File: test_quantize_pt2e_qat.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (1262 lines) | stat: -rw-r--r-- 48,572 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
# Owner(s): ["oncall: quantization"]
import copy
import operator
import unittest
from typing import Any, Optional, Tuple, Type

import torch
from torch.ao.quantization import (
    default_fake_quant,
    FusedMovingAvgObsFakeQuantize,
    MovingAverageMinMaxObserver,
    MovingAveragePerChannelMinMaxObserver,
    QConfigMapping,
)
from torch.ao.quantization.backend_config import get_qnnpack_backend_config
from torch.ao.quantization.qconfig import (
    default_per_channel_symmetric_qnnpack_qat_qconfig,
    default_symmetric_qnnpack_qat_qconfig,
)
from torch.ao.quantization.quantize_fx import prepare_qat_fx
from torch.ao.quantization.quantize_pt2e import (
    _convert_to_reference_decomposed_fx,
    convert_pt2e,
    prepare_pt2e,
    prepare_qat_pt2e,
)
from torch.ao.quantization.quantizer import (
    DerivedQuantizationSpec,
    QuantizationAnnotation,
    QuantizationSpec,
    Quantizer,
)
from torch.ao.quantization.quantizer.xnnpack_quantizer import (
    get_symmetric_quantization_config,
    XNNPACKQuantizer,
)
from torch.export import export_for_training
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_quantization import (
    NodeSpec as ns,
    QuantizationTestCase,
    skip_if_no_torchvision,
    skipIfNoQNNPACK,
)
from torch.testing._internal.common_quantized import override_quantized_engine


class PT2EQATTestCase(QuantizationTestCase):
    """
    Base QuantizationTestCase for PT2E QAT with some helper methods.
    """

    class _BaseConvBnModel(torch.nn.Module):
        def __init__(
            self,
            conv_class: Type[torch.nn.Module],
            bn_class: Type[torch.nn.Module],
            has_conv_bias: bool,
            has_bn: bool,
            has_relu: bool,
            **conv_kwargs,
        ):
            super().__init__()
            conv_kwargs.setdefault("in_channels", 3)
            conv_kwargs.setdefault("out_channels", 3)
            conv_kwargs.setdefault("kernel_size", 3)
            conv_kwargs.setdefault("bias", has_conv_bias)
            self.conv = conv_class(**conv_kwargs)
            self.bn = bn_class(conv_kwargs["out_channels"]) if has_bn else None
            self.relu = torch.nn.ReLU() if has_relu else None

        def forward(self, x):
            x = self.conv(x)
            if self.bn is not None:
                x = self.bn(x)
            if self.relu is not None:
                x = self.relu(x)
            return x

    def _get_conv_bn_model(
        self,
        has_conv_bias: bool = True,
        has_bn: bool = True,
        has_relu: bool = False,
        transpose: bool = False,
        **conv_kwargs,
    ):
        """
        Return an instance of a simple test model containing the
        conv[-bn][-relu] pattern. By default, this returns a
        conv-bn model with conv bias.
        """
        return self._BaseConvBnModel(
            self.conv_transpose_class if transpose else self.conv_class,
            self.bn_class,
            has_conv_bias,
            has_bn,
            has_relu,
            **conv_kwargs,
        )

    def _verify_symmetric_xnnpack_qat_numerics(
        self,
        model: torch.nn.Module,
        example_inputs: Tuple[Any, ...],
    ):
        self._verify_symmetric_xnnpack_qat_numerics_helper(
            model,
            example_inputs,
            is_per_channel=True,
        )
        self._verify_symmetric_xnnpack_qat_numerics_helper(
            model,
            example_inputs,
            is_per_channel=False,
        )

    def _verify_symmetric_xnnpack_qat_numerics_helper(
        self,
        model: torch.nn.Module,
        example_inputs: Tuple[Any, ...],
        is_per_channel: bool,
        verify_convert: bool = True,
    ):
        """
        Helper method to verify that the QAT numerics for PT2E quantization match those of
        FX graph mode quantization for symmetric qnnpack.
        """
        # resetting dynamo cache
        torch._dynamo.reset()
        MANUAL_SEED = 100

        # PT2 export

        model_pt2e = copy.deepcopy(model)
        quantizer = XNNPACKQuantizer()
        quantizer.set_global(
            get_symmetric_quantization_config(
                is_per_channel=is_per_channel, is_qat=True
            )
        )
        model_pt2e = export_for_training(
            model_pt2e,
            example_inputs,
        ).module()
        model_pt2e = prepare_qat_pt2e(model_pt2e, quantizer)
        torch.manual_seed(MANUAL_SEED)
        after_prepare_result_pt2e = model_pt2e(*example_inputs)

        model_fx = copy.deepcopy(model)
        if is_per_channel:
            default_qconfig = default_per_channel_symmetric_qnnpack_qat_qconfig
        else:
            default_qconfig = default_symmetric_qnnpack_qat_qconfig
        qconfig_mapping = QConfigMapping().set_global(default_qconfig)
        backend_config = get_qnnpack_backend_config()
        model_fx = prepare_qat_fx(
            model_fx, qconfig_mapping, example_inputs, backend_config=backend_config
        )
        torch.manual_seed(MANUAL_SEED)
        after_prepare_result_fx = model_fx(*example_inputs)

        # Verify that numerics match
        self.assertEqual(after_prepare_result_pt2e, after_prepare_result_fx)

        if verify_convert:
            # We don't want to impose any ordering requirements between move_exported_model_to_eval and convert_pt2e
            torch.ao.quantization.move_exported_model_to_eval(model_pt2e)
            model_pt2e = convert_pt2e(model_pt2e)
            quant_result_pt2e = model_pt2e(*example_inputs)
            model_fx.eval()
            model_fx = _convert_to_reference_decomposed_fx(
                model_fx,
                backend_config=backend_config,
            )
            quant_result_fx = model_fx(*example_inputs)
            self.assertEqual(quant_result_pt2e, quant_result_fx)

    def _verify_symmetric_xnnpack_qat_graph(
        self,
        m: torch.fx.GraphModule,
        example_inputs: Tuple[Any, ...],
        has_relu: bool,
        has_bias: bool = True,
        is_cuda: bool = False,
        expected_conv_literal_args: Optional[Tuple[Any, ...]] = None,
        # TODO: set this to true by default
        verify_convert: bool = False,
    ):
        self._verify_symmetric_xnnpack_qat_graph_helper(
            m,
            example_inputs,
            is_per_channel=True,
            has_relu=has_relu,
            has_bias=has_bias,
            is_cuda=is_cuda,
            expected_conv_literal_args=expected_conv_literal_args,
            verify_convert=verify_convert,
        )
        self._verify_symmetric_xnnpack_qat_graph_helper(
            m,
            example_inputs,
            is_per_channel=False,
            has_relu=has_relu,
            has_bias=has_bias,
            is_cuda=is_cuda,
            expected_conv_literal_args=expected_conv_literal_args,
            verify_convert=verify_convert,
        )

    def _verify_symmetric_xnnpack_qat_graph_helper(
        self,
        m: torch.fx.GraphModule,
        example_inputs: Tuple[Any, ...],
        is_per_channel: bool,
        has_relu: bool,
        has_bias: bool = True,
        is_cuda: bool = False,
        expected_conv_literal_args: Optional[Tuple[Any, ...]] = None,
        verify_convert: bool = False,
    ):
        """
        Verify that the graph module matches the fused QAT [conv - bn (- relu)] pattern
        with fake quantizes inserted into the correct places.
        # TODO: also verify that metadata is copied over to the new nodes.
        """
        m = copy.deepcopy(m)
        quantizer = XNNPACKQuantizer()
        quantizer.set_global(
            get_symmetric_quantization_config(is_per_channel, is_qat=True)
        )
        m = export_for_training(
            m,
            example_inputs,
        ).module()
        m = prepare_qat_pt2e(m, quantizer)
        m(*example_inputs)

        # Verify: getitem output activation fake quantize
        output_node = list(m.graph.nodes)[-1]
        output_fq_node = output_node.args[0][0]
        self.assertTrue(output_fq_node.target.startswith("activation_post_process_"))
        output_fq_mod = getattr(m, output_fq_node.target)
        self.assertEqual(type(output_fq_mod), FusedMovingAvgObsFakeQuantize)
        self.assertEqual(
            type(output_fq_mod.activation_post_process), MovingAverageMinMaxObserver
        )
        self.assertEqual(output_fq_mod.dtype, torch.int8)
        self.assertEqual(output_fq_mod.quant_min, -128)
        self.assertEqual(output_fq_mod.quant_max, 127)

        # Verify: getitem(bn, 0) or relu(getitem(bn, 0))
        if has_relu:
            relu_node = output_fq_node.args[0]
            bn_node = relu_node.args[0]
            self.assertEqual(relu_node.target, torch.ops.aten.relu.default)
        else:
            relu_node = None
            bn_node = output_fq_node.args[0]

        # The relu node takes in the output of bn.
        # See NOTE [training ir has no getitem for bn node].
        self.assertEqual(bn_node.target, torch.ops.aten.batch_norm.default)

        # Verify: conv / scale_factor.reshape [+ bias.reshape]
        if has_bias:
            add_bias_node = bn_node.args[0]
            (div_scale_factor_node, bias_reshape_node) = add_bias_node.args
            self.assertEqual(add_bias_node.target, torch.ops.aten.add.Tensor)
            self.assertEqual(bias_reshape_node.target, torch.ops.aten.reshape.default)
        else:
            div_scale_factor_node = bn_node.args[0]
        (conv_node, scale_factor_reshape_node) = div_scale_factor_node.args
        conv_op = conv_node.target
        self.assertEqual(div_scale_factor_node.target, torch.ops.aten.div.Tensor)
        self.assertTrue(_is_conv_node(conv_node))
        self.assertEqual(
            scale_factor_reshape_node.target, torch.ops.aten.reshape.default
        )

        # Verify: conv literal args
        if expected_conv_literal_args is not None:
            assert (
                len(expected_conv_literal_args) == 6
            ), "wrong num conv args, bad test setup"
            for i in range(6):
                if i + 3 < len(conv_node.args):
                    self.assertEqual(
                        conv_node.args[i + 3], expected_conv_literal_args[i]
                    )

        # Verify: conv input activation fake quantize
        conv_input_fq_node = conv_node.args[0]
        conv_input_node = conv_input_fq_node.args[0]
        self.assertTrue(
            conv_input_fq_node.target.startswith("activation_post_process_")
        )
        conv_input_fq_mod = getattr(m, conv_input_fq_node.target)
        self.assertEqual(type(conv_input_fq_mod), FusedMovingAvgObsFakeQuantize)
        self.assertEqual(
            type(conv_input_fq_mod.activation_post_process), MovingAverageMinMaxObserver
        )
        self.assertEqual(conv_input_fq_mod.dtype, torch.int8)
        self.assertEqual(conv_input_fq_mod.quant_min, -128)
        self.assertEqual(conv_input_fq_mod.quant_max, 127)
        self.assertTrue(conv_input_node.op, "placeholder")

        # Verify: conv weight fake quantize
        conv_weight_fq_node = conv_node.args[1]
        self.assertTrue(
            conv_weight_fq_node.target.startswith("activation_post_process_")
        )
        conv_weight_fq_mod = getattr(m, conv_weight_fq_node.target)
        if is_per_channel:
            expected_weight_observer_type = MovingAveragePerChannelMinMaxObserver
        else:
            expected_weight_observer_type = MovingAverageMinMaxObserver
        self.assertEqual(type(conv_weight_fq_mod), FusedMovingAvgObsFakeQuantize)
        self.assertEqual(
            type(conv_weight_fq_mod.activation_post_process),
            expected_weight_observer_type,
        )
        self.assertEqual(conv_weight_fq_mod.dtype, torch.int8)
        self.assertEqual(conv_weight_fq_mod.quant_min, -127)
        self.assertEqual(conv_weight_fq_mod.quant_max, 127)

        # Verify: conv(fq(input), fq(weight * scale_factor.reshape), zero_bias)
        zero_bias_node = conv_node.args[2] if len(conv_node.args) > 2 else None
        mul_weight_scale_factor_node = conv_weight_fq_node.args[0]
        (
            conv_weight_fq_node,
            scale_factor_reshape_node,
        ) = mul_weight_scale_factor_node.args
        if has_bias:
            self.assertEqual(zero_bias_node.target, torch.ops.aten.zeros_like.default)
        else:
            self.assertTrue(zero_bias_node is None)
        self.assertEqual(mul_weight_scale_factor_node.target, torch.ops.aten.mul.Tensor)
        self.assertEqual(
            scale_factor_reshape_node.target, torch.ops.aten.reshape.default
        )

        # Verify: scale_factor = bn_weight / sqrt(bn_running_var + eps)
        scale_factor_node = scale_factor_reshape_node.args[0]
        (bn_weight_node, sqrt_node) = scale_factor_node.args
        bn_running_var_add_node = sqrt_node.args[0]
        (bn_running_var_node, eps) = bn_running_var_add_node.args
        self.assertEqual(scale_factor_node.target, torch.ops.aten.div.Tensor)
        self.assertTrue("bn.weight" in bn_weight_node.target)
        self.assertTrue("bn.running_var" in bn_running_var_node.target)
        self.assertEqual(sqrt_node.target, torch.ops.aten.sqrt.default)
        self.assertEqual(bn_running_var_add_node.target, torch.ops.aten.add.Tensor)
        self.assertEqual(eps, 1e-5)

        # Optionally check the converted graph
        if verify_convert:
            m = convert_pt2e(m)
            m(*example_inputs)

            if is_per_channel:
                conv_weight_dq_op = (
                    torch.ops.quantized_decomposed.dequantize_per_channel.default
                )
                node_occurrence = {
                    ns.call_function(
                        torch.ops.quantized_decomposed.quantize_per_tensor.default
                    ): 2,
                    ns.call_function(
                        torch.ops.quantized_decomposed.dequantize_per_tensor.default
                    ): 2,
                    ns.call_function(
                        torch.ops.quantized_decomposed.dequantize_per_channel.default
                    ): 1,
                }
            else:
                conv_weight_dq_op = (
                    torch.ops.quantized_decomposed.dequantize_per_tensor.default
                )
                node_occurrence = {
                    ns.call_function(
                        torch.ops.quantized_decomposed.quantize_per_tensor.default
                    ): 2,
                    ns.call_function(
                        torch.ops.quantized_decomposed.dequantize_per_tensor.default
                    ): 3,
                }
            node_list = [
                ns.call_function(
                    torch.ops.quantized_decomposed.quantize_per_tensor.default
                ),
                ns.call_function(
                    torch.ops.quantized_decomposed.dequantize_per_tensor.default
                ),
                ns.call_function(conv_weight_dq_op),
                ns.call_function(conv_op),
                ns.call_function(
                    torch.ops.quantized_decomposed.quantize_per_tensor.default
                ),
                ns.call_function(
                    torch.ops.quantized_decomposed.dequantize_per_tensor.default
                ),
            ]

            self.checkGraphModuleNodes(
                m,
                expected_node_list=node_list,
                expected_node_occurrence=node_occurrence,
            )


class TestQuantizePT2EQAT_ConvBn_Base(PT2EQATTestCase):
    """
    Base TestCase to be used for all conv-bn[-relu] fusion patterns.
    """

    # TODO: how can we avoid adding every new test to dynamo/expected_test_failures?
    # Otherwise it fails with the following error:
    #   torch._dynamo.exc.InternalTorchDynamoError:
    #   'QuantizationConfig' object has no attribute '__bool__'

    def setUp(self):
        # NB: Skip the test if this is a base class, this is to handle the test
        # discovery logic in buck which finds and runs all tests here including
        # the base class which we don't want to run
        if self.id() and "_Base" in self.id():
            self.skipTest("Skipping test running from base class")

    def test_qat_conv_no_bias(self):
        m1 = self._get_conv_bn_model(has_conv_bias=False, has_bn=False, has_relu=True)
        m2 = self._get_conv_bn_model(has_conv_bias=False, has_bn=False, has_relu=False)
        self._verify_symmetric_xnnpack_qat_numerics(m1, self.example_inputs)
        self._verify_symmetric_xnnpack_qat_numerics(m2, self.example_inputs)

    def test_qat_conv_bn_fusion(self):
        m = self._get_conv_bn_model()
        self._verify_symmetric_xnnpack_qat_graph(m, self.example_inputs, has_relu=False)
        self._verify_symmetric_xnnpack_qat_numerics(m, self.example_inputs)

    @unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
    def test_qat_conv_bn_fusion_cuda(self):
        m = self._get_conv_bn_model().cuda()
        example_inputs = (self.example_inputs[0].cuda(),)
        self._verify_symmetric_xnnpack_qat_graph(
            m,
            example_inputs,
            has_relu=False,
            is_cuda=True,
        )
        self._verify_symmetric_xnnpack_qat_numerics(m, example_inputs)

    def test_qat_conv_bn_fusion_literal_args(self):
        class M(torch.nn.Module):
            def __init__(self, conv_class, bn_class):
                super().__init__()
                self.conv = conv_class(3, 3, 3, stride=2, padding=4)
                self.bn = bn_class(3)

            def forward(self, x):
                x = self.conv(x)
                x = self.bn(x)
                return x

        assert self.dim in [1, 2]
        if self.dim == 1:
            # stride, padding, dilation, transposed, output_padding, groups
            conv_args = ((2,), (4,), (1,), False, (0,), 1)
            example_inputs = (torch.randn(1, 3, 5),)
        else:
            # stride, padding, dilation, transposed, output_padding, groups
            conv_args = ((2, 2), (4, 4), (1, 1), False, (0, 0), 1)
            example_inputs = (torch.randn(1, 3, 5, 5),)

        m = M(self.conv_class, self.bn_class)

        self._verify_symmetric_xnnpack_qat_graph(
            m,
            example_inputs,
            has_relu=False,
            expected_conv_literal_args=conv_args,
        )
        self._verify_symmetric_xnnpack_qat_numerics(m, example_inputs)

    def test_qat_conv_bn_fusion_no_conv_bias(self):
        class M2(torch.nn.Module):
            """
            Mixed conv + BN with and without conv bias.
            """

            def __init__(self, conv_class, bn_class):
                super().__init__()
                self.conv1 = conv_class(3, 3, 3, bias=False)
                self.bn1 = bn_class(3)
                self.conv2 = conv_class(3, 3, 3, bias=True)
                self.bn2 = bn_class(3)

            def forward(self, x):
                x = self.conv1(x)
                x = self.bn1(x)
                x = self.conv2(x)
                x = self.bn2(x)
                return x

        m1 = self._get_conv_bn_model(has_conv_bias=False)
        m2 = M2(self.conv_class, self.bn_class)

        assert self.dim in [1, 2]
        if self.dim == 1:
            example_inputs = (torch.randn(3, 3, 5),)
        else:
            example_inputs = (torch.randn(3, 3, 5, 5),)

        self._verify_symmetric_xnnpack_qat_graph(
            m1,
            example_inputs,
            has_relu=False,
            has_bias=False,
        )
        self._verify_symmetric_xnnpack_qat_numerics(m1, example_inputs)
        self._verify_symmetric_xnnpack_qat_numerics(m2, example_inputs)

    def test_qat_conv_bn_relu_fusion(self):
        m = self._get_conv_bn_model(has_relu=True)
        self._verify_symmetric_xnnpack_qat_graph(m, self.example_inputs, has_relu=True)
        self._verify_symmetric_xnnpack_qat_numerics(m, self.example_inputs)

    @unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
    def test_qat_conv_bn_relu_fusion_cuda(self):
        m = self._get_conv_bn_model(has_relu=True).cuda()
        example_inputs = (self.example_inputs[0].cuda(),)
        self._verify_symmetric_xnnpack_qat_graph(
            m,
            example_inputs,
            has_relu=True,
            is_cuda=True,
        )
        self._verify_symmetric_xnnpack_qat_numerics(m, example_inputs)

    def test_qat_conv_bn_relu_fusion_no_conv_bias(self):
        m = self._get_conv_bn_model(has_conv_bias=False, has_relu=True)
        self._verify_symmetric_xnnpack_qat_graph(
            m,
            self.example_inputs,
            has_relu=True,
            has_bias=False,
        )
        self._verify_symmetric_xnnpack_qat_numerics(m, self.example_inputs)

    def test_qat_inplace_add_relu(self):
        class M(torch.nn.Module):
            def __init__(self, conv_class):
                super().__init__()
                self.conv = conv_class(1, 1, 1)
                self.relu = torch.nn.ReLU(inplace=True)

            def forward(self, x):
                x0 = x
                x = self.conv(x)
                x += x0
                x = self.relu(x)
                return x

        assert self.dim in [1, 2]
        if self.dim == 1:
            example_inputs = (torch.randn(1, 1, 3),)
        else:
            example_inputs = (torch.randn(1, 1, 3, 3),)

        m = M(self.conv_class)
        self._verify_symmetric_xnnpack_qat_numerics(m, example_inputs)

    def test_prepare_qat_conv_bn_fusion_getitem_placeholder(self):
        """
        Test the case where the placeholder node for the [conv - bn - getitem] pattern
        is also a getitem node:

          some_op -> unrelated_getitem -> conv -> bn -> conv_bn_getitem

        We want the metadata to be copied from the `conv_bn_getitem` node, not from
        the `unrelated_getitem` node, which is not part of the conv-bn pattern but
        is returned as part of the match anyway (as a placeholder).
        """
        from torch._utils_internal import capture_pre_autograd_graph_using_training_ir

        # T199018392
        # remove this test after we kill capture_pre_autograd_graph()
        if capture_pre_autograd_graph_using_training_ir():
            self.skipTest("Not applicable to training IR")

        class M(torch.nn.Module):
            def __init__(self, conv_class, bn_class):
                super().__init__()
                self.bn1 = bn_class(3)
                self.conv = conv_class(3, 3, 3)
                self.bn2 = bn_class(3)

            def forward(self, x):
                x = self.bn1(x)
                x = self.conv(x)
                x = self.bn2(x)
                return x

        def _get_getitem_nodes(m: torch.fx.GraphModule):
            """
            Return a 2-tuple of (unrelated_getitem_node, conv_bn_getitem_node) from the graph.
            """
            unrelated_getitem_node, conv_bn_getitem_node = None, None
            for node in m.graph.nodes:
                if (
                    node.target != operator.getitem
                    or node.args[0].target
                    != torch.ops.aten._native_batch_norm_legit.default
                ):
                    continue
                if node.args[0].args[0].op == "placeholder":
                    unrelated_getitem_node = node
                else:
                    conv_bn_getitem_node = node
            assert (
                unrelated_getitem_node is not None
            ), "did not find unrelated getitem node, bad test setup"
            assert (
                conv_bn_getitem_node is not None
            ), "did not find conv bn getitem node, bad test setup"
            return (unrelated_getitem_node, conv_bn_getitem_node)

        # Program capture
        m = M(self.conv_class, self.bn_class)
        m = torch._export.capture_pre_autograd_graph(m, self.example_inputs)
        m.graph.eliminate_dead_code()
        m.recompile()
        (_, original_conv_bn_getitem_node) = _get_getitem_nodes(m)

        # Prepare QAT
        quantizer = XNNPACKQuantizer()
        quantizer.set_global(
            get_symmetric_quantization_config(is_per_channel=False, is_qat=True)
        )
        m = prepare_qat_pt2e(m, quantizer)
        (unrelated_getitem_node, conv_bn_getitem_node) = _get_getitem_nodes(m)

        # Verify that the metadata was copied from `conv_bn_getitem`, not `unrelated_getitem`
        original_conv_bn_getitem_meta = original_conv_bn_getitem_node.meta[
            "quantization_annotation"
        ]
        conv_bn_getitem_meta = conv_bn_getitem_node.meta["quantization_annotation"]
        self.assertEqual(conv_bn_getitem_meta, original_conv_bn_getitem_meta)
        self.assertTrue("quantization_annotation" not in unrelated_getitem_node.meta)

    def test_qat_update_shared_qspec(self):
        """
        Test the case where nodes used in SharedQuantizationSpec were replaced
        during QAT subgraph rewriting.
        """

        class M(torch.nn.Module):
            def __init__(self, conv_class, bn_class):
                super().__init__()
                self.conv = conv_class(3, 3, 3)
                self.bn = bn_class(3)
                self.hardtanh = torch.nn.Hardtanh()

            def forward(self, x):
                x = self.conv(x)
                x = self.bn(x)
                x = self.hardtanh(x)
                return x

        m = M(self.conv_class, self.bn_class)
        self._verify_symmetric_xnnpack_qat_numerics(m, self.example_inputs)

    def test_qat_preserve_source_fn_stack(self):
        """
        Test whether `source_fn_stack` is preserved after QAT fusion.
        """

        class M(torch.nn.Module):
            def __init__(self, conv_class, bn_class, backbone):
                super().__init__()
                self.conv = conv_class(5, 3, 3)
                self.bn = bn_class(3)
                self.relu = torch.nn.ReLU()
                self.backbone = backbone

            def forward(self, x):
                x = self.conv(x)
                x = self.bn(x)
                x = self.relu(x)
                x = self.backbone(x)
                return x

        assert self.dim in [1, 2]
        if self.dim == 1:
            example_inputs = (torch.randn(1, 5, 10),)
        else:
            example_inputs = (torch.randn(1, 5, 10, 10),)

        # QAT prepare + convert
        backbone = self._get_conv_bn_model(has_relu=True)
        m = M(self.conv_class, self.bn_class, backbone)
        quantizer = XNNPACKQuantizer()
        quantizer.set_global(get_symmetric_quantization_config(is_qat=True))
        m = export_for_training(m, example_inputs).module()
        m = prepare_qat_pt2e(m, quantizer)
        m(*example_inputs)
        m = convert_pt2e(m)

        # Extract the conv and relu nodes (bn was folded into conv)
        first_conv, first_relu, second_conv, second_relu = None, None, None, None
        for n in m.graph.nodes:
            if n.target == torch.ops.aten.relu.default:
                if first_relu is None:
                    assert first_conv is None, "bad test setup"
                    first_relu = n
                    first_conv = n.args[0]
                else:
                    assert second_conv is None, "bad test setup"
                    second_relu = n
                    second_conv = n.args[0]

        # Extract the conv weight and bias nodes
        def get_conv_weight_and_bias(conv_node: torch.fx.Node):
            weight_dq_node = conv_node.args[1]
            qweight_node = weight_dq_node.args[0]
            bias_node = conv_node.args[2]
            assert isinstance(qweight_node, torch.fx.Node)
            assert isinstance(bias_node, torch.fx.Node)
            return (qweight_node, bias_node)

        first_conv_qweight, first_conv_bias = get_conv_weight_and_bias(first_conv)
        second_conv_qweight, second_conv_bias = get_conv_weight_and_bias(second_conv)

        # Assert that each set of conv, conv weight, and conv bias are in the same partition
        def get_source_fn(node: torch.fx.Node):
            # E.g. [('l__self___backbone1_conv', <class 'torch.nn.modules.conv.Conv2d'>)]
            return node.meta["source_fn_stack"][0][0]

        # we don't preserve this is quantized weight currently since it's folded
        # but user can attach "quantization_tag" to the node and it will be preserved
        # self.assertEqual(get_source_fn(first_conv), get_source_fn(first_conv_qweight))
        # self.assertEqual(get_source_fn(second_conv), get_source_fn(second_conv_qweight))

        self.assertEqual(get_source_fn(first_conv), get_source_fn(first_conv_bias))
        self.assertEqual(get_source_fn(second_conv), get_source_fn(second_conv_bias))

        # Assert that different sets of convs and relus have different partitions
        self.assertNotEqual(get_source_fn(first_conv), get_source_fn(first_relu))
        self.assertNotEqual(get_source_fn(first_conv), get_source_fn(second_conv))
        self.assertNotEqual(get_source_fn(second_conv), get_source_fn(second_relu))
        self.assertNotEqual(get_source_fn(first_relu), get_source_fn(second_relu))

        # Assert that "backbone" exists only in the second set of conv and relu's partition
        self.assertTrue("backbone" not in get_source_fn(first_conv))
        self.assertTrue("backbone" not in get_source_fn(first_relu))
        self.assertTrue("backbone" in get_source_fn(second_conv))
        self.assertTrue("backbone" in get_source_fn(second_relu))

    def test_qat_conv_bn_bias_derived_qspec(self):
        m = self._get_conv_bn_model()
        example_inputs = self.example_inputs
        m = export_for_training(m, example_inputs).module()
        quantizer = ConvBnDerivedBiasQuantizer()
        m = prepare_qat_pt2e(m, quantizer)
        m(*example_inputs)
        m = convert_pt2e(m)
        m(*example_inputs)

        # Assert that both weight and bias are quantized
        (conv_node, _, _) = _get_conv_bn_getitem_nodes(m)
        weight_dq = conv_node.args[1]
        bias_dq = conv_node.args[2]
        self.assertEqual(
            weight_dq.target,
            torch.ops.quantized_decomposed.dequantize_per_tensor.default,
        )
        self.assertEqual(
            bias_dq.target,
            torch.ops.quantized_decomposed.dequantize_per_tensor.default,
        )
        weight_getattr = weight_dq.args[0]
        bias_getattr = bias_dq.args[0]
        self.assertEqual(
            weight_getattr.op,
            "get_attr",
        )
        self.assertEqual(
            bias_getattr.op,
            "get_attr",
        )

        # Assert that bias scale = weight scale * input scale
        input_dq = conv_node.args[0]
        input_scale = input_dq.args[1]
        bias_scale = bias_dq.args[1]
        weight_scale = weight_dq.args[1]
        self.assertEqual(bias_scale, input_scale * weight_scale)

        # Assert that args for the bias' quantize and dequantize ops
        # are copied correctly after subgraph rewriting
        (bias_qmin, bias_qmax, bias_dtype) = bias_dq.args[3:]
        self.assertEqual(bias_qmin, -(2**31))
        self.assertEqual(bias_qmax, 2**31 - 1)
        self.assertEqual(bias_dtype, torch.int32)

    def test_qat_per_channel_weight_custom_dtype(self):
        m = self._get_conv_bn_model()
        example_inputs = self.example_inputs
        m = export_for_training(m, example_inputs).module()
        quantizer = ConvBnInt32WeightQuantizer()
        m = prepare_qat_pt2e(m, quantizer)
        m(*example_inputs)
        m = convert_pt2e(m)
        m(*example_inputs)

        # Assert that conv weight is quantized per channel
        (conv_node, _, _) = _get_conv_bn_getitem_nodes(m)
        weight_dq = conv_node.args[1]
        self.assertEqual(
            weight_dq.target,
            torch.ops.quantized_decomposed.dequantize_per_channel.default,
        )
        weight_getattr = weight_dq.args[0]
        self.assertEqual(
            weight_getattr.op,
            "get_attr",
        )

        # Assert that args for the weight's dequantize ops
        # are copied correctly after subgraph rewriting
        (dq_axis, dq_qmin, dq_qmax, dq_dtype) = weight_dq.args[3:]
        self.assertEqual(dq_axis, 0)
        self.assertEqual(dq_qmin, 0)
        self.assertEqual(dq_qmax, 2**31 - 1)
        self.assertEqual(dq_dtype, torch.int32)

    def _do_test_qat_conv_transpose_bn(self, has_relu: bool):
        # Use different in/out channel sizes to test if conv weight is
        # properly transposed in QAT pattern
        m = self._get_conv_bn_model(
            has_relu=has_relu,
            transpose=True,
            in_channels=3,
            out_channels=5,
            kernel_size=3,
        )
        self._verify_symmetric_xnnpack_qat_graph(
            m,
            self.example_inputs,
            has_relu=has_relu,
            verify_convert=True,
        )

    def test_qat_conv_transpose_bn(self):
        self._do_test_qat_conv_transpose_bn(has_relu=False)

    def test_qat_conv_transpose_bn_relu(self):
        self._do_test_qat_conv_transpose_bn(has_relu=True)

    def test_qat_conv_bn_per_channel_weight_bias(self):
        m = self._get_conv_bn_model()
        example_inputs = self.example_inputs
        m = export_for_training(m, example_inputs).module()
        quantizer = ConvBnDerivedBiasQuantizer(is_per_channel=True)
        m = prepare_qat_pt2e(m, quantizer)
        m(*example_inputs)
        m = convert_pt2e(m)
        m(*example_inputs)

        # Expected graph:
        #      x -> q_tensor -> dq_tensor -> conv -> q_tensor -> dq_tensor -> output
        #  weight -> q_channel -> dq_channel /
        #    bias -> q_channel -> dq_channel /

        (conv_node, _, _) = _get_conv_bn_getitem_nodes(m)
        conv_op = conv_node.target
        conv_weight_dq_op = (
            torch.ops.quantized_decomposed.dequantize_per_channel.default
        )
        node_occurrence = {
            ns.call_function(
                torch.ops.quantized_decomposed.quantize_per_tensor.default
            ): 2,
            ns.call_function(
                torch.ops.quantized_decomposed.dequantize_per_tensor.default
            ): 2,
            ns.call_function(
                torch.ops.quantized_decomposed.dequantize_per_channel.default
            ): 2,
        }
        node_list = [
            ns.call_function(
                torch.ops.quantized_decomposed.quantize_per_tensor.default
            ),
            ns.call_function(
                torch.ops.quantized_decomposed.dequantize_per_tensor.default
            ),
            ns.call_function(conv_weight_dq_op),
            ns.call_function(conv_weight_dq_op),
            ns.call_function(conv_op),
            ns.call_function(
                torch.ops.quantized_decomposed.quantize_per_tensor.default
            ),
            ns.call_function(
                torch.ops.quantized_decomposed.dequantize_per_tensor.default
            ),
        ]
        self.checkGraphModuleNodes(
            m,
            expected_node_list=node_list,
            expected_node_occurrence=node_occurrence,
        )

    def test_fold_bn_erases_bn_node(self):
        """
        Ensure the BN node is erased from the graph after folding
        it into conv in `convert_pt2e` even in train mode.
        """
        m = self._get_conv_bn_model(has_conv_bias=False, has_bn=True, has_relu=False)
        m = export_for_training(m, self.example_inputs).module()
        quantizer = XNNPACKQuantizer()
        quantizer.set_global(
            get_symmetric_quantization_config(is_per_channel=False, is_qat=True),
        )
        m = prepare_qat_pt2e(m, quantizer)
        m = convert_pt2e(m)
        (conv_node, bn_node, _) = _get_conv_bn_getitem_nodes(m)
        self.assertTrue(conv_node is not None)
        self.assertTrue(bn_node is None)

    def test_preserve_capture_pre_autograd_graph_tag(self):
        """
        Ensure the capture_pre_autograd_graph_tag node meta is preserved.
        TODO: Remove this test after training IR migration.
        T199018392
        """
        from torch._export import capture_pre_autograd_graph
        from torch._utils_internal import capture_pre_autograd_graph_using_training_ir

        if capture_pre_autograd_graph_using_training_ir():
            self.skipTest(
                "test doesn't apply when capture_pre_autograd_graph is using training IR"
            )

        m = self._get_conv_bn_model(has_conv_bias=False, has_bn=True, has_relu=False)
        m = capture_pre_autograd_graph(m, self.example_inputs)

        for node in m.graph.nodes:
            self.assertTrue(node.meta.get("capture_pre_autograd_graph_tag", False))
        quantizer = XNNPACKQuantizer()
        quantizer.set_global(
            get_symmetric_quantization_config(is_per_channel=False, is_qat=True),
        )
        m = prepare_qat_pt2e(m, quantizer)
        m = convert_pt2e(m)
        has_tag = False
        for node in m.graph.nodes:
            if not node.meta.get("capture_pre_autograd_graph_tag", False):
                has_tag = True
                break
        self.assertTrue(has_tag)
        torch.export.export(m, self.example_inputs)


@skipIfNoQNNPACK
class TestQuantizePT2EQAT_ConvBn1d(TestQuantizePT2EQAT_ConvBn_Base):
    dim = 1
    example_inputs = (torch.randn(1, 3, 5),)
    conv_class = torch.nn.Conv1d
    conv_transpose_class = torch.nn.ConvTranspose1d
    bn_class = torch.nn.BatchNorm1d


@skipIfNoQNNPACK
class TestQuantizePT2EQAT_ConvBn2d(TestQuantizePT2EQAT_ConvBn_Base):
    dim = 2
    example_inputs = (torch.randn(1, 3, 5, 5),)
    conv_class = torch.nn.Conv2d
    conv_transpose_class = torch.nn.ConvTranspose2d
    bn_class = torch.nn.BatchNorm2d


def _is_conv_node(n: torch.fx.Node):
    return n.op == "call_function" and n.target in [
        torch.ops.aten.conv1d.default,
        torch.ops.aten.conv2d.default,
        torch.ops.aten.conv_transpose1d,
        torch.ops.aten.conv_transpose1d.default,
        torch.ops.aten.conv_transpose2d,
        torch.ops.aten.conv_transpose2d.input,
    ]


def _get_conv_bn_getitem_nodes(model: torch.fx.GraphModule):
    """
    Return a 3-tuple of (conv, bn, getitem) nodes from the graph.
    """
    model.graph.eliminate_dead_code()
    model.recompile()
    conv_node = None
    bn_node = None
    getitem_node = None
    for n in model.graph.nodes:
        if _is_conv_node(n):
            conv_node = n
        if n.target in (
            torch.ops.aten._native_batch_norm_legit.default,
            torch.ops.aten.batch_norm.default,
        ):
            bn_node = n
        if n.target == operator.getitem:
            getitem_node = n
    assert conv_node is not None, "bad test setup"
    return (conv_node, bn_node, getitem_node)


class ConvBnInt32WeightQuantizer(Quantizer):
    """
    Dummy quantizer that annotates conv bn in such a way that the weights
    are quantized per channel to int32.
    """

    def annotate(self, model: torch.fx.GraphModule) -> torch.fx.GraphModule:
        conv_node, bn_node, getitem_node = _get_conv_bn_getitem_nodes(model)
        act_qspec = QuantizationSpec(
            dtype=torch.uint8,
            quant_min=0,
            quant_max=255,
            qscheme=torch.per_tensor_affine,
            observer_or_fake_quant_ctr=default_fake_quant,
        )
        weight_qspec = QuantizationSpec(
            dtype=torch.int32,
            quant_min=0,
            quant_max=2**31 - 1,
            qscheme=torch.per_channel_affine,
            observer_or_fake_quant_ctr=FusedMovingAvgObsFakeQuantize.with_args(
                observer=MovingAveragePerChannelMinMaxObserver,
            ),
        )
        conv_node.meta["quantization_annotation"] = QuantizationAnnotation(
            input_qspec_map={
                conv_node.args[0]: act_qspec,
                conv_node.args[1]: weight_qspec,
            },
            _annotated=True,
        )

        # See NOTE [training ir has no getitem for bn node].
        bn_node.meta["quantization_annotation"] = QuantizationAnnotation(
            output_qspec=act_qspec,
            _annotated=True,
        )
        return model

    def validate(self, model: torch.fx.GraphModule):
        pass


class ConvBnDerivedBiasQuantizer(Quantizer):
    """
    Dummy quantizer that annotates conv bn in such a way that the bias qparams are
    derived from the conv input activation and weight qparams.
    """

    def __init__(self, is_per_channel: bool = False):
        super().__init__()
        self.is_per_channel = is_per_channel

    def _derive_bias_qparams_from_act_and_weight_qparams(self, obs_or_fqs):
        act_scale, _ = obs_or_fqs[0].calculate_qparams()
        weight_scale, _ = obs_or_fqs[1].calculate_qparams()
        if self.is_per_channel:
            bias_scale = act_scale * weight_scale
            bias_zero_point = torch.zeros_like(bias_scale, dtype=torch.int32)
        else:
            bias_scale = torch.tensor([act_scale * weight_scale], dtype=torch.float32)
            bias_zero_point = torch.tensor([0], dtype=torch.int32)
        return bias_scale, bias_zero_point

    def annotate(self, model: torch.fx.GraphModule) -> torch.fx.GraphModule:
        if self.is_per_channel:
            weight_qscheme = torch.per_channel_symmetric
            weight_fq = FusedMovingAvgObsFakeQuantize.with_args(
                observer=MovingAveragePerChannelMinMaxObserver,
            )
        else:
            weight_qscheme = torch.per_tensor_affine
            weight_fq = default_fake_quant
        conv_node, bn_node, getitem_node = _get_conv_bn_getitem_nodes(model)
        act_qspec = QuantizationSpec(
            dtype=torch.uint8,
            quant_min=0,
            quant_max=255,
            qscheme=torch.per_tensor_affine,
            observer_or_fake_quant_ctr=default_fake_quant,
        )
        weight_qspec = QuantizationSpec(
            dtype=torch.uint8,
            quant_min=0,
            quant_max=255,
            qscheme=weight_qscheme,
            observer_or_fake_quant_ctr=weight_fq,
        )
        bias_qspec = DerivedQuantizationSpec(
            derived_from=[
                (conv_node.args[0], conv_node),
                (conv_node.args[1], conv_node),
            ],
            derive_qparams_fn=self._derive_bias_qparams_from_act_and_weight_qparams,
            dtype=torch.int32,
            quant_min=-(2**31),
            quant_max=2**31 - 1,
            qscheme=weight_qscheme,
            ch_axis=0 if self.is_per_channel else None,
        )
        conv_node.meta["quantization_annotation"] = QuantizationAnnotation(
            input_qspec_map={
                conv_node.args[0]: act_qspec,
                conv_node.args[1]: weight_qspec,
                conv_node.args[2]: bias_qspec,
            },
            _annotated=True,
        )

        # NOTE [training ir has no getitem for bn node].
        # getitem is None when we use the training IR. It outputs
        # aten.batch_norm.default, which do not need any getitem node.
        # In this case, we need to annotate on the batch norm node.
        # geteitem node should only be None if we are using training IR.

        bn_node.meta["quantization_annotation"] = QuantizationAnnotation(
            output_qspec=act_qspec,
            _annotated=True,
        )
        return model

    def validate(self, model: torch.fx.GraphModule):
        pass


@skipIfNoQNNPACK
class TestQuantizePT2EQATModels(PT2EQATTestCase):
    @skip_if_no_torchvision
    @skipIfNoQNNPACK
    def test_qat_resnet18(self):
        import torchvision

        with override_quantized_engine("qnnpack"):
            example_inputs = (torch.randn(1, 3, 224, 224),)
            m = torchvision.models.resnet18()
            self._verify_symmetric_xnnpack_qat_numerics(m, example_inputs)

    @skip_if_no_torchvision
    @skipIfNoQNNPACK
    def test_qat_mobilenet_v2(self):
        import torchvision

        with override_quantized_engine("qnnpack"):
            example_inputs = (torch.randn(1, 3, 224, 224),)
            m = torchvision.models.mobilenet_v2()
            self._verify_symmetric_xnnpack_qat_numerics(m, example_inputs)


class TestQuantizeMixQATAndPTQ(QuantizationTestCase):
    class TwoLinear(torch.nn.Module):
        def __init__(self) -> None:
            super().__init__()
            self.linear1 = torch.nn.Linear(16, 8, bias=False)
            self.linear2 = torch.nn.Linear(8, 8)

        def forward(self, x):
            return self.linear2(self.linear1(x))

    class QATPTQTestModule(torch.nn.Module):
        def __init__(self) -> None:
            super().__init__()
            self.conv = torch.nn.Conv2d(3, 16, 3)
            self.linears = TestQuantizeMixQATAndPTQ.TwoLinear()
            self.my_linear = torch.nn.Linear(8, 8)

        def forward(self, x):
            conv_out = self.conv(x)
            permute_out = torch.permute(conv_out, (0, 2, 3, 1))
            linear_out = self.linears(permute_out)
            my_linear_out = self.my_linear(linear_out)
            # Hardtanh doesnt get quantized via xnnpack quantizer in this test
            # because it relies on the propagation rules
            # Need to fix this
            return torch.nn.functional.hardtanh(my_linear_out)

    def _prepare_qat_linears(self, model):
        for name, child in model.named_children():
            if isinstance(child, (torch.nn.Linear, TestQuantizeMixQATAndPTQ.TwoLinear)):
                if isinstance(child, torch.nn.Linear):
                    in_channels = child.weight.size(1)
                else:
                    in_channels = child.linear1.weight.size(1)

                example_input = (torch.rand((1, in_channels)),)
                traced_child = export_for_training(child, example_input).module()
                quantizer = XNNPACKQuantizer()
                quantization_config = get_symmetric_quantization_config(
                    is_per_channel=True, is_qat=True
                )
                quantizer.set_global(quantization_config)
                traced_child_prepared = prepare_qat_pt2e(traced_child, quantizer)
                setattr(model, name, traced_child_prepared)
            else:
                self._prepare_qat_linears(child)

    def _convert_qat_linears(self, model):
        for name, child in model.named_children():
            if isinstance(child, torch.fx.GraphModule):
                torch.ao.quantization.move_exported_model_to_eval(child)
                converted_child = convert_pt2e(child)
                setattr(model, name, converted_child)
            else:
                self._convert_qat_linears(child)

    def test_mixing_qat_ptq(self):
        example_inputs = (torch.randn(2, 3, 4, 4),)
        model = TestQuantizeMixQATAndPTQ.QATPTQTestModule()

        self._prepare_qat_linears(model)

        after_prepare_result_pt2e = model(*example_inputs)
        # must be fixed model.eval()
        self._convert_qat_linears(model)
        quant_result_pt2e = model(*example_inputs)

        model_pt2e = export_for_training(
            model,
            example_inputs,
        ).module()

        quantizer = XNNPACKQuantizer()
        quantizer.set_module_type(torch.nn.Linear, None)
        quantization_config = get_symmetric_quantization_config()
        quantizer.set_global(quantization_config)
        model_pt2e = prepare_pt2e(model_pt2e, quantizer)
        after_prepare_result_pt2e = model_pt2e(*example_inputs)
        model_pt2e = convert_pt2e(model_pt2e)
        quant_result_pt2e = model_pt2e(*example_inputs)

        exported_model = torch.export.export(model_pt2e, example_inputs)

        node_occurrence = {
            # conv2d: 1 for act, 1 for weight, 1 for output
            # 3 x linear: 1 for act, 1 for output
            ns.call_function(
                torch.ops.quantized_decomposed.quantize_per_tensor.default
            ): 8,
            ns.call_function(
                torch.ops.quantized_decomposed.dequantize_per_tensor.default
            ): 9,
            ns.call_function(
                torch.ops.quantized_decomposed.dequantize_per_channel.default
            ): 3,
            # There needs to be one for hardtanh
        }
        self.checkGraphModuleNodes(
            exported_model.graph_module, expected_node_occurrence=node_occurrence
        )