1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
# Owner(s): ["oncall: quantization"]
import copy
import unittest
from collections import Counter
from typing import Dict
import torch
from torch.ao.quantization import (
compare_results,
CUSTOM_KEY,
extract_results_from_loggers,
generate_numeric_debug_handle,
NUMERIC_DEBUG_HANDLE_KEY,
prepare_for_propagation_comparison,
)
from torch.ao.quantization.pt2e.graph_utils import get_control_flow_submodules
from torch.ao.quantization.quantize_pt2e import convert_pt2e, prepare_pt2e
from torch.ao.quantization.quantizer.xnnpack_quantizer import (
get_symmetric_quantization_config,
XNNPACKQuantizer,
)
from torch.export import export_for_training
from torch.testing._internal.common_quantization import TestHelperModules
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfCrossRef, TestCase
def _extract_debug_handles(model) -> Dict[str, int]:
debug_handle_map: Dict[str, int] = {}
m_queue = [model]
while m_queue:
cur_m = m_queue.pop(0)
for n in cur_m.graph.nodes:
if CUSTOM_KEY in n.meta and NUMERIC_DEBUG_HANDLE_KEY in n.meta[CUSTOM_KEY]:
debug_handle_map[str(n)] = n.meta[CUSTOM_KEY][NUMERIC_DEBUG_HANDLE_KEY]
control_flow_submodules = [
submodule for _, submodule, _ in get_control_flow_submodules(cur_m)
]
m_queue.extend(control_flow_submodules)
return debug_handle_map
@unittest.skipIf(IS_WINDOWS, "Windows not yet supported for torch.compile")
class TestNumericDebugger(TestCase):
def test_simple(self):
m = TestHelperModules.Conv2dThenConv1d()
example_inputs = m.example_inputs()
ep = export_for_training(m, example_inputs)
generate_numeric_debug_handle(ep)
debug_handle_map = _extract_debug_handles(ep.module())
self.assertEqual(len(set(debug_handle_map.values())), len(debug_handle_map))
def test_control_flow(self):
m = TestHelperModules.ControlFlow()
example_inputs = m.example_inputs()
ep = export_for_training(m, example_inputs)
generate_numeric_debug_handle(ep)
debug_handle_map = _extract_debug_handles(ep.module())
self.assertEqual(len(set(debug_handle_map.values())), len(debug_handle_map))
def test_quantize_pt2e_preserve_handle(self):
m = TestHelperModules.Conv2dThenConv1d()
example_inputs = m.example_inputs()
ep = export_for_training(m, example_inputs)
generate_numeric_debug_handle(ep)
m = ep.module()
quantizer = XNNPACKQuantizer().set_global(
get_symmetric_quantization_config(is_per_channel=False)
)
m = prepare_pt2e(m, quantizer)
debug_handle_map = _extract_debug_handles(m)
res_counter = Counter(debug_handle_map.values())
repeated_debug_handle_ids = [1, 2, 3]
# 3 ids were repeated because we copy over the id from node to its output observer
# torch.ops.aten.conv2d.default, torch.ops.aten.squeeze.dim and torch.ops.aten.conv1d.default
for dh_id in repeated_debug_handle_ids:
self.assertEqual(res_counter[dh_id], 2)
m(*example_inputs)
m = convert_pt2e(m)
debug_handle_map = _extract_debug_handles(m)
res_counter = Counter(debug_handle_map.values())
# same set of ids where repeated, because we copy over the id from observer/fake_quant to
# dequantize node
repeated_debug_handle_ids = [1, 2, 3]
for dh_id in repeated_debug_handle_ids:
self.assertEqual(res_counter[dh_id], 2)
def test_copy_preserve_handle(self):
m = TestHelperModules.Conv2dThenConv1d()
example_inputs = m.example_inputs()
ep = torch.export.export(m, example_inputs)
generate_numeric_debug_handle(ep)
debug_handle_map_ref = _extract_debug_handles(ep)
ep_copy = copy.copy(ep)
debug_handle_map = _extract_debug_handles(ep_copy)
self.assertEqual(debug_handle_map, debug_handle_map_ref)
def test_deepcopy_preserve_handle(self):
m = TestHelperModules.Conv2dThenConv1d()
example_inputs = m.example_inputs()
ep = torch.export.export(m, example_inputs)
generate_numeric_debug_handle(ep)
debug_handle_map_ref = _extract_debug_handles(ep)
ep_copy = copy.deepcopy(ep)
debug_handle_map = _extract_debug_handles(ep_copy)
self.assertEqual(debug_handle_map, debug_handle_map_ref)
@skipIfCrossRef # mlazos: retracing FX graph with torch function mode doesn't propagate metadata, because the stack
# trace of the mode torch function impl doesn't match the traced graph stored lineno.
def test_re_export_preserve_handle(self):
m = TestHelperModules.Conv2dThenConv1d()
example_inputs = m.example_inputs()
ep = export_for_training(m, example_inputs)
generate_numeric_debug_handle(ep)
m = ep.module()
debug_handle_map_ref = _extract_debug_handles(m)
m_export = export_for_training(m, example_inputs).module()
debug_handle_map = _extract_debug_handles(m_export)
self.assertEqual(debug_handle_map, debug_handle_map_ref)
def test_run_decompositions_preserve_handle(self):
m = TestHelperModules.Conv2dThenConv1d()
example_inputs = m.example_inputs()
ep = export_for_training(m, example_inputs)
generate_numeric_debug_handle(ep)
debug_handle_map_ref = _extract_debug_handles(ep)
ep_copy = copy.copy(ep)
ep_copy = ep_copy.run_decompositions()
debug_handle_map = _extract_debug_handles(ep_copy)
# checking the map still has the same ids, the node may change
self.assertEqual(
set(debug_handle_map.values()), set(debug_handle_map_ref.values())
)
def test_prepare_for_propagation_comparison(self):
m = TestHelperModules.Conv2dThenConv1d()
example_inputs = m.example_inputs()
ep = export_for_training(m, example_inputs)
generate_numeric_debug_handle(ep)
m = ep.module()
m_logger = prepare_for_propagation_comparison(m)
ref = m(*example_inputs)
res = m_logger(*example_inputs)
from torch.ao.quantization.pt2e._numeric_debugger import OutputLogger
loggers = [m for m in m_logger.modules() if isinstance(m, OutputLogger)]
self.assertEqual(len(loggers), 3)
self.assertTrue("conv2d" in [logger.node_name for logger in loggers])
self.assertEqual(res, ref)
def test_extract_results_from_loggers(self):
m = TestHelperModules.Conv2dThenConv1d()
example_inputs = m.example_inputs()
ep = export_for_training(m, example_inputs)
generate_numeric_debug_handle(ep)
m = ep.module()
m_ref_logger = prepare_for_propagation_comparison(m)
quantizer = XNNPACKQuantizer().set_global(
get_symmetric_quantization_config(is_per_channel=False)
)
m = prepare_pt2e(m, quantizer)
m(*example_inputs)
m = convert_pt2e(m)
m_quant_logger = prepare_for_propagation_comparison(m)
m_ref_logger(*example_inputs)
m_quant_logger(*example_inputs)
ref_results = extract_results_from_loggers(m_ref_logger)
quant_results = extract_results_from_loggers(m_quant_logger)
comparison_results = compare_results(ref_results, quant_results)
for node_summary in comparison_results.values():
if len(node_summary.results) > 0:
self.assertGreaterEqual(node_summary.results[0].sqnr, 35)
def test_added_node_gets_unique_id(self) -> None:
m = TestHelperModules.Conv2dThenConv1d()
example_inputs = m.example_inputs()
ep = export_for_training(m, example_inputs)
generate_numeric_debug_handle(ep)
ref_handles = _extract_debug_handles(ep)
ref_counter = Counter(ref_handles.values())
for k, v in ref_counter.items():
self.assertEqual(
v,
1,
msg=f"For handle {k}, there were {v} nodes with that handle, but expected only 1",
)
# Now that we have unique ids, add a new node into the graph and re-generate
# to make sure that the new node gets a unique id.
last_node = next(iter(reversed(ep.graph.nodes)))
with ep.graph.inserting_before(last_node):
arg = last_node.args[0]
self.assertIsInstance(arg, (list, tuple))
arg = arg[0]
# Add a function that only requires a single tensor input.
n = ep.graph.call_function(torch.ops.aten.relu.default, args=(arg,))
arg.replace_all_uses_with(n, lambda x: x != n)
ep.graph_module.recompile()
# Regenerate handles, make sure only the new relu node has a new id, and
# it doesn't clash with any of the existing ids.
generate_numeric_debug_handle(ep)
handles_after_modification = _extract_debug_handles(ep)
handles_counter = Counter(handles_after_modification.values())
for name, handle in ref_handles.items():
self.assertIn(name, handles_after_modification)
# Check that handle was unchanged.
self.assertEqual(handles_after_modification[name], handle)
# Check that total count was unchanged.
ref_count = ref_counter[handle]
after_count = handles_counter[handle]
self.assertEqual(
after_count,
ref_count,
msg=f"For handle {handle}, there were {after_count} nodes with that handle, but expected only {ref_count}",
)
# Check for relu specifically. Avoid hardcoding the handle id since it
# may change with future node ordering changes.
self.assertNotEqual(handles_after_modification["relu_default"], 0)
self.assertEqual(handles_counter[handles_after_modification["relu_default"]], 1)
|