File: test_numeric_debugger.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (243 lines) | stat: -rw-r--r-- 10,008 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# Owner(s): ["oncall: quantization"]

import copy
import unittest
from collections import Counter
from typing import Dict

import torch
from torch.ao.quantization import (
    compare_results,
    CUSTOM_KEY,
    extract_results_from_loggers,
    generate_numeric_debug_handle,
    NUMERIC_DEBUG_HANDLE_KEY,
    prepare_for_propagation_comparison,
)
from torch.ao.quantization.pt2e.graph_utils import get_control_flow_submodules
from torch.ao.quantization.quantize_pt2e import convert_pt2e, prepare_pt2e
from torch.ao.quantization.quantizer.xnnpack_quantizer import (
    get_symmetric_quantization_config,
    XNNPACKQuantizer,
)
from torch.export import export_for_training
from torch.testing._internal.common_quantization import TestHelperModules
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfCrossRef, TestCase


def _extract_debug_handles(model) -> Dict[str, int]:
    debug_handle_map: Dict[str, int] = {}

    m_queue = [model]

    while m_queue:
        cur_m = m_queue.pop(0)
        for n in cur_m.graph.nodes:
            if CUSTOM_KEY in n.meta and NUMERIC_DEBUG_HANDLE_KEY in n.meta[CUSTOM_KEY]:
                debug_handle_map[str(n)] = n.meta[CUSTOM_KEY][NUMERIC_DEBUG_HANDLE_KEY]

        control_flow_submodules = [
            submodule for _, submodule, _ in get_control_flow_submodules(cur_m)
        ]
        m_queue.extend(control_flow_submodules)

    return debug_handle_map


@unittest.skipIf(IS_WINDOWS, "Windows not yet supported for torch.compile")
class TestNumericDebugger(TestCase):
    def test_simple(self):
        m = TestHelperModules.Conv2dThenConv1d()
        example_inputs = m.example_inputs()
        ep = export_for_training(m, example_inputs)
        generate_numeric_debug_handle(ep)
        debug_handle_map = _extract_debug_handles(ep.module())

        self.assertEqual(len(set(debug_handle_map.values())), len(debug_handle_map))

    def test_control_flow(self):
        m = TestHelperModules.ControlFlow()
        example_inputs = m.example_inputs()
        ep = export_for_training(m, example_inputs)
        generate_numeric_debug_handle(ep)

        debug_handle_map = _extract_debug_handles(ep.module())

        self.assertEqual(len(set(debug_handle_map.values())), len(debug_handle_map))

    def test_quantize_pt2e_preserve_handle(self):
        m = TestHelperModules.Conv2dThenConv1d()
        example_inputs = m.example_inputs()
        ep = export_for_training(m, example_inputs)
        generate_numeric_debug_handle(ep)
        m = ep.module()

        quantizer = XNNPACKQuantizer().set_global(
            get_symmetric_quantization_config(is_per_channel=False)
        )
        m = prepare_pt2e(m, quantizer)
        debug_handle_map = _extract_debug_handles(m)
        res_counter = Counter(debug_handle_map.values())
        repeated_debug_handle_ids = [1, 2, 3]
        # 3 ids were repeated because we copy over the id from node to its output observer
        # torch.ops.aten.conv2d.default, torch.ops.aten.squeeze.dim and torch.ops.aten.conv1d.default
        for dh_id in repeated_debug_handle_ids:
            self.assertEqual(res_counter[dh_id], 2)

        m(*example_inputs)
        m = convert_pt2e(m)
        debug_handle_map = _extract_debug_handles(m)
        res_counter = Counter(debug_handle_map.values())
        # same set of ids where repeated, because we copy over the id from observer/fake_quant to
        # dequantize node
        repeated_debug_handle_ids = [1, 2, 3]
        for dh_id in repeated_debug_handle_ids:
            self.assertEqual(res_counter[dh_id], 2)

    def test_copy_preserve_handle(self):
        m = TestHelperModules.Conv2dThenConv1d()
        example_inputs = m.example_inputs()
        ep = torch.export.export(m, example_inputs)
        generate_numeric_debug_handle(ep)

        debug_handle_map_ref = _extract_debug_handles(ep)

        ep_copy = copy.copy(ep)
        debug_handle_map = _extract_debug_handles(ep_copy)

        self.assertEqual(debug_handle_map, debug_handle_map_ref)

    def test_deepcopy_preserve_handle(self):
        m = TestHelperModules.Conv2dThenConv1d()
        example_inputs = m.example_inputs()
        ep = torch.export.export(m, example_inputs)
        generate_numeric_debug_handle(ep)

        debug_handle_map_ref = _extract_debug_handles(ep)
        ep_copy = copy.deepcopy(ep)
        debug_handle_map = _extract_debug_handles(ep_copy)

        self.assertEqual(debug_handle_map, debug_handle_map_ref)

    @skipIfCrossRef  # mlazos: retracing FX graph with torch function mode doesn't propagate metadata, because the stack
    # trace of the mode torch function impl doesn't match the traced graph stored lineno.
    def test_re_export_preserve_handle(self):
        m = TestHelperModules.Conv2dThenConv1d()
        example_inputs = m.example_inputs()
        ep = export_for_training(m, example_inputs)
        generate_numeric_debug_handle(ep)
        m = ep.module()

        debug_handle_map_ref = _extract_debug_handles(m)
        m_export = export_for_training(m, example_inputs).module()
        debug_handle_map = _extract_debug_handles(m_export)

        self.assertEqual(debug_handle_map, debug_handle_map_ref)

    def test_run_decompositions_preserve_handle(self):
        m = TestHelperModules.Conv2dThenConv1d()
        example_inputs = m.example_inputs()
        ep = export_for_training(m, example_inputs)
        generate_numeric_debug_handle(ep)

        debug_handle_map_ref = _extract_debug_handles(ep)

        ep_copy = copy.copy(ep)
        ep_copy = ep_copy.run_decompositions()
        debug_handle_map = _extract_debug_handles(ep_copy)

        # checking the map still has the same ids, the node may change
        self.assertEqual(
            set(debug_handle_map.values()), set(debug_handle_map_ref.values())
        )

    def test_prepare_for_propagation_comparison(self):
        m = TestHelperModules.Conv2dThenConv1d()
        example_inputs = m.example_inputs()
        ep = export_for_training(m, example_inputs)
        generate_numeric_debug_handle(ep)
        m = ep.module()
        m_logger = prepare_for_propagation_comparison(m)
        ref = m(*example_inputs)
        res = m_logger(*example_inputs)

        from torch.ao.quantization.pt2e._numeric_debugger import OutputLogger

        loggers = [m for m in m_logger.modules() if isinstance(m, OutputLogger)]
        self.assertEqual(len(loggers), 3)
        self.assertTrue("conv2d" in [logger.node_name for logger in loggers])
        self.assertEqual(res, ref)

    def test_extract_results_from_loggers(self):
        m = TestHelperModules.Conv2dThenConv1d()
        example_inputs = m.example_inputs()
        ep = export_for_training(m, example_inputs)
        generate_numeric_debug_handle(ep)
        m = ep.module()
        m_ref_logger = prepare_for_propagation_comparison(m)

        quantizer = XNNPACKQuantizer().set_global(
            get_symmetric_quantization_config(is_per_channel=False)
        )
        m = prepare_pt2e(m, quantizer)
        m(*example_inputs)
        m = convert_pt2e(m)
        m_quant_logger = prepare_for_propagation_comparison(m)

        m_ref_logger(*example_inputs)
        m_quant_logger(*example_inputs)
        ref_results = extract_results_from_loggers(m_ref_logger)
        quant_results = extract_results_from_loggers(m_quant_logger)
        comparison_results = compare_results(ref_results, quant_results)
        for node_summary in comparison_results.values():
            if len(node_summary.results) > 0:
                self.assertGreaterEqual(node_summary.results[0].sqnr, 35)

    def test_added_node_gets_unique_id(self) -> None:
        m = TestHelperModules.Conv2dThenConv1d()
        example_inputs = m.example_inputs()
        ep = export_for_training(m, example_inputs)
        generate_numeric_debug_handle(ep)
        ref_handles = _extract_debug_handles(ep)
        ref_counter = Counter(ref_handles.values())
        for k, v in ref_counter.items():
            self.assertEqual(
                v,
                1,
                msg=f"For handle {k}, there were {v} nodes with that handle, but expected only 1",
            )

        # Now that we have unique ids, add a new node into the graph and re-generate
        # to make sure that the new node gets a unique id.
        last_node = next(iter(reversed(ep.graph.nodes)))
        with ep.graph.inserting_before(last_node):
            arg = last_node.args[0]
            self.assertIsInstance(arg, (list, tuple))
            arg = arg[0]
            # Add a function that only requires a single tensor input.
            n = ep.graph.call_function(torch.ops.aten.relu.default, args=(arg,))
            arg.replace_all_uses_with(n, lambda x: x != n)
        ep.graph_module.recompile()

        # Regenerate handles, make sure only the new relu node has a new id, and
        # it doesn't clash with any of the existing ids.
        generate_numeric_debug_handle(ep)
        handles_after_modification = _extract_debug_handles(ep)
        handles_counter = Counter(handles_after_modification.values())
        for name, handle in ref_handles.items():
            self.assertIn(name, handles_after_modification)
            # Check that handle was unchanged.
            self.assertEqual(handles_after_modification[name], handle)
            # Check that total count was unchanged.
            ref_count = ref_counter[handle]
            after_count = handles_counter[handle]
            self.assertEqual(
                after_count,
                ref_count,
                msg=f"For handle {handle}, there were {after_count} nodes with that handle, but expected only {ref_count}",
            )

        # Check for relu specifically. Avoid hardcoding the handle id since it
        # may change with future node ordering changes.
        self.assertNotEqual(handles_after_modification["relu_default"], 0)
        self.assertEqual(handles_counter[handles_after_modification["relu_default"]], 1)