the skip connection to add and mul are not quantized.
        Thus DQ node is not duplicated for those two uses
        """

        class BackendAQuantizer(Quantizer):
            def annotate(self, gm: torch.fx.GraphModule) -> torch.fx.GraphModule:
                backend_string = "BackendA"
                quantization_config = get_symmetric_quantization_config(
                    is_per_channel=True
                )
                OP_TO_ANNOTATOR["linear"](gm, quantization_config)
                OP_TO_ANNOTATOR["conv"](gm, quantization_config)

            def validate(self, model: torch.fx.GraphModule) -> None:
                pass

        example_inputs = (torch.randn(1, 3, 5, 7),)
        self._test_duplicate_dq(
            TestHelperModules.Conv2dWithSharedDQ(),
            example_inputs,
            BackendAQuantizer(),
        )

    def test_avgpool_use_different_qconfig(self):
        """
        Model under test
        conv2d -> conv2d -> add
             |          |
              --------->
             |
              -----> adaptive_avgpool2d (different qconfig)
             |
              -----> add
        output
        conv2d -> dq -> conv2d -> add
             |                  |
              -------> dq ----->
             |
              -> dq -> q -> dq -----> adaptive_avgpool2d (different qconfig)
             |
              -> dq -----> add
        """

        def _get_uint8_quantization_config():
            act_observer_or_fake_quant_ctr = HistogramObserver  # type: ignore[assignment]
            act_quantization_spec = QuantizationSpec(
                dtype=torch.uint8,
                quant_min=0,
                quant_max=255,
                qscheme=torch.per_tensor_affine,
                observer_or_fake_quant_ctr=act_observer_or_fake_quant_ctr.with_args(
                    eps=2**-12
                ),
            )
            weight_observer_or_fake_quant_ctr: _ObserverOrFakeQuantizeConstructor = (  # noqa: F821
                MinMaxObserver
            )

            extra_args: Dict[str, Any] = {"eps": 2**-12}
            weight_quantization_spec = QuantizationSpec(
                dtype=torch.uint8,
                quant_min=0,
                quant_max=255,
                qscheme=torch.per_tensor_affine,
                ch_axis=0,
                is_dynamic=False,
                observer_or_fake_quant_ctr=weight_observer_or_fake_quant_ctr.with_args(
                    **extra_args
                ),
            )

            bias_observer_or_fake_quant_ctr: _ObserverOrFakeQuantizeConstructor = (  # noqa: F821
                PlaceholderObserver
            )
            bias_quantization_spec = QuantizationSpec(
                dtype=torch.float,
                observer_or_fake_quant_ctr=bias_observer_or_fake_quant_ctr,
            )
            quantization_config = QuantizationConfig(
                act_quantization_spec,
                act_quantization_spec,
                weight_quantization_spec,
                bias_quantization_spec,
            )
            return quantization_config

        class BackendAQuantizer(Quantizer):
            def annotate(self, gm: torch.fx.GraphModule) -> torch.fx.GraphModule:
                backend_string = "BackendA"
                quantization_config = get_symmetric_quantization_config(
                    is_per_channel=True
                )
                avgpool_qconfig = _get_uint8_quantization_config()
                OP_TO_ANNOTATOR["conv"](gm, quantization_config)
                OP_TO_ANNOTATOR["add"](gm, quantization_config)
                for n in gm.graph.nodes:
                    if n.op == "call_function" and n.target == torch.ops.aten.mean.dim:
                        qspec = avgpool_qconfig.input_activation
                        input_act = n.args[0]
                        output_qspec = SharedQuantizationSpec((input_act, n))
                        n.meta["quantization_annotation"] = QuantizationAnnotation(
                            input_qspec_map={input_act: qspec},
                            output_qspec=output_qspec,
                            _annotated=True,
                        )

            def validate(self, model: torch.fx.GraphModule) -> None:
                pass

        example_inputs = (torch.randn(1, 3, 5, 7),)
        self._test_duplicate_dq(
            TestHelperModules.ModuleForDifferentQconfig(),
            example_inputs,
            BackendAQuantizer(),
        )