File: test_graph_utils.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (123 lines) | stat: -rw-r--r-- 4,199 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# Owner(s): ["oncall: quantization"]
import copy
import unittest

import torch
import torch._dynamo as torchdynamo
from torch.ao.quantization.pt2e.graph_utils import (
    find_sequential_partitions,
    get_equivalent_types,
    update_equivalent_types_dict,
)
from torch.testing._internal.common_utils import IS_WINDOWS, TestCase


class TestGraphUtils(TestCase):
    @unittest.skipIf(IS_WINDOWS, "torch.compile is not supported on Windows")
    def test_conv_bn_conv_relu(self):
        class M(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.conv1 = torch.nn.Conv2d(3, 3, 3)
                self.bn1 = torch.nn.BatchNorm2d(3)
                self.conv2 = torch.nn.Conv2d(3, 3, 3)
                self.relu2 = torch.nn.ReLU()

            def forward(self, x):
                bn_out = self.bn1(self.conv1(x))
                relu_out = torch.nn.functional.relu(bn_out)
                return self.relu2(self.conv2(relu_out))

        m = M().eval()
        example_inputs = (torch.randn(1, 3, 5, 5),)

        # program capture
        m, guards = torchdynamo.export(
            m,
            *copy.deepcopy(example_inputs),
            aten_graph=True,
        )
        fused_partitions = find_sequential_partitions(
            m, [torch.nn.Conv2d, torch.nn.BatchNorm2d]
        )
        self.assertEqual(len(fused_partitions), 1)
        fused_partitions = find_sequential_partitions(
            m, [torch.nn.Conv2d, torch.nn.BatchNorm2d, torch.nn.ReLU]
        )
        self.assertEqual(len(fused_partitions), 1)

        def x():
            find_sequential_partitions(
                m,
                [
                    torch.nn.Conv2d,
                    torch.nn.BatchNorm2d,
                    torch.nn.ReLU,
                    torch.nn.functional.conv2d,
                ],
            )

        self.assertRaises(ValueError, x)

    @unittest.skipIf(IS_WINDOWS, "torch.compile is not supported on Windows")
    def test_conv_bn_relu(self):
        class M(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.bn1 = torch.nn.BatchNorm2d(3)
                self.conv2 = torch.nn.Conv2d(3, 3, 3)
                self.relu2 = torch.nn.ReLU()

            def forward(self, x):
                bn_out = self.bn1(x)
                return self.relu2(self.conv2(bn_out))

        m = M().eval()
        example_inputs = (torch.randn(1, 3, 5, 5),)

        # program capture
        m, guards = torchdynamo.export(
            m,
            *copy.deepcopy(example_inputs),
            aten_graph=True,
        )
        fused_partitions = find_sequential_partitions(
            m, [torch.nn.Conv2d, torch.nn.BatchNorm2d]
        )
        self.assertEqual(len(fused_partitions), 0)
        fused_partitions = find_sequential_partitions(
            m, [torch.nn.BatchNorm2d, torch.nn.Conv2d]
        )
        self.assertEqual(len(fused_partitions), 1)
        fused_partitions = find_sequential_partitions(
            m, [torch.nn.BatchNorm2d, torch.nn.ReLU]
        )
        self.assertEqual(len(fused_partitions), 0)

    @unittest.skipIf(IS_WINDOWS, "torch.compile is not supported on Windows")
    def test_customized_equivalet_types_dict(self):
        class M(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.conv = torch.nn.Conv2d(3, 3, 3)

            def forward(self, x):
                return torch.nn.functional.relu6(self.conv(x))

        m = M().eval()
        example_inputs = (torch.randn(1, 3, 5, 5),)

        # program capture
        m, guards = torchdynamo.export(
            m,
            *copy.deepcopy(example_inputs),
            aten_graph=True,
        )
        customized_equivalent_types = get_equivalent_types()
        customized_equivalent_types.append({torch.nn.ReLU6, torch.nn.functional.relu6})
        update_equivalent_types_dict(customized_equivalent_types)
        fused_partitions = find_sequential_partitions(
            m,
            [torch.nn.Conv2d, torch.nn.ReLU6],
        )
        self.assertEqual(len(fused_partitions), 1)