File: test_representation.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (311 lines) | stat: -rw-r--r-- 10,104 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
# Owner(s): ["oncall: quantization"]
import copy
from typing import Any, Dict, Optional, Tuple

import torch
from torch._higher_order_ops.out_dtype import out_dtype  # noqa: F401
from torch.ao.quantization.quantize_pt2e import convert_pt2e, prepare_pt2e
from torch.ao.quantization.quantizer import Quantizer
from torch.ao.quantization.quantizer.xnnpack_quantizer import (
    get_symmetric_quantization_config,
    XNNPACKQuantizer,
)
from torch.export import export_for_training
from torch.testing._internal.common_quantization import (
    NodeSpec as ns,
    QuantizationTestCase,
    skipIfNoQNNPACK,
    TestHelperModules,
)


@skipIfNoQNNPACK
class TestPT2ERepresentation(QuantizationTestCase):
    def _test_representation(
        self,
        model: torch.nn.Module,
        example_inputs: Tuple[Any, ...],
        quantizer: Quantizer,
        ref_node_occurrence: Dict[ns, int],
        non_ref_node_occurrence: Dict[ns, int],
        fixed_output_tol: Optional[float] = None,
        output_scale_idx: int = 2,
    ) -> torch.nn.Module:
        # resetting dynamo cache
        torch._dynamo.reset()
        model = export_for_training(
            model,
            example_inputs,
        ).module()
        model_copy = copy.deepcopy(model)

        model = prepare_pt2e(model, quantizer)
        # Calibrate
        model(*example_inputs)
        model = convert_pt2e(model, use_reference_representation=True)
        self.checkGraphModuleNodes(model, expected_node_occurrence=ref_node_occurrence)
        # make sure it runs
        pt2e_quant_output = model(*example_inputs)

        # TODO: torchdynamo times out when we do this, we can enable numerical checking
        # after that is fixed
        model_copy = prepare_pt2e(model_copy, quantizer)
        # Calibrate
        model_copy(*example_inputs)
        model_copy = convert_pt2e(model_copy, use_reference_representation=False)
        self.checkGraphModuleNodes(
            model_copy, expected_node_occurrence=non_ref_node_occurrence
        )
        pt2e_quant_output_copy = model_copy(*example_inputs)

        output_tol = None
        if fixed_output_tol is not None:
            output_tol = fixed_output_tol
        else:
            idx = 0
            for n in model_copy.graph.nodes:
                if (
                    n.target
                    == torch.ops.quantized_decomposed.quantize_per_tensor.default
                ):
                    idx += 1
                    if idx == output_scale_idx:
                        output_tol = n.args[1]
            assert output_tol is not None

        # make sure the result is off by one at most in the quantized integer representation
        self.assertTrue(
            torch.max(torch.abs(pt2e_quant_output_copy - pt2e_quant_output))
            <= (2 * output_tol + 1e-5)
        )

    def test_static_linear(self):
        class M(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.linear = torch.nn.Linear(5, 5)

            def forward(self, x):
                return self.linear(x)

        quantizer = XNNPACKQuantizer()
        operator_config = get_symmetric_quantization_config(is_per_channel=False)
        quantizer.set_global(operator_config)
        example_inputs = (torch.randn(2, 5),)

        self._test_representation(
            M().eval(),
            example_inputs,
            quantizer,
            ref_node_occurrence={},
            non_ref_node_occurrence={},
        )

    def test_dynamic_linear(self):
        class M(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.linear = torch.nn.Linear(5, 5)

            def forward(self, x):
                return self.linear(x)

        quantizer = XNNPACKQuantizer()
        operator_config = get_symmetric_quantization_config(
            is_per_channel=False, is_dynamic=True
        )
        quantizer.set_global(operator_config)
        example_inputs = (torch.randn(2, 5),)

        self._test_representation(
            M().eval(),
            example_inputs,
            quantizer,
            ref_node_occurrence={},
            non_ref_node_occurrence={},
            fixed_output_tol=1e-4,
        )

    def test_conv2d(self):
        class M(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.conv2d = torch.nn.Conv2d(3, 3, 3)

            def forward(self, x):
                return self.conv2d(x)

        quantizer = XNNPACKQuantizer()
        operator_config = get_symmetric_quantization_config(is_per_channel=False)
        quantizer.set_global(operator_config)
        example_inputs = (torch.randn(1, 3, 3, 3),)

        self._test_representation(
            M().eval(),
            example_inputs,
            quantizer,
            ref_node_occurrence={},
            non_ref_node_occurrence={},
        )

    def test_add(self):
        class M(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

            def forward(self, x, y):
                return x + y

        quantizer = XNNPACKQuantizer()
        quantization_config = get_symmetric_quantization_config(is_per_channel=True)
        quantizer.set_global(quantization_config)
        m_eager = M().eval()

        example_inputs = (
            torch.randn(1, 3, 3, 3),
            torch.randn(1, 3, 3, 3),
        )

        self._test_representation(
            M().eval(),
            example_inputs,
            quantizer,
            ref_node_occurrence={},
            non_ref_node_occurrence={},
        )

    def test_add_relu(self):
        class M(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

            def forward(self, x, y):
                out = x + y
                out = torch.nn.functional.relu(out)
                return out

        quantizer = XNNPACKQuantizer()
        operator_config = get_symmetric_quantization_config(is_per_channel=True)
        quantizer.set_global(operator_config)

        example_inputs = (
            torch.randn(1, 3, 3, 3),
            torch.randn(1, 3, 3, 3),
        )
        ref_node_occurrence = {
            ns.call_function(out_dtype): 2,
        }

        self._test_representation(
            M().eval(),
            example_inputs,
            quantizer,
            ref_node_occurrence=ref_node_occurrence,
            non_ref_node_occurrence={},
        )

    def test_maxpool2d(self):
        quantizer = XNNPACKQuantizer()
        operator_config = get_symmetric_quantization_config(is_per_channel=True)
        quantizer.set_global(operator_config)
        m_eager = TestHelperModules.ConvMaxPool2d().eval()

        example_inputs = (torch.randn(1, 2, 2, 2),)

        self._test_representation(
            m_eager,
            example_inputs,
            quantizer,
            ref_node_occurrence={},
            non_ref_node_occurrence={},
        )

    def test_qdq_per_channel(self):
        """Test representation for quantize_per_channel and dequantize_per_channel op"""

        class M(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.linear = torch.nn.Linear(5, 5)

            def forward(self, x):
                return self.linear(x)

        quantizer = XNNPACKQuantizer()
        # use per channel quantization for weight
        operator_config = get_symmetric_quantization_config(is_per_channel=True)
        quantizer.set_global(operator_config)
        m_eager = M().eval()

        inputs = [
            (torch.randn(1, 5),),
            (torch.randn(1, 3, 5),),
            (torch.randn(1, 3, 3, 5),),
            (torch.randn(1, 3, 3, 3, 5),),
        ]
        for example_inputs in inputs:
            ref_node_occurrence = {
                ns.call_function(
                    torch.ops.quantized_decomposed.quantize_per_channel.default
                ): 0,
                ns.call_function(
                    torch.ops.quantized_decomposed.dequantize_per_channel.default
                ): 0,
            }
            non_ref_node_occurrence = {
                # quantize_per_channel is folded
                ns.call_function(
                    torch.ops.quantized_decomposed.quantize_per_channel.default
                ): 0,
                ns.call_function(
                    torch.ops.quantized_decomposed.dequantize_per_channel.default
                ): 1,
            }

            self._test_representation(
                M().eval(),
                example_inputs,
                quantizer,
                ref_node_occurrence,
                non_ref_node_occurrence,
                output_scale_idx=2,
            )

    def test_qdq(self):
        """Test representation for quantize and dequantize op"""

        class M(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

            def forward(self, x, y):
                return x + y

        quantizer = XNNPACKQuantizer()
        quantization_config = get_symmetric_quantization_config(is_per_channel=True)
        quantizer.set_global(quantization_config)
        m_eager = M().eval()

        example_inputs = (
            torch.randn(1, 3, 3, 3),
            torch.randn(1, 3, 3, 3),
        )
        ref_node_occurrence = {
            ns.call_function(torch.ops.quantized_decomposed.quantize_per_tensor): 0,
            ns.call_function(torch.ops.quantized_decomposed.dequantize_per_tensor): 0,
        }
        non_ref_node_occurrence = {
            ns.call_function(
                torch.ops.quantized_decomposed.quantize_per_tensor.default
            ): 3,
            ns.call_function(
                torch.ops.quantized_decomposed.dequantize_per_tensor.default
            ): 3,
        }
        self._test_representation(
            M().eval(),
            example_inputs,
            quantizer,
            ref_node_occurrence,
            non_ref_node_occurrence,
        )