File: test_autograd.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (14273 lines) | stat: -rw-r--r-- 522,970 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
# Owner(s): ["module: autograd"]

import collections
import contextlib
import functools
import gc
import io
import math
import operator
import os
import pickle
import random
import subprocess
import sys
import tempfile
import threading
import time
import unittest
import uuid
import warnings
import weakref
from collections import OrderedDict
from copy import deepcopy
from functools import partial, reduce
from itertools import product
from operator import mul
from typing import List, Tuple, TYPE_CHECKING

import torch
import torch.autograd._functions
import torch.autograd.forward_ad as fwAD
from torch import inf, nan, nn
from torch.autograd import (
    _calculate_shape,
    detect_anomaly,
    Function,
    kineto_available,
    Variable,
)
from torch.autograd.function import InplaceFunction, once_differentiable
from torch.autograd.graph import GradientEdge
from torch.autograd.profiler import emit_itt, emit_nvtx, profile, record_function
from torch.autograd.profiler_util import (
    _format_time,
    EventList,
    FunctionEvent,
    FunctionEventAvg,
)
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_device_type import (
    deviceCountAtLeast,
    dtypes,
    dtypesIfCUDA,
    dtypesIfMPS,
    instantiate_device_type_tests,
    onlyCPU,
    onlyCUDA,
    skipMeta,
)
from torch.testing._internal.common_dtype import floating_types_and
from torch.testing._internal.common_methods_invocations import mask_not_all_zeros
from torch.testing._internal.common_utils import (
    disable_gc,
    gradcheck,
    gradgradcheck,
    instantiate_parametrized_tests,
    IS_MACOS,
    IS_WINDOWS,
    parametrize,
    run_tests,
    scoped_load_inline,
    set_warn_always_context,
    skipIfMPS,
    skipIfNoLapack,
    skipIfTorchDynamo,
    skipIfWindows,
    slowTest,
    TestCase,
    xfailIfS390X,
    xfailIfTorchDynamo,
)
from torch.utils._mode_utils import no_dispatch
from torch.utils._python_dispatch import TorchDispatchMode
from torch.utils.checkpoint import (
    checkpoint,
    checkpoint_sequential,
    CheckpointPolicy,
    create_selective_checkpoint_contexts,
)
from torch.utils.flop_counter import FlopCounterMode


if TYPE_CHECKING:
    from torch.utils.hooks import RemovableHandle


def graph_desc(fn):
    if fn is None:
        return "None"
    result = type(fn).__name__ + "("
    next_functions = fn.next_functions
    for next_fn, _ in next_functions:
        result += graph_desc(next_fn)
        result += ", "
    if next_functions:
        result = result[:-2]
    return result + ")"


class TestAutograd(TestCase):
    def test_copy_slices_graph_task_updates(self):
        def f1(x, y):
            out = x.clone().view(-1)
            out += y
            return out

        def f2(x, y):
            out = x.clone().view(-1)
            b = out * 2
            out += y
            return out + b

        x = torch.rand(2, requires_grad=True)
        y = torch.rand(2, requires_grad=True)

        y_safe = torch._C._functions.DelayedError("Boom!", 1)(y)

        for f in [f1, f2]:
            # Ensure that the error Node works
            out = f(x, y_safe)
            with self.assertRaisesRegex(RuntimeError, "Boom!"):
                out.sum().backward()

            out = f(x, y_safe)
            with self.assertRaisesRegex(RuntimeError, "Boom!"):
                torch.autograd.grad(out.sum(), y)

            # Ensure that if we don't ask for y, it doesn't crash
            out = f(x, y_safe)
            torch.autograd.grad(out.sum(), x)

            out = f(x, y_safe)
            torch.autograd.grad(out.sum(), y_safe)

            out = f(x, y_safe)
            torch.autograd.grad(out.sum(), (x, y_safe))

        # Ensure that we don't run extra view Node
        def f3(x, y):
            out = x.clone().view(-1)

            def hook(*args):
                # This should never be called!
                self.assertTrue(False)

            out.register_hook(hook)

            b = out + y
            out += y
            return out + b, b

        out, b = f3(x, y_safe)
        torch.autograd.grad(out.sum(), (b, y_safe))

    def test_grad_mode_class_decoration(self):
        # Decorating class is deprecated and should not be used
        with self.assertWarnsRegex(FutureWarning, "Decorating classes is deprecated"):

            @torch.no_grad()
            class Foo:
                def __init__(self) -> None:
                    assert not torch.is_grad_enabled()

                def foo(self):
                    # Not applied to methods
                    assert torch.is_grad_enabled()

            # Show that we can actually construct the class
            foo = Foo()
            foo.foo()

        # Decorating functions or methods is fine though
        with warnings.catch_warnings(record=True) as w:

            @torch.no_grad()
            def foo():
                assert not torch.is_grad_enabled()

            foo()

            class Foo2:
                @torch.no_grad()
                def __init__(self) -> None:
                    assert not torch.is_grad_enabled()

                @torch.no_grad()
                def foo(self):
                    assert not torch.is_grad_enabled()

            foo2 = Foo2()
            foo2.foo()

        self.assertEqual(len(w), 0)

    def test_tensor_grad_warnings(self):
        dummy = torch.empty(1)

        with warnings.catch_warnings(record=True) as w:
            # Accessing .grad on leaf
            dummy.requires_grad_()
            foo = dummy.grad
            self.assertEqual(len(w), 0)

            # Accessing .grad on non-leaf
            dummy = dummy.clone()
            foo = dummy.grad
            self.assertEqual(len(w), 1)

            # Accessing .grad on non-leaf that retains gradients
            dummy.retain_grad()
            foo = dummy.grad
            self.assertEqual(len(w), 1)

    def _function_test(self, cls):
        x = torch.randn(5, 5, requires_grad=True)
        y = torch.randn(5, 5, requires_grad=True)
        result = cls.apply(x, 2, y)
        go = torch.ones((), requires_grad=True)
        result.sum().backward(go, create_graph=True)

        self.assertEqual(x.grad, y + torch.ones(5, 5))
        self.assertEqual(y.grad, x + torch.ones(5, 5) * 2)
        self.assertIsNotNone(x.grad.grad_fn)
        self.assertIsNotNone(y.grad.grad_fn)

        return x, y

    def test_function(self):
        class MyFunction(Function):
            @staticmethod
            def forward(ctx, tensor1, pyscalar, tensor2):
                ctx.pyscalar = pyscalar
                ctx.save_for_backward(tensor1, tensor2)
                return tensor1 + pyscalar * tensor2 + tensor1 * tensor2

            @staticmethod
            def backward(ctx, grad_output):
                var1, var2 = ctx.saved_tensors
                # NOTE: self is the test case here
                self.assertIsInstance(var1, torch.Tensor)
                self.assertIsInstance(var2, torch.Tensor)
                self.assertIsInstance(grad_output, torch.Tensor)
                return (
                    grad_output + grad_output * var2,
                    None,
                    grad_output * ctx.pyscalar + grad_output * var1,
                )

        x, y = self._function_test(MyFunction)

        x_grad_desc = graph_desc(x.grad.grad_fn)
        y_grad_desc = graph_desc(y.grad.grad_fn)
        self.assertExpected(x_grad_desc, "x_grad_desc")
        self.assertExpected(y_grad_desc, "y_grad_desc")

    def test_once_differentiable(self):
        class MyFunction(Function):
            @staticmethod
            def forward(ctx, tensor1, pyscalar, tensor2):
                ctx.pyscalar = pyscalar
                ctx.save_for_backward(tensor1, tensor2)
                return tensor1 + pyscalar * tensor2 + tensor1 * tensor2

            @staticmethod
            @once_differentiable
            def backward(ctx, grad_output):
                self.assertFalse(torch.is_grad_enabled())
                t1, t2 = ctx.saved_tensors
                return (
                    grad_output + grad_output * t2,
                    None,
                    grad_output * ctx.pyscalar + grad_output * t1,
                )

        x, y = self._function_test(MyFunction)
        self.assertEqual(
            graph_desc(x.grad.grad_fn),
            "CopyBackwards(None, Error(AccumulateGrad(), None, AccumulateGrad()))",
        )
        self.assertEqual(
            graph_desc(y.grad.grad_fn),
            "CopyBackwards(None, Error(AccumulateGrad(), None, AccumulateGrad()))",
        )

    def test_function_returns_input(self):
        class MyFunction(Function):
            @staticmethod
            def forward(ctx, x):
                return x

            @staticmethod
            def backward(ctx, grad):
                return grad * 2

        for shape in [(1,), ()]:
            v = torch.ones(shape, requires_grad=True)
            MyFunction.apply(v).backward()
            self.assertEqual(v.grad, torch.full(shape, 2.0))

            with torch.no_grad():
                v.grad.zero_()
            MyFunction.apply(v.clone()).backward()
            self.assertEqual(v.grad, torch.full(shape, 2.0))

    def test_function_returns_undefined_tensor(self):
        class MyFunction(Function):
            @staticmethod
            def forward(ctx, x):
                return x * 2

            @staticmethod
            def backward(ctx, grad):
                return None

        # Test that undefined tensors returned from custom backward function
        # are propagated as undefined and not tensor full of zeroes
        x = torch.ones(1, requires_grad=True)

        MyFunction.apply(x).backward()
        self.assertIsNone(x.grad)

        MyFunction.apply(x**2).backward()
        self.assertIsNone(x.grad)

        MyFunction.apply(x).sum().backward()
        self.assertIsNone(x.grad)

        self.assertIsNone(
            torch.autograd.grad(MyFunction.apply(x), x, allow_unused=True)[0]
        )

    def test_materialize_grads(self):
        class MyFunction(Function):
            @staticmethod
            def forward(ctx, x):
                return x

            @staticmethod
            def backward(ctx, grad):
                self.assertEqual(grad, torch.zeros(1))
                return grad

        x = torch.ones(1, requires_grad=True)
        torch._C._functions.UndefinedGrad()(MyFunction.apply(x)).backward()

    def test_dont_materialize_grads(self):
        class MyFunction(Function):
            @staticmethod
            def forward(ctx, x):
                ctx.set_materialize_grads(False)
                return x

            @staticmethod
            def backward(ctx, grad):
                self.assertIsNone(grad)
                return grad

        x = torch.ones(1, requires_grad=True)
        torch._C._functions.UndefinedGrad()(MyFunction.apply(x)).backward()

    @skipIfTorchDynamo("compile tested in test/dynamo/test_autograd_function.py")
    def test_set_materialize_non_diff_grads(self):
        class Func(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                out0 = x.clone()
                out1 = x.clone()
                ctx.mark_non_differentiable(out1)
                ctx._materialize_non_diff_grads = False
                return out0, out1

            @staticmethod
            def backward(ctx, g0, g1):
                self.assertIsNone(g1)
                return g0

        a = torch.tensor(1.0, requires_grad=True)
        out = Func.apply(a)[0]
        out.backward()

    def test_legacy_function_deprecation_exception(self):
        # Trigger exception
        class MyFunction(Function):
            def forward(self, x):
                return x

            def backward(self, grad_output):
                return grad_output

        # Check exception occurs
        with self.assertRaisesRegex(
            RuntimeError,
            "Legacy autograd function with non-static forward method is deprecated",
        ):
            MyFunction()(torch.randn(3, 4))

    class SimulateBackwardError(Function):
        @staticmethod
        def forward(ctx, input):
            return input.clone()

        @staticmethod
        @once_differentiable
        def backward(ctx, input):
            raise Exception("Simulate error on backward pass")  # noqa: TRY002

    def test_custom_function_exception(self):
        t1 = torch.rand((3, 3), requires_grad=True)
        t2 = torch.rand((3, 3), requires_grad=True)

        tmp = (t1 + t2) * (t1 + t2)
        t3 = TestAutograd.SimulateBackwardError.apply(tmp)
        with self.assertRaisesRegex(Exception, "Simulate error on backward pass"):
            t3.sum().backward()

    def test_custom_function_non_tensor_inputs_outputs(self):
        class MyFunction(Function):
            @staticmethod
            def forward(ctx, t1, t2, scale, t3):
                t4 = t1 + t2 * t3
                t5 = t1 * t2 + t3
                t4 *= scale
                t5 *= scale

                # Save scale
                ctx.scale = scale
                ctx.save_for_backward(t1, t2, t3)
                return scale, t4, None, True, t5, "bar", t1

            @staticmethod
            @once_differentiable
            def backward(ctx, *grads):
                # Verify grads
                self.assertEqual(7, len(grads))
                self.assertIsNone(grads[0])
                self.assertIsNone(grads[2])
                self.assertIsNone(grads[3])
                self.assertIsNone(grads[5])

                scale = ctx.scale
                var1, var2, var3 = ctx.saved_tensors
                return (
                    grads[1] * scale + grads[4] * var2 * scale + grads[6],
                    grads[1] * var3 * scale + grads[4] * var1 * scale,
                    None,
                    grads[1] * var2 * scale + grads[4] * scale,
                )

        t1 = torch.rand(10, dtype=torch.double, requires_grad=True)
        t2 = torch.rand(10, dtype=torch.double, requires_grad=True)
        t3 = torch.rand(10, dtype=torch.double)
        scale = random.randint(0, 10)
        res = MyFunction.apply(t1, t2, scale, t3)
        self.assertEqual(scale, res[0])
        self.assertEqual((t1 + t2 * t3) * scale, res[1])
        self.assertEqual(None, res[2])
        self.assertEqual(True, res[3])
        self.assertEqual((t1 * t2 + t3) * scale, res[4])
        self.assertEqual("bar", res[5])
        self.assertEqual(t1, res[6])

        # Validate running backward.
        torch.autograd.backward([res[1].sum(), res[4].sum(), res[6].sum()])
        self.assertIsNotNone(t1.grad)
        self.assertIsNotNone(t2.grad)
        self.assertIsNone(t3.grad)

        # Test gradcheck
        def foo(t1, t2, t3):
            res = MyFunction.apply(t1, t2, scale, t3)
            return res[1], res[4], res[6]

        gradcheck(foo, (t1, t2, t3))

    def test_custom_function_no_tensors(self):
        class MyFunction(Function):
            @staticmethod
            def forward(ctx, t1, t2, scale, t3):
                t4 = t1 + t2 * t3
                t5 = t1 * t2 + t3
                t4 *= scale
                t5 *= scale
                return scale, t4, None, True, t5, "bar", t1

            @staticmethod
            @once_differentiable
            def backward(ctx, *args):
                return (args[0], args[1], None, args[2])

        t1 = random.random()
        t2 = random.random()
        t3 = random.random()
        scale = random.randint(0, 10)
        res = MyFunction.apply(t1, t2, scale, t3)
        self.assertEqual(scale, res[0])
        self.assertEqual((t1 + t2 * t3) * scale, res[1])
        self.assertEqual(None, res[2])
        self.assertEqual(True, res[3])
        self.assertEqual((t1 * t2 + t3) * scale, res[4])
        self.assertEqual("bar", res[5])
        self.assertEqual(t1, res[6])

    def test_invalid_gradients(self):
        class MyFunction(Function):
            @staticmethod
            def forward(ctx, x):
                return x * 2

            @staticmethod
            def backward(ctx, grad_output):
                return torch.randn(10, dtype=torch.float)

        with self.assertRaisesRegex(RuntimeError, "expected shape"):
            input = torch.randn(5, 5, dtype=torch.float, requires_grad=True)
            MyFunction.apply(input).sum().backward()

    def test_unrelated_inputs(self):
        # test to ensure grad(grad)check runs successfully even if there is an
        # unrelated (but differentiable) inputs

        def my_function(x, y):
            return x * x

        x = torch.rand(10, dtype=torch.double, requires_grad=True)
        y = torch.rand(10, dtype=torch.double, requires_grad=True)

        gradcheck(my_function, (x, y))
        gradgradcheck(my_function, (x, y))

    def test_not_implemented_grad(self):
        a = torch.rand(2, requires_grad=True)
        # if grad for nextafter ends up being implemented, this should be changed
        y = torch.nextafter(a, a).sum()
        with self.assertRaisesRegex(
            NotImplementedError, "the derivative for .* is not implemented"
        ):
            y.backward()

    def test_not_implemented_fwad(self):
        x = torch.randn(3)
        v = torch.rand(3)

        with fwAD.dual_level():
            dual_x = fwAD.make_dual(x, v)

            err_msg = r"Trying to use forward AD with .* that does not support it"
            hint_msg = "Running forward AD for an OP that does not implement it should raise a NotImplementedError"

            with self.assertRaisesRegex(NotImplementedError, err_msg, msg=hint_msg):
                # if forward AD ends up being implemented for torch.igamma, choose a different op
                torch.igamma(dual_x, dual_x)

    def test_saved_tensor_hooks_extra_exit_during_bw_no_crash(self):
        # This usage of saved tensor is not supported, but should not crash
        def unpack(x):
            ctx_1.__exit__()
            return x

        ctx_1 = torch.autograd.graph.saved_tensors_hooks(lambda x: x, unpack)
        ctx_2 = torch.autograd.graph.saved_tensors_hooks(lambda x: x, lambda x: x)

        for i in range(10):
            with ctx_2:
                ctx_1.__enter__()
                x = torch.randn(3, 3, requires_grad=True)
                x.sin().sum().backward()

        # Clean up
        for i in range(10):
            ctx_1.__exit__()

        # Validate there are no more hooks on the stack
        a = torch.tensor(1.0, requires_grad=True)
        y = a.exp()
        y.grad_fn._raw_saved_result.register_hooks(lambda x: x, lambda x: x)

    def test_saved_tensor_hooks_extra_enter_during_bw_no_leak(self):
        # This usage of saved tensor is not supported, but should not leak
        def scope():
            def unpack(x):
                weak_ctx_1().__enter__()
                return x

            ctx_1 = torch.autograd.graph.saved_tensors_hooks(lambda x: x, unpack)
            weak_ctx_1 = weakref.ref(ctx_1)

            x = torch.randn(3, 3, requires_grad=True)
            with ctx_1:
                x.sin().sum().backward()
            return weakref.ref(unpack)

        with disable_gc():
            unpack_hook_ref = scope()
            self.assertIsNone(unpack_hook_ref())

    def test_will_engine_execute_node(self):
        counter = [0]

        class MyFunction(Function):
            @staticmethod
            def forward(ctx, x):
                return x * 2

            @staticmethod
            def backward(ctx, gO):
                return gO * 2

        def get_grad_fn(t):
            if t.requires_grad and t.grad_fn is None:
                return t.clone().grad_fn.next_functions[0][0]
            else:
                return t.grad_fn

        a = torch.randn(2, 3, 4, requires_grad=True)
        a2 = torch.randn(2, 3, 4, requires_grad=True)
        b = a * a2
        b2 = b.cos()
        c = MyFunction.apply(b)

        should_execute = list(map(get_grad_fn, (a, b, c)))
        should_not_execute = list(map(get_grad_fn, (a2, b2)))

        def fn(x):
            counter[0] += 1

            for g in should_execute:
                self.assertTrue(torch._C._will_engine_execute_node(g))

            for g in should_not_execute:
                self.assertFalse(torch._C._will_engine_execute_node(g))

        b.register_hook(fn)
        c.register_hook(fn)

        # .backward(inputs=) is OK
        out = c.sum()
        torch.autograd.backward(out, inputs=(a, b), retain_graph=True)
        self.assertEqual(counter[0], 2)

        # .backward() is OK
        should_execute = list(map(get_grad_fn, (a, a2, b, c)))
        should_not_execute = list(map(get_grad_fn, (b2,)))
        torch.autograd.backward(out, retain_graph=True)

        # .grad is NOT OK when leaf is passed (this is the current state, subject to change)
        with self.assertRaisesRegex(
            RuntimeError, "are currently running autograd.grad()"
        ):
            torch.autograd.grad(out, (a,))

        # .grad is OK when non-leaf is passed
        a = torch.randn(1, 2, 3, requires_grad=True) * 2
        b = a * 2

        def fn(x):
            # Check a non-leaf
            counter[0] += 1
            self.assertTrue(torch._C._will_engine_execute_node(b.grad_fn))

        b.register_hook(fn)
        counter[0] = 0
        torch.autograd.grad(b.sum(), (a,))
        self.assertEqual(counter[0], 1)

        # Verify other errors are raised
        with self.assertRaisesRegex(RuntimeError, "during the backward pass"):
            torch._C._will_engine_execute_node(out.grad_fn)

        with self.assertRaisesRegex(RuntimeError, "expects an grad_fn"):
            torch._C._will_engine_execute_node(out)

    def test_custom_function_vmap_defaults(self):
        class MySquare(Function):
            @staticmethod
            def forward(x):
                return x**2

            @staticmethod
            def setup_context(ctx, inputs, output):
                (x,) = inputs
                ctx.save_for_backward(x)

            @staticmethod
            def backward(ctx, gO):
                (x,) = ctx.saved_tensors
                return gO * 2 * x

        self.assertFalse(MySquare.generate_vmap_rule)
        self.assertTrue(hasattr(MySquare, "vmap"))

    def test_custom_function_setup_context_simple(self):
        class MySquare(Function):
            @staticmethod
            def forward(x):
                return x**2

            @staticmethod
            def setup_context(ctx, inputs, output):
                (x,) = inputs
                ctx.save_for_backward(x)

            @staticmethod
            def backward(ctx, gO):
                (x,) = ctx.saved_tensors
                return gO * 2 * x

        x = torch.randn([], requires_grad=True)
        y = MySquare.apply(x)
        (gx,) = torch.autograd.grad(y, x)
        self.assertEqual(gx, 2 * x)

    def test_custom_function_setup_context_multi_output(self):
        # Multiple outputs with some non-Tensor outputs.
        class MySquare(Function):
            @staticmethod
            def forward(x):
                two_x = x.item() * 2
                return x**2, two_x

            @staticmethod
            def setup_context(ctx, inputs, output):
                (x,) = inputs
                _, two_x = output
                ctx.two_x = two_x

            @staticmethod
            @once_differentiable
            def backward(ctx, gO, _):
                return gO * ctx.two_x

        x = torch.randn([], requires_grad=True)
        y, _ = MySquare.apply(x)
        (gx,) = torch.autograd.grad(y, x)
        self.assertEqual(gx, 2 * x)

    def test_custom_function_setup_context_multi_input(self):
        class MyReshape(Function):
            @staticmethod
            def forward(x, shape, scale_forward, scale_backward):
                return x.reshape(shape) * scale_forward

            @staticmethod
            def setup_context(ctx, inputs, output):
                x, shape, scale_forward, scale_backward = inputs
                ctx.scale_backward = scale_backward
                ctx.x_shape = x.shape

            @staticmethod
            def backward(ctx, gO):
                return gO.reshape(ctx.x_shape) * ctx.scale_backward, None, None, None

        class MyReshapeRef(Function):
            @staticmethod
            def forward(ctx, x, shape, scale_forward, scale_backward):
                ctx.scale_backward = scale_backward
                ctx.x_shape = x.shape
                return x.reshape(shape) * scale_forward

            @staticmethod
            def backward(ctx, gO):
                return gO.reshape(ctx.x_shape) * ctx.scale_backward, None, None, None

        def test(x, shape, scale_forward, scale_backward):
            y = MyReshape.apply(x, shape, scale_forward, scale_backward).sum()
            (gx,) = torch.autograd.grad(y, x)

            y_expected = MyReshapeRef.apply(
                x, shape, scale_forward, scale_backward
            ).sum()
            (gx_expected,) = torch.autograd.grad(y_expected, x)

            self.assertEqual(y_expected, y)
            self.assertEqual(gx_expected, gx)

        test(torch.randn(24, requires_grad=True), (3, 8), 7, 11)
        test(torch.randn(2, 3, 4, requires_grad=True), (6, 4), -1, 2)

    def test_multiple_insert_removal_caching(self):
        torch._C._set_cached_tensors_enabled(True)
        try:
            x = torch.rand([4])

            torch._C._add_cached_tensor(x)
            self.assertTrue(torch._C._is_cached_tensor(x))

            torch._C._add_cached_tensor(x)
            torch._C._remove_cached_tensor(x)

            self.assertFalse(torch._C._is_cached_tensor(x))
        finally:
            torch._C._set_cached_tensors_enabled(False)

    def test_accumulate_grad(self):
        grad_output = torch.ones(5, 5)

        def compute_grad(create_graph):
            x = torch.randn(5, 5, requires_grad=True)
            y = x + 2
            y.backward(grad_output, retain_graph=True)
            x_grad = x.grad
            x_grad_clone = x.grad.clone()
            y.backward(grad_output, create_graph=create_graph)
            return x_grad, x_grad_clone

        # Accumulate in-place when create_graph is False
        x_grad, x_grad_clone = compute_grad(create_graph=False)
        self.assertEqual(x_grad, x_grad_clone * 2)

        # Accumulate out-of-place when create_graph is False
        x_grad, x_grad_clone = compute_grad(create_graph=True)
        self.assertEqual(x_grad, x_grad_clone)

    def test_accumulate_grad_tensor_reference(self):
        def _test_grad_tensor(
            params_grad_tensor,
            backward_grad_tensor,
            should_preserve_reference,
            create_graph,
        ):
            params = torch.tensor([1.5, 1.5]).requires_grad_()
            params.grad = params_grad_tensor
            grad_saved = params.grad
            params.backward(backward_grad_tensor, create_graph=create_graph)
            self.assertEqual(
                id(grad_saved) == id(params.grad), should_preserve_reference
            )

        for create_graph in (False, True):
            # Accumulate dense gradient to sparse gradient will change the `params.grad` reference
            _test_grad_tensor(
                torch.sparse_coo_tensor(
                    torch.tensor([[1, 1]]).long(), torch.tensor([1.0, 1.0])
                ),
                torch.tensor([1.5, 1.5]),
                False,  # never accumulates in-place
                create_graph,
            )

            # Accumulate dense gradient to dense gradient will preserve the `params.grad` reference,
            # but only if create_graph=False.
            _test_grad_tensor(
                torch.tensor([1.5, 1.5]),
                torch.tensor([1.5, 1.5]),
                not create_graph,
                create_graph,
            )

            # Accumulate sparse gradient to sparse gradient will preserve the `params.grad` reference,
            # but only if create_graph=False.
            _test_grad_tensor(
                torch.sparse_coo_tensor(
                    torch.tensor([[1, 1]]).long(), torch.tensor([1.0, 1.0])
                ),
                torch.sparse_coo_tensor(
                    torch.tensor([[1, 1]]).long(), torch.tensor([1.0, 1.0])
                ),
                not create_graph,
                create_graph,
            )

    def test_accumulate_grad_with_zero_numel_grad(self):
        a = torch.rand(4, 0, requires_grad=True)
        b = torch.rand(4, 1, requires_grad=True)
        c = a + b
        assert c.shape == (4, 0)
        c.sum().backward()

        self.assertEqual(b.grad, torch.zeros(4, 1))
        self.assertEqual(a.grad, torch.zeros(4, 0))

    def test_hessian_vector(self):
        x = torch.randn(2, 2, requires_grad=True)
        y = torch.randn(2, 2, requires_grad=True)

        z = x**2 + y * x + y**2
        z.backward(torch.ones(2, 2), create_graph=True)

        with torch.no_grad():
            x_grad = 2 * x + y
            y_grad = x + 2 * y
        self.assertEqual(x.grad, x_grad)
        self.assertEqual(y.grad, y_grad)

        grad_sum = 2 * x.grad + y.grad
        grad_sum.backward(torch.ones(2, 2))
        x_hv = torch.ones(2, 2) * 5
        y_hv = torch.ones(2, 2) * 4
        self.assertEqual(x.grad, x_grad + x_hv)
        self.assertEqual(y.grad, y_grad + y_hv)

    def test_grad(self):
        x = torch.randn(2, 2, requires_grad=True)
        y = torch.randn(2, 2, requires_grad=True)
        z = x**2 + y * x + y**2
        z.backward(torch.ones(2, 2), create_graph=True)

        x_grad = 2 * x + y
        y_grad = x + 2 * y
        self.assertEqual(x.grad, x_grad)
        self.assertEqual(y.grad, y_grad)

        grad_sum = 2 * x.grad + y.grad
        x_hv = torch.autograd.grad(
            outputs=[grad_sum],
            grad_outputs=[torch.ones(2, 2)],
            inputs=[x],
            create_graph=True,
        )
        expected_x_hv = torch.ones(2, 2) * 5
        expected_y_hv = torch.ones(2, 2) * 4

        self.assertEqual(x_hv[0], expected_x_hv)
        self.assertEqual(x.grad, x_grad)
        self.assertEqual(y.grad, y_grad)

        # Test that grad_outputs and outputs have the same shape
        grad_out = torch.ones(2)
        try:
            torch.autograd.grad(
                outputs=[grad_sum],
                grad_outputs=[grad_out],
                inputs=[x],
                create_graph=True,
            )
            self.assertFail()
        except RuntimeError as error:
            self.assertEqual(
                str(error),
                "Mismatch in shape: grad_output[0] has a shape of "
                + str(grad_out.shape)
                + " and output[0] has a shape of "
                + str(grad_sum.shape)
                + ".",
            )

    def test_grad_to_node(self):
        def check_matches(out, inp):
            ref = torch.autograd.grad(out.sum(), inp)

            edge = torch.autograd.graph.get_gradient_edge(inp)
            new = torch.autograd.grad(out.sum(), edge)
            self.assertEqual(ref, new)

        # We need to ensure that our main types of Node work (regular cpp Nodes,
        # AccumulateGrad Nodes and custom Function)
        x = torch.rand(2, requires_grad=True)
        out = x.clone()
        check_matches(out, x)

        x = x.clone()
        out = x.clone()
        check_matches(out, x)

        x = torch.autograd._functions.Resize.apply(x, (2,))
        out = x.clone()
        check_matches(out, x)

        x = torch.var_mean(x)[1]
        out = x.clone()
        check_matches(out, x)

    def test_grad_to_node_set(self):
        x = torch.rand(2, requires_grad=True)
        x_edge = torch.autograd.graph.get_gradient_edge(x)
        out = x.clone()

        with torch.no_grad():
            x.set_(torch.rand_like(x))

        with self.assertRaisesRegex(RuntimeError, "to not have been used in the graph"):
            torch.autograd.grad(out.sum(), x)

        # Works
        torch.autograd.grad(out.sum(), x_edge)

    def test_grad_to_node_inplace(self):
        x = torch.rand(2, requires_grad=True).clone()
        x_edge = torch.autograd.graph.get_gradient_edge(x)
        x *= 2

        g_old, g_new = torch.autograd.grad(x.sum(), (x_edge, x))
        self.assertEqual(g_old, 2 * torch.ones_like(x))
        self.assertEqual(g_new, torch.ones_like(x))

    def test_grad_to_node_multi(self):
        x = torch.rand(2, requires_grad=True).clone()
        y = torch.rand(2, requires_grad=True).clone()

        out = x + y

        ref = torch.autograd.grad(out.sum(), (x, y))

        inp_edges = (
            GradientEdge(x.grad_fn, x.output_nr),
            GradientEdge(y.grad_fn, y.output_nr),
        )
        new = torch.autograd.grad(out.sum(), inp_edges)

        self.assertEqual(ref, new)

    def test_grad_to_node_materialize(self):
        x = torch.rand(2, requires_grad=True).clone()
        edge_x = GradientEdge(x.grad_fn, x.output_nr)
        y = torch.rand(2, requires_grad=True).clone()
        edge_y = GradientEdge(y.grad_fn, y.output_nr)

        out = x.clone()

        # Works
        torch.autograd.grad(
            out.sum(), (edge_x, y), allow_unused=True, materialize_grads=True
        )
        torch.autograd.grad(
            out.sum(), (x, y), allow_unused=True, materialize_grads=True
        )
        torch.autograd.grad(out.sum(), (x, edge_y), allow_unused=True)

        with self.assertRaisesRegex(
            RuntimeError,
            "materialize_grads cannot be used when the given input is a GradientEdge",
        ):
            torch.autograd.grad(
                out.sum(), (x, edge_y), allow_unused=True, materialize_grads=True
            )

    def test_backward_to_node(self):
        x = torch.rand(2, requires_grad=True).clone()
        edge_x = GradientEdge(x.grad_fn, x.output_nr)
        y = torch.rand(2, requires_grad=True).clone()
        edge_y = GradientEdge(y.grad_fn, y.output_nr)

        out = x.clone()

        # All should work in this case
        torch.autograd.backward(out.sum(), inputs=(edge_x, y))
        torch.autograd.backward(out.sum(), inputs=(x, y))
        torch.autograd.backward(out.sum(), inputs=(x, edge_y))
        torch.autograd.backward(out.sum(), inputs=(edge_x, edge_y))

    def test_grad_fn_input_metadata(self):
        x = torch.rand(2, requires_grad=True, dtype=torch.float32)
        y = torch.rand(2, requires_grad=True, dtype=torch.float32)
        z = x * y
        z_metadata = z.grad_fn._input_metadata[0]
        self.assertEqual(z_metadata.shape, (2,))
        self.assertEqual(z_metadata.dtype, torch.float32)

        # Multiple outputs
        b = torch.rand(3, 3, requires_grad=True)
        var, _ = torch.var_mean(b, dim=0)

        metadata_0 = var.grad_fn._input_metadata[0]
        metadata_1 = var.grad_fn._input_metadata[1]
        self.assertEqual(metadata_0.shape, (3,))
        self.assertEqual(metadata_1.shape, (3,))

        # Preserves symints
        nt = torch.nested.nested_tensor(
            [torch.randn(3, 2), torch.randn(2, 2)],
            layout=torch.jagged,
            requires_grad=True,
        )
        nt_metadata = nt.clone().grad_fn._input_metadata[0]

        self.assertIsInstance(nt_metadata.shape[1], torch.SymInt)
        self.assertEqual(nt_metadata.shape, nt.shape)
        self.assertTrue(nt_metadata.is_nested_tensor)
        self.assertFalse(nt_metadata.is_cpp_nested_tensor)
        self.assertEqual(nt_metadata.dtype, nt.dtype)

        class Test(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                return x

            @staticmethod
            def backward(ctx, grad_output):
                return grad_output

        x = torch.randn(3, 3, requires_grad=True)
        x = Test.apply(x)
        metadata = x.grad_fn._input_metadata[0]
        self.assertEqual(metadata.shape, (3, 3))

    def test_gradient_edge_output(self):
        x = torch.tensor([1.0, 2.0], requires_grad=True)

        def fn(x, reduce=True):
            tmp = x.sin().cos()
            if reduce:
                tmp = tmp.sum()
            out = tmp.exp().clone().sin().sum()
            tmp_edge = torch.autograd.graph.get_gradient_edge(tmp)
            return out, tmp_edge

        # Compute fn backward in two steps
        out, tmp_edge = fn(x)
        (tmp_grad,) = torch.autograd.grad(out, (tmp_edge,))

        (x_grad,) = torch.autograd.grad(tmp_edge, (x,), grad_outputs=(tmp_grad,))

        # Compare with as if we did it in one go.
        out, _ = fn(x)
        (x_grad_ref,) = torch.autograd.grad(out, (x,))
        self.assertEqual(x_grad, x_grad_ref)

        # Incorrect case: grad_outputs not passed/implicitly None and output is
        # not a scalar
        out, tmp_edge = fn(x, reduce=False)
        with self.assertRaisesRegex(
            RuntimeError, "grad can be implicitly created only for scalar output"
        ):
            torch.autograd.grad(tmp_edge, (x,))

        # grad_outputs is None, and output is a scalar is fine
        out, tmp_edge = fn(x, reduce=True)
        torch.autograd.grad(tmp_edge, (x,))

        # Incorrect case: grad_outputs wrong size
        out, tmp_edge = fn(x)
        (tmp_grad,) = torch.autograd.grad(out, (tmp_edge,))
        with self.assertRaisesRegex(RuntimeError, "Mismatch in shape"):
            torch.autograd.grad(
                tmp_edge, (x,), grad_outputs=torch.tensor([1.0, 2.0, 3.0, 4.0])
            )

        # Incorrect case: wrong dtype
        out, tmp_edge = fn(x)
        (tmp_grad,) = torch.autograd.grad(out, (tmp_edge,))
        with self.assertRaisesRegex(RuntimeError, "required to have the same dtype"):
            torch.autograd.grad(
                tmp_edge,
                (x,),
                grad_outputs=torch.rand_like(tmp_grad, dtype=torch.complex64),
            )

    def test_grad_nonleaf(self):
        x_init = torch.randn(2, 2, requires_grad=True)
        x = x_init
        y = torch.randn(2, 2, requires_grad=True)
        grad_output = torch.ones(2, 2)

        def fn(x):
            return x**2 + y * x + y**2

        for _ in range(5):
            (grad_x,) = torch.autograd.grad(
                fn(x), x, grad_outputs=grad_output, create_graph=True
            )

            grad_x_expected = 2 * x + y
            self.assertIsNone(y.grad)
            self.assertIsNone(x.grad)
            self.assertEqual(grad_x, grad_x_expected)

            x = x + 0.05 * grad_x

        val_init = fn(x_init).sum()
        val_final = fn(x).sum()
        self.assertGreater(val_final, val_init)

        x.backward(grad_output)
        self.assertIsNotNone(y.grad)
        self.assertIsNotNone(x_init.grad)

    def test_grad_nonleaf_many_outputs(self):
        # This checks an edge case for function callbacks
        # We want to capture two grads of a function, but can only
        # register a single callback.
        x = torch.randn(4, 2, requires_grad=True)
        a, b = x.chunk(2)

        def hook(*grads):
            hook_called[0] = True

        hook_called = [False]
        x.register_hook(hook)

        go = torch.randn(2, 2)
        grad_a, grad_b = torch.autograd.grad(
            (a + 2 * b), [a, b], grad_outputs=go, create_graph=True
        )

        self.assertEqual(grad_a, go)
        self.assertEqual(grad_b, go * 2)
        self.assertFalse(hook_called[0])
        self.assertIsNone(x.grad)

    def test_grad_nonleaf_register_hook(self):
        # This checks an edge case for register_hook.
        # We want to capture grad of a nonleaf tensor,
        # but avoid segfault during backward of other nonleaf tensors
        x = torch.randn(5, requires_grad=True)
        x_list = x.unbind()

        x0 = x_list[0]
        hook_results = [None]

        def hook(grad):
            hook_results[0] = grad

        x0.register_hook(hook)

        x_list[0].backward()
        self.assertEqual(hook_results[0], torch.tensor(1.0))
        expected_grad = torch.tensor([1.0, 0, 0, 0, 0])
        self.assertEqual(x.grad, expected_grad)
        self.assertIsNone(x_list[0].grad)

        for i in range(1, 5, 1):
            x_list[i].backward()
            self.assertEqual(hook_results[0], None)
            expected_grad[i] = 1.0
            self.assertEqual(x.grad, expected_grad)
            self.assertIsNone(x_list[i].grad)

    def test_grad_materialize_grads(self):
        x = torch.tensor(0.5, requires_grad=True)
        a = torch.tensor(1.0, requires_grad=True)
        y = x * a
        dydx = torch.autograd.grad(y, x, create_graph=True)
        d2ydx2_none = torch.autograd.grad(dydx, x, create_graph=True, allow_unused=True)
        d2ydx2 = torch.autograd.grad(
            dydx, x, create_graph=True, allow_unused=True, materialize_grads=True
        )
        # `allow_unused` set to True implicitly
        d3ydx3 = torch.autograd.grad(d2ydx2, x, materialize_grads=True)
        self.assertIsNone(d2ydx2_none[0])
        self.assertEqual(d2ydx2[0].item(), 0)
        self.assertEqual(d3ydx3[0].item(), 0)
        with self.assertRaisesRegex(
            ValueError, "Expected allow_unused to be True or not passed when"
        ):
            torch.autograd.grad(y, x, allow_unused=False, materialize_grads=True)

    def test_post_accumulate_grad_hook_on_non_leaf(self):
        def hook(tensor):
            tensor.sub_(1.0)

        leaf = torch.rand(3, requires_grad=True)
        non_leaf = 2.0 * leaf

        with self.assertRaisesRegex(
            RuntimeError,
            "post accumulate grad hooks cannot be registered on non-leaf tensors",
        ):
            non_leaf.register_post_accumulate_grad_hook(hook)

    def test_post_accumulate_grad_hook_multiple_hooks(self):
        def hook1(tensor):
            tensor.sub_(tensor.grad)

        def hook2(tensor):
            tensor.mul_(4.0)

        tensor = torch.rand(3, requires_grad=True)
        tensor_ref = tensor.detach().clone()
        tensor.register_post_accumulate_grad_hook(hook1)
        tensor.register_post_accumulate_grad_hook(hook2)
        sum = tensor.sum()
        sum.backward()
        # both hooks should be called, in order
        self.assertEqual(4.0 * (tensor_ref - 1.0), tensor)

    def test_post_accumulate_grad_hook_multiple_tensors(self):
        def hook(tensor):
            tensor.sub_(tensor.grad)

        tensor1 = torch.rand(3, requires_grad=True)
        tensor1_ref = tensor1.detach().clone()
        tensor2 = torch.rand(5, requires_grad=True)
        tensor2_ref = tensor2.detach().clone()
        tensor1.register_post_accumulate_grad_hook(hook)
        tensor2.register_post_accumulate_grad_hook(hook)
        tensor1.sum().backward()
        tensor2.sum().backward()
        # both tensors should have been modified
        self.assertEqual(tensor1_ref - 1.0, tensor1)
        self.assertEqual(tensor2_ref - 1.0, tensor2)

    def test_post_accumulate_grad_hook_returns_not_None(self):
        def bad_hook(tensor):
            return tensor.grad

        tensor = torch.rand(2, 3, requires_grad=True)
        tensor.register_post_accumulate_grad_hook(bad_hook)
        # should error!
        with self.assertRaisesRegex(RuntimeError, "hooks should return None."):
            tensor.sum().backward()

    def test_post_accumulate_grad_hook_e2e(self):
        def setup_optim_in_bwd(model):
            optims = {}
            handles = []

            def optim_step_hook(param):
                optims[param].step()
                optims[param].zero_grad()

            for p in model.parameters():
                optims[p] = torch.optim.Adam([p])
                handles.append(p.register_post_accumulate_grad_hook(optim_step_hook))

            return handles

        model = torch.nn.Linear(3, 2)
        input = torch.rand(2, 3)
        handles = setup_optim_in_bwd(model)

        # make a copy for reference
        model_copy = deepcopy(model)
        optim_copy = torch.optim.Adam(model_copy.parameters())

        iters = 5

        for _ in range(iters):
            loss = model(input).sum()
            loss.backward()

            loss_copy = model_copy(input).sum()
            loss_copy.backward()
            optim_copy.step()
            optim_copy.zero_grad()

        params_copy = []  # freeze a copy of the params to compare later
        for p_reference, p in zip(model_copy.parameters(), model.parameters()):
            self.assertEqual(p_reference, p)
            params_copy.append(p_reference.detach().clone())

        # After removing the handle, the model should no longer update.
        for h in handles:
            h.remove()

        for _ in range(iters):
            loss = model(input).sum()
            loss.backward()

            loss_copy = model_copy(input).sum()
            loss_copy.backward()
            optim_copy.step()
            optim_copy.zero_grad()

        for p_static, p_reference, p in zip(
            params_copy, model_copy.parameters(), model.parameters()
        ):
            self.assertEqual(p_static, p)
            self.assertNotEqual(p_reference, p)

    def test_post_accumulate_grad_hook_gets_cleaned_up(self):
        def fun_stuff_with_hook():
            thing_to_put_in_hook = torch.rand(3)

            def hook(tensor):
                tensor.sub_(tensor.grad)
                tensor.add_(thing_to_put_in_hook)

            tensor = torch.rand(3, requires_grad=True)
            tensor.register_post_accumulate_grad_hook(hook)
            tensor.sum().backward()
            ref = weakref.ref(thing_to_put_in_hook)
            gc.collect()
            return tensor, ref

        with disable_gc():
            tensor, ref = fun_stuff_with_hook()
            self.assertIsNotNone(
                ref()
            )  # thing_to_put_in_hook should be kept alive by tensor

            del tensor
            gc.collect()
            self.assertIsNone(ref())  # thing_to_put_in_hook should be cleaned

    def test_post_accumulate_grad_hook_ordering(self):
        tensor = torch.rand(3, requires_grad=True)

        def pre_hook(grad):
            return grad.sub(2.0)

        def acc_grad_node_pre_hook(grad_out):
            return (grad_out[0].div(5.0),)

        def post_acc_grad_hook(tensor):
            tensor.grad.add_(0.5)

        def acc_grad_node_post_hook(grad_in, grad_out):
            tensor.grad = grad_out[0].mul(10)

        acc_grad = tensor.view_as(tensor).grad_fn.next_functions[0][0]
        tensor.register_hook(pre_hook)
        acc_grad.register_prehook(acc_grad_node_pre_hook)
        tensor.register_post_accumulate_grad_hook(post_acc_grad_hook)
        acc_grad.register_hook(acc_grad_node_post_hook)
        tensor.sum().backward()

        # the hooks should run in the order of:
        #   1. tensor prehook
        #   2. acc_grad prehook
        #   3. tensor post acc_grad hook
        #   4. acc_grad posthook
        # so that would be ((1 - 2) / 5 + 0.5) * 10 = 3
        self.assertEqual(torch.tensor([3.0, 3.0, 3.0]), tensor.grad)

    def test_hook_with_no_name(self):
        # Create a hook that do not have a __name__ attribute
        class MyHookClass:
            def __call__(self, grad):
                return grad.clone()

        x = torch.randn(5, requires_grad=True).clone()
        x.register_hook(MyHookClass())
        x.sum().backward()
        # Should run fine

    def test_prehook_ordering(self):
        # Hooks registered to tensor are ordered before those
        # that are registered to grad_fn
        log = []

        def hook1(g):
            log.append(1)
            return g * 3

        def hook2(gs):
            log.append(2)
            return tuple(g * 2 for g in gs)

        a = torch.tensor(1.0, requires_grad=True)
        b = a.clone()

        b.grad_fn.register_prehook(hook2)
        b.register_hook(hook1)
        b.grad_fn.register_prehook(hook2)

        acc = b.grad_fn.next_functions[0][0]
        a.register_hook(hook1)
        acc.register_prehook(hook2)
        a.register_hook(hook1)

        b.sum().backward(retain_graph=True)
        self.assertEqual(log, [1, 2, 2, 1, 1, 2])

        # grad also runs hooks on accumulate grad nodes, even though
        # the accumulate grad nodes are not actually executed
        log = []
        torch.autograd.grad(b.sum(), inputs=(a,), retain_graph=True)
        self.assertEqual(log, [1, 2, 2, 1, 1])

        log = []
        b.sum().backward(inputs=(b,))
        self.assertEqual(log, [1, 2, 2])
        # retains_grad hooks would not observe modifications by all pre hooks
        # because they are executed after
        self.assertEqual(b.grad.item(), 3)

    def test_retains_grad_can_always_observe_tensor_prehook(self):
        def tensor_prehook(g):
            return g * 2

        a = torch.tensor(1.0, requires_grad=True)
        b = a.clone()
        b.register_hook(tensor_prehook)
        b.retain_grad()
        b.register_hook(tensor_prehook)

        b.clone().backward()
        self.assertEqual(b.grad.item(), 4)

        a = torch.tensor(1.0, requires_grad=True)
        b = a.clone()
        b.retain_grad()
        b.register_hook(tensor_prehook)

        b.clone().backward()
        self.assertEqual(b.grad.item(), 2)

    def test_accumulate_grad_posthooks_can_observe_tensor_prehook(self):
        # Post hooks on accumulate should be able to observe changes to
        # grad made by tensor prehooks
        a = torch.tensor(1.0, requires_grad=True)

        def tensor_prehook(g):
            return g * 2

        def posthook(gO, gI):
            self.assertTrue(torch.allclose(gI[0], a * 2))
            self.assertEqual(len(gO), 0)

        def prehook(gI):
            self.assertTrue(torch.allclose(gI[0], a * 2))
            self.assertEqual(len(gI), 1)

        b = a.clone()
        acc = b.grad_fn.next_functions[0][0]
        acc.register_hook(posthook)
        acc.register_prehook(prehook)
        a.register_hook(tensor_prehook)

        b.backward()

    def test_accumulate_grad_posthooks_should_not_execute(self):
        def tensor_prehook(g):
            raise RuntimeError

        def posthook(gO, gI):
            raise RuntimeError

        a = torch.tensor(1.0, requires_grad=True)
        a.register_hook(tensor_prehook)
        b = torch.tensor(1.0, requires_grad=True)
        c = a.clone()
        acc = c.grad_fn.next_functions[0][0]
        acc.register_hook(posthook)

        out = a + b + c
        out.sum().backward(inputs=[b])

    def test_hook_edge_case_when_called_with_grad(self):
        # grad executes the tensor hooks of the next node but not
        # grad_fn pre hooks or the post hooks
        a = torch.tensor(1.0, requires_grad=True)
        b = a * 2
        c = b * 2

        tensor_hook_count = [0]
        prehook_count = [0]
        posthook_count = [0]

        def reset_counts():
            nonlocal tensor_hook_count, prehook_count, posthook_count
            tensor_hook_count = [0]
            prehook_count = [0]
            posthook_count = [0]

        def tensor_prehook(g):
            tensor_hook_count[0] += 1

        def prehook(g):
            prehook_count[0] += 1

        def posthook(gI, gO):
            posthook_count[0] += 1

        a.register_hook(tensor_prehook)
        b.register_hook(tensor_prehook)
        acc = b.grad_fn.next_functions[0][0]
        acc.register_hook(posthook)
        acc.register_prehook(prehook)
        b.grad_fn.register_hook(posthook)
        b.grad_fn.register_prehook(prehook)

        torch.autograd.grad(c, inputs=(b), retain_graph=True)
        self.assertEqual(tensor_hook_count[0], 1)
        self.assertEqual(posthook_count[0], 0)
        self.assertEqual(prehook_count[0], 0)
        reset_counts()

        torch.autograd.grad(c, inputs=(a, b), retain_graph=True)
        self.assertEqual(tensor_hook_count[0], 2)
        self.assertEqual(posthook_count[0], 1)
        self.assertEqual(prehook_count[0], 1)
        reset_counts()

        c.backward(retain_graph=True)
        self.assertEqual(tensor_hook_count[0], 2)
        self.assertEqual(posthook_count[0], 2)
        self.assertEqual(prehook_count[0], 2)
        reset_counts()

        c.backward(inputs=(a, b), retain_graph=True)
        self.assertEqual(tensor_hook_count[0], 2)
        self.assertEqual(posthook_count[0], 2)
        self.assertEqual(prehook_count[0], 2)

    def test_sharded_grad(self):
        leaves = [torch.zeros(5, 5, requires_grad=True) for _ in range(10)]
        intermediates = [l * i + l * l for i, l in enumerate(leaves)]
        loss = sum(v * i for i, v in enumerate(intermediates)).sum()

        # define a helper for dividing intermediates into groups
        def group(l, group_size):
            return (l[i : i + group_size] for i in range(0, len(l), group_size))

        # Compute the d loss / d intermediates in chunks of shard_size
        shard_size = 2
        d_intermediates = [
            d_i
            for intermediates_batch in group(intermediates, shard_size)
            for d_i in torch.autograd.grad(loss, intermediates_batch)
        ]
        # Compute rest of backward pass
        torch.autograd.backward(intermediates, d_intermediates)

        for i, l in enumerate(leaves):
            self.assertEqual(l.grad, i * i * (1 + l))

    def test_backward_badcalls(self):
        x = torch.ones(1)
        with self.assertRaisesRegex(RuntimeError, "does not require grad"):
            x.backward()

    def test_grad_badcalls(self):
        x = torch.ones(1)
        y = x**2
        with self.assertRaisesRegex(RuntimeError, "does not require grad"):
            torch.autograd.grad(x, y)
        with self.assertRaisesRegex(RuntimeError, "does not require grad"):
            torch.autograd.grad(y, x)

        x = torch.ones(1, requires_grad=True)
        y = x**2
        torch.autograd.grad(y, x)  # this should succeed now

    def test_grad_empty_inputs(self):
        x = torch.tensor([1.0], requires_grad=True)
        with self.assertRaisesRegex(ValueError, "grad requires non-empty inputs."):
            torch.autograd.grad(2 * x, [], grad_outputs=torch.tensor([1.0]))

    def test_grad_fn_badcalls(self):
        error_regex = "expected .* arguments, got .* instead"
        x = torch.ones(1, requires_grad=True)
        y = x**2
        with self.assertRaisesRegex(TypeError, error_regex):
            y.grad_fn(x.detach(), x.detach())  # too many
        with self.assertRaisesRegex(TypeError, error_regex):
            y.grad_fn()  # too few

        y.grad_fn(x.detach())  # this should succeed

    def test_grad_unreachable(self):
        x = torch.ones(1, requires_grad=True)
        y = torch.ones(1, requires_grad=True)
        # Make sure x and y have grad accumulators allocated
        z = x * 2
        w = y * 2

        grad_x, grad_y = torch.autograd.grad(x * 2, [x, y], allow_unused=True)
        self.assertEqual(grad_x, x * 2)
        self.assertIsNone(grad_y)

        # This is slightly different than the case above, because z doesn't even
        # have a grad accumulator allocated.
        z = torch.ones(1, requires_grad=True)
        grad_x, grad_z = torch.autograd.grad(x * 2, [x, z], allow_unused=True)
        self.assertEqual(grad_x, x * 2)
        self.assertIsNone(grad_z)

        # allow_unused=False, but grads contains None inside, should throw
        with self.assertRaisesRegex(RuntimeError, "Set allow_unused=True"):
            grad_x, grad_y = torch.autograd.grad(x * 2, [x, y], allow_unused=False)

    def test_grad_unreachable_discovery(self):
        # Test that certain nodes are not erroneously executed when an input
        # is unreachable. See #39784
        class MyFunc(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                return x

            @staticmethod
            def backward(ctx, x):
                self.fail("This node should not be executed!")

        x = MyFunc.apply(torch.randn(1, requires_grad=True) * 2)
        y = torch.randn(1, requires_grad=True)
        (gY,) = torch.autograd.grad(x, (y,), allow_unused=True)
        self.assertIsNone(gY)

        x = MyFunc.apply(torch.randn(1, requires_grad=True) * 2)
        y = torch.randn(1, requires_grad=True)
        z = torch.randn(1, requires_grad=True)
        (gY, gZ) = torch.autograd.grad(x + z, (y, z), allow_unused=True)
        self.assertIsNone(gY)
        self.assertIsNotNone(gZ)

        x = MyFunc.apply(torch.randn(1, requires_grad=True) * 2)
        y = torch.randn(1, requires_grad=True)
        torch.autograd.backward(x, inputs=(y,))  # allow_unused is implicitly True!
        self.assertIsNone(y.grad)

    def test_grad_batched_grad(self):
        x = torch.randn(2, 2, requires_grad=True)

        out = x.clone()  # Size([2, 2])
        batched_grad = (
            torch.arange(3).expand(2, 2, 3).transpose(0, 2)
        )  # Size([3, 2, 2])
        (grad,) = torch.autograd.grad(out, (x,), (batched_grad,), is_grads_batched=True)
        self.assertEqual(
            grad, torch.arange(3).expand(2, 2, 3).transpose(0, 2).to(dtype=grad.dtype)
        )

        # Detect shape mismatch
        grad_out = torch.ones(2, 2)
        with self.assertRaisesRegex(
            RuntimeError, "If `is_grads_batched=True`, we interpret the first"
        ):
            torch.autograd.grad(
                outputs=out,
                grad_outputs=(grad_out,),
                inputs=(x,),
                is_grads_batched=True,
            )

        # Scalar outputs
        out = x.sum()  # Size([])
        batched_grad = torch.arange(3)  # Size([3])
        (grad,) = torch.autograd.grad(out, (x,), (batched_grad,), is_grads_batched=True)
        self.assertEqual(
            grad, torch.arange(3).expand(2, 2, 3).transpose(0, 2).to(dtype=grad.dtype)
        )

        # We consider scalar and sized-1 to be a mismatch. This is consistent with current non-batched behavior.
        grad_out = torch.ones(2).unsqueeze(1)
        with self.assertRaisesRegex(
            RuntimeError, "If `is_grads_batched=True`, we interpret the first"
        ):
            torch.autograd.grad(
                outputs=out,
                grad_outputs=(grad_out,),
                inputs=(x,),
                is_grads_batched=True,
            )

    def test_hooks(self):
        x = torch.ones(5, 5, requires_grad=True)
        y = torch.ones(5, 5) * 4
        y.requires_grad_(True)

        counter = [0]

        def bw_hook(inc, grad):
            self.assertIsInstance(grad, torch.Tensor)
            counter[0] += inc

        z = x**2 + x * 2 + x * y + y
        x.register_hook(lambda *args: bw_hook(0, *args))
        test = z.register_hook(lambda *args: bw_hook(1, *args))
        z.backward(torch.ones(5, 5), retain_graph=True)
        self.assertEqual(counter[0], 1)

        test2 = z.register_hook(lambda *args: bw_hook(2, *args))
        z.backward(torch.ones(5, 5), retain_graph=True)
        self.assertEqual(counter[0], 4)

        test2.remove()
        z.backward(torch.ones(5, 5), retain_graph=True)
        self.assertEqual(counter[0], 5)

        def bw_hook_modify(grad):
            return grad.mul(2)

        test.remove()
        z.register_hook(bw_hook_modify)
        with torch.no_grad():
            y.grad.zero_()
        z.backward(torch.ones(5, 5), retain_graph=True)
        self.assertEqual(y.grad, (x + 1) * 2)

        y.register_hook(bw_hook_modify)
        with torch.no_grad():
            y.grad.zero_()
        z.backward(torch.ones(5, 5))
        self.assertEqual(y.grad, (x + 1) * 4)

    def _get_mul2(self, use_custom_function):
        if use_custom_function:

            class Mul2(Function):
                @staticmethod
                def forward(ctx, x):
                    return x * 2

                @staticmethod
                def backward(ctx, gO):
                    return gO * 2

            return Mul2.apply
        else:
            return lambda x: x * 2

    def test_grad_fn_prehooks(self):
        for use_custom_function in (True, False):
            mul2 = self._get_mul2(use_custom_function)

            a = torch.tensor([1.0], requires_grad=True)
            b = mul2(a)

            post_counter = [0]
            pre_counter = [0]

            def posthook(grad_input, grad_output):
                self.assertEqual(pre_counter[0], 3)
                self.assertTrue(torch.allclose(grad_output[0], torch.ones(1) * 8))
                self.assertTrue(torch.allclose(grad_input[0], torch.ones(1) * 16))
                post_counter[0] += 1
                return grad_input

            def prehook(grad_output):
                pre_counter[0] += 1
                return (grad_output[0] * 2,)

            # register posthook x 2
            b.grad_fn.register_hook(posthook)
            b.grad_fn.register_hook(posthook)
            # register prehook x 3
            b.grad_fn.register_prehook(prehook)
            b.grad_fn.register_prehook(lambda x: None)
            b.grad_fn.register_prehook(prehook)
            b.grad_fn.register_prehook(prehook)
            b.grad_fn.register_prehook(lambda x: x)
            b.grad_fn.register_prehook(lambda x: None)

            b.sum().backward()

            self.assertEqual(post_counter[0], 2)
            self.assertEqual(pre_counter[0], 3)

            # Return None
            a = torch.rand(3, 3, requires_grad=True)
            b = mul2(a)

            def prehook(grad_output):
                pre_counter[0] += 1
                return None

            b.grad_fn.register_prehook(prehook)
            b.sum().backward()
            self.assertEqual(pre_counter[0], 4)
            self.assertTrue(torch.allclose(a.grad, torch.ones(3, 3) * 2))

    def test_grad_fn_prehooks_multiple_outputs(self):
        # Compute gradients without hooks
        b = torch.rand(3, 3, requires_grad=True)
        var, mean = torch.var_mean(b, dim=0)
        (var + mean).sum().backward()

        # Compute gradients with hooks
        a = b.detach().requires_grad_()
        counter = [0]

        def prehook(grad_output):
            gvar, gmean = grad_output
            counter[0] += 1
            return (gvar * 2, gmean * 2)

        var, mean = torch.var_mean(a, dim=0)
        mean.grad_fn.register_prehook(prehook)
        (var + mean).sum().backward()

        self.assertEqual(counter[0], 1)
        # Compare
        self.assertTrue(torch.allclose(a.grad, b.grad * 2))

        # Test with custom Function
        class DoubleMul2(Function):
            @staticmethod
            def forward(ctx, x, a, y):
                ctx.a = a
                return a * x * 2, a, a * y * 2

            @staticmethod
            def backward(ctx, g1, _a, g2):
                return ctx.a * g1 * 2, None, ctx.a * g2 * 2

        counter = [0]

        def prehook(grad_output):
            g1, ga, g2 = grad_output
            self.assertIsNone(ga)
            counter[0] += 1
            return (g1 * 2, None, g2 * 2)

        a = torch.randn(3, 3, requires_grad=True)
        b = torch.randn(3, 3, requires_grad=True)
        k = 3
        c, _, d = DoubleMul2.apply(a, k, b)
        c.grad_fn.register_prehook(prehook)
        (c + d).sum().backward()

        self.assertEqual(counter[0], 1)
        self.assertTrue(torch.allclose(a.grad, torch.ones(1) * 4 * k))
        self.assertTrue(torch.allclose(b.grad, torch.ones(1) * 4 * k))

    def test_grad_fn_prehooks_remove_hooks(self):
        for use_custom_function in (True, False):
            mul2 = self._get_mul2(use_custom_function)

            # Simply remove hooks

            a = torch.rand(3, 3, requires_grad=True)
            b = mul2(a)
            counter = [0]

            def prehook(grad_output):
                counter[0] += 1
                return None

            handle = b.grad_fn.register_prehook(prehook)
            b.grad_fn.register_prehook(prehook)
            handle.remove()
            b.sum().backward()
            self.assertTrue(torch.allclose(a.grad, torch.ones(3, 3) * 2))
            self.assertEqual(counter[0], 1)

            # Remove hooks during backward
            a = torch.rand(3, 3, requires_grad=True)
            b = mul2(a)
            counter = [0]

            def prehook1(grad_output):
                handle2.remove()
                # Remove hook that is already removed is OK
                handle3.remove()
                return None

            def prehook2(grad_output):
                counter[0] += 1
                return None

            # Hooks that registered first run first
            b.grad_fn.register_prehook(prehook1)
            handle2 = b.grad_fn.register_prehook(prehook2)
            handle3 = b.grad_fn.register_prehook(prehook2)
            handle3.remove()
            b.sum().backward()
            self.assertTrue(torch.allclose(a.grad, torch.ones(3, 3) * 2))
            self.assertEqual(counter[0], 1)

    def test_node_post_hook_registered_during_unpack_hook(self):
        """
        Test that post hooks registered during one of the node's
        unpack hooks are properly restricted and will run properly.
        """
        test_case = self

        class RegisterPostNodeHook(torch.autograd.graph.saved_tensors_hooks):
            def __init__(self) -> None:
                def pack_tensor(tensor: torch.Tensor) -> torch.Tensor:
                    return tensor

                def unpack_tensor(tensor: torch.Tensor) -> torch.Tensor:
                    node = torch._C._current_autograd_node()

                    def hook(outputs, inputs):
                        # Assert that inputs passed in are None
                        test_case.assertTrue(all(i is None for i in inputs))
                        halved_outputs = tuple(
                            o / 2.0 if o is not None else None for o in outputs
                        )
                        return halved_outputs

                    node.register_hook(hook)
                    return tensor

                super().__init__(pack_tensor, unpack_tensor)

        a = torch.rand(3, 3, requires_grad=True)

        def model():
            var, mean = torch.var_mean(a, dim=0)
            loss = (var + mean).sum()
            loss.backward()

        model()
        ref_grad = a.grad.clone()

        with RegisterPostNodeHook():
            model()

        # Verify that the post hook got called and the grad propagation worked
        self.assertEqual(ref_grad / 2.0 + ref_grad, a.grad)

    def test_hooks_cpp(self):
        # Tests hooks for autograd function implemented in C++
        bn = torch.nn.BatchNorm1d(5, affine=False)
        bn.double()
        bn.eval()

        counter = [0]

        def bw_hook(grad):
            counter[0] += 1
            return grad * 2

        x = torch.ones(5, 5, dtype=torch.double, requires_grad=True)
        z = bn(x)
        z.register_hook(bw_hook)
        z.sum().backward()

        self.assertEqual(counter[0], 1, msg="bw_hook not called")
        self.assertEqual(
            x.grad, torch.ones(5, 5, dtype=torch.double) * 2, atol=1e-5, rtol=0
        )

    def test_hook_none(self):
        # WARNING: this is a test for autograd internals.
        # You should never have to use such things in your code.
        class NoneGradientFunction(Function):
            @staticmethod
            def forward(ctx, x, y):
                assert ctx.needs_input_grad[0]
                assert not ctx.needs_input_grad[1]
                return x, y

            @staticmethod
            def backward(ctx, grad_x, grad_y):
                return grad_x, None

        was_called = [False]

        def hook(grad):
            self.assertIsNotNone(grad)
            was_called[0] = True

        x = torch.randn(5, 5, requires_grad=True)
        y = torch.randn(5, 5)
        rx, ry = NoneGradientFunction.apply(x, y)
        rx.register_hook(hook)
        ry.register_hook(hook)
        sum(rx, ry).sum().backward()
        self.assertTrue(was_called[0])

    def test_retain_grad(self):
        input = torch.rand(1, 3, requires_grad=True)
        h1 = input * 3
        out = (h1 * h1).sum()

        # It should be possible to call retain_grad() multiple times
        h1.retain_grad()
        h1.retain_grad()

        # Gradient should be accumulated
        out.backward(retain_graph=True)
        self.assertEqual(h1 * 2, h1.grad)
        out.backward(retain_graph=True)
        self.assertEqual(h1 * 4, h1.grad)

        with torch.no_grad():
            input.grad.zero_()
        # It should be a no-op for leaves
        input.retain_grad()
        input.retain_grad()
        out.backward()
        self.assertEqual(input * 18, input.grad)

    # NB: See test/cpp/api/autograd.cpp for more tests on the interaction between
    #     retains_grad and hooks in cpp
    def test_retain_grad_inplace(self):
        a = torch.tensor([1.0], requires_grad=True).clone()
        a.retain_grad()
        a.mul_(2)
        a.sum().backward()
        self.assertEqual(a.grad, torch.tensor([1.0]))

        a = torch.tensor([1.0], requires_grad=True).clone()
        a.retain_grad()
        # Inplace multiple times is OK
        a.mul_(2)
        a.mul_(2)
        a.sum().backward()
        self.assertEqual(a.grad, torch.tensor([1.0]))

        # When in-place over view is done, the retains_grad hooks should be
        # moved from base's original grad_fn to the copyslices node.
        x = torch.tensor([1.0], requires_grad=True).clone()
        x.retain_grad()
        x_view = x[:]
        x_view *= 2
        x *= 2
        x.sum().backward()
        # The grad is 1, not 4, because we are computing grad wrt the latest
        # version of x.
        self.assertEqual(a.grad, torch.tensor([1.0]))

        # If the base did not originally require grad, there should be no hook
        # to move. Make sure this case runs without error.
        x = torch.zeros(4)
        y = x.view(2, 2)
        y.add_(torch.randn(2, 2, requires_grad=True))

    def test_retains_grad_inplace_multiple_outputs(self):
        class DoubleMul(Function):
            @staticmethod
            def forward(ctx, x):
                return x * 2, x * 3

            @staticmethod
            def backward(ctx, g1, g2):
                return g1 * 2 + g2 * 3

        var_mean = partial(torch.var_mean, dim=0)

        for fn in (DoubleMul.apply, var_mean):
            b = torch.rand(3, 3, requires_grad=True)
            var, mean = fn(b)
            var.retain_grad()
            mean.retain_grad()
            # node has two retains_grad hooks
            var.mul_(2)
            # the retain_grad hook multi-output node refers should now be a nullptr
            (var + mean).sum().backward()
            gvar = var.grad
            gmean = mean.grad

            a = b.detach().requires_grad_(True)
            var, mean = fn(a)
            var.mul_(2)
            out = (var + mean).sum()
            gvar_expected, gmean_expected = torch.autograd.grad(out, inputs=(var, mean))
            self.assertTrue(torch.allclose(gvar, gvar_expected))
            self.assertTrue(torch.allclose(gmean, gmean_expected))

    def test_retain_grad_inplace_over_view(self):
        base = torch.tensor([1.0], requires_grad=True).clone()
        view = base[:]
        view2 = base[:]
        view.retain_grad()
        view2.retain_grad()
        view.mul_(2)
        (view + view2).sum().backward()

        # The old grad_fn, slice, wouldn't be part of the graph during backward
        # so if the retains grad were not properly updated to the new grad_fn,
        # the grad would still be None
        self.assertEqual(view.grad, view2.grad)
        self.assertEqual(view.grad, torch.tensor([1.0]))

    def test_tensor_hooks_inplace(self):
        # Check that the second hook gets registered to the new version of tensor
        count1 = [0]
        count2 = [0]

        def fn1(grad):
            count1[0] += 1
            # x2 from mul, x2 from fn2
            self.assertEqual(grad, torch.tensor([4.0]))
            return grad * 2

        def fn2(grad):
            count2[0] += 1
            self.assertEqual(grad, torch.tensor([1.0]))
            return grad * 2

        a = torch.tensor([1.0], requires_grad=True)
        b = a.clone()
        b.register_hook(fn1)
        b.mul_(2)
        b.register_hook(fn2)
        b.sum().backward()
        self.assertEqual(count1[0], 1)
        self.assertEqual(count2[0], 1)
        self.assertEqual(a.grad, torch.tensor([8.0]))

        count3 = [0]

        def fn3(grad):
            count3[0] += 1
            self.assertEqual(grad, torch.tensor([4.0]))
            return grad * 2

        a = torch.tensor([1.0], requires_grad=True)
        b = a.clone()
        b.register_hook(fn3)
        # Inplace multiple times is OK
        b.mul_(2)
        b.mul_(2)
        b.sum().backward()
        self.assertEqual(count1[0], 1)
        self.assertEqual(a.grad, torch.tensor([8.0]))

    def test_tensor_hooks_inplace_multiple_outputs(self):
        class DoubleMul(Function):
            @staticmethod
            def forward(ctx, x):
                return x * 2, x * 3

            @staticmethod
            def backward(ctx, g1, g2):
                return g1 * 2 + g2 * 3

        var_mean = partial(torch.var_mean, dim=0)

        for fn in (DoubleMul.apply, var_mean):
            counts = [0, 0, 0]

            def fn0(grad):
                counts[0] += 1
                self.assertEqual(grad, torch.ones_like(out1) * 2)

            def fn1(grad):
                counts[1] += 1
                self.assertEqual(grad, torch.ones_like(out1) * 3)

            def fn2(grad):
                counts[2] += 1
                self.assertEqual(grad, torch.ones_like(out1))

            b = torch.rand(3, 3, requires_grad=True)
            out1, out2 = fn(b)
            out1.register_hook(fn0)
            out2.register_hook(fn1)
            # node refers to two hook dicts
            # out1 no longer no longer points to its old hook dict
            out1.mul_(2)
            # fn2 is registered to out1's new hook dict
            out1.register_hook(fn2)
            (out1 + out2 * 3).sum().backward()
            self.assertEqual(counts, [1, 1, 1])

    def test_tensor_hooks_inplace_over_view(self):
        # There might be a better UX here, but this is the way it is now
        count = [0]

        def fn0(grad):
            self.fail()

        def fn1(grad):
            self.fail()

        def fn2(grad):
            count[0] += 1
            self.assertEqual(grad, torch.tensor([1.0]))

        base = torch.tensor([1.0], requires_grad=True).clone()
        view = base[:]
        view2 = base[:]
        view.register_hook(fn0)
        view2.register_hook(fn1)
        view.mul_(2)
        # We need to explicitly trigger an update to view to update its grad_fn
        view2.grad_fn
        view2.register_hook(fn2)
        (view + view2).sum().backward()
        # The hooks originally registered to view are not fired, one must explicitly
        # trigger an update to the view's grad_fn, and then register a new hook
        self.assertEqual(count[0], 1)

    def test_retain_grad_cycle(self):
        x = torch.ones(5, 5, requires_grad=True)

        def run_test():
            y = x * 2
            y.retain_grad()

            return y / 2, torch._C._WeakTensorRef(y)

        z, ref = run_test()
        self.assertTrue(ref.expired())
        z.sum().backward()

    def test_backward(self):
        v = torch.randn(5, 5, requires_grad=True)
        x = torch.randn(5, 5, requires_grad=True)
        y = (torch.rand(5, 5) + 0.1).requires_grad_(True)
        z = torch.randn(5, 5, requires_grad=True)
        grad_output = torch.randn(5, 5)

        v.backward(grad_output)
        self.assertEqual(v.grad, grad_output)

        a = x + (y * z) + 4 * z**2 * x / y
        a.backward(grad_output)
        x_grad = 4 * z.pow(2) / y + 1
        y_grad = z - 4 * x * z.pow(2) / y.pow(2)
        z_grad = 8 * x * z / y + y
        self.assertEqual(x.grad, x_grad * grad_output)
        self.assertEqual(y.grad, y_grad * grad_output)
        self.assertEqual(z.grad, z_grad * grad_output)

    def test_to_sparse_backward(self):
        to_attr_names = (
            "to_dense",
            "to_sparse",
            "to_sparse_csr",
            "to_sparse_csc",
            "to_sparse_bsr",
            "to_sparse_bsc",
        )
        to_params = ((), (), (), (), (2,), (2,))
        to_attr_names_params = dict(zip(to_attr_names, to_params))

        def check_inversion_possible(
            t, layout1, layout1_params, layout2, layout2_params
        ):
            l = (layout1, layout2)
            p = (layout1_params, layout2_params)
            for l1, l2, p1, p2 in ((*l, *p), (*l[::-1], *p[::-1])):
                try:
                    to_l1 = getattr(t, l1)(*p1)
                    to_l2 = getattr(to_l1, l2)(*p2)
                except RuntimeError:
                    return False

            return True

        self_strided = torch.rand(4, 4, dtype=torch.double) + 1
        grad_strided = torch.rand(4, 4, dtype=torch.double) + 1

        for from_to_attr in to_attr_names:
            from_params = to_attr_names_params[from_to_attr]
            self_from = getattr(self_strided, from_to_attr)(
                *from_params
            ).requires_grad_(True)

            for to_to_attr in to_attr_names[1:]:
                to_params = to_attr_names_params[to_to_attr]

                if check_inversion_possible(
                    self_strided, from_to_attr, from_params, to_to_attr, to_params
                ):
                    self_to = getattr(self_from, to_to_attr)(*to_params)
                    grad_to = getattr(grad_strided, to_to_attr)(*to_params)

                    # No gradcheck support for BSR/BSC, so the grads are checked explicitly
                    grad_res = torch.autograd.grad(self_to, self_from, grad_to)[0]

                    self.assertEqual(grad_res.layout, self_from.layout)
                    self.assertEqual(grad_res.to_dense(), grad_strided)

    def test_sparse_mm_backward(self):
        size = (3, 3)

        mm_test_cases = product(*(([False, True],) * 4))

        for a_req_grad, a_is_sparse, b_req_grad, b_is_sparse in mm_test_cases:
            # We should only be testing cases with sparse inputs, and at least one
            # input needs to require grad so we can call a backward pass
            if not ((a_is_sparse or b_is_sparse) and (a_req_grad or b_req_grad)):
                continue
            a = torch.randn(size)
            if a_is_sparse:
                # detaching as `a` needs to be a leaf
                a = a.to_sparse().detach()
            b = torch.randn(size)
            if b_is_sparse:
                # detaching as `b` needs to be a leaf
                b = b.to_sparse().detach()

            a = a.requires_grad_(a_req_grad)
            b = b.requires_grad_(b_req_grad)

            r = a.mm(b)
            s = r.sum().backward()
            a_grad = None if a.grad is None else a.grad.detach().clone()
            b_grad = None if b.grad is None else b.grad.detach().clone()

            # Redo with only dense tensors
            a = (
                (a.to_dense() if a.is_sparse else a)
                .clone()
                .detach()
                .requires_grad_(a_req_grad)
            )
            b = (
                (b.to_dense() if b.is_sparse else b)
                .clone()
                .detach()
                .requires_grad_(b_req_grad)
            )

            r = a.mm(b)
            r.sum().backward()

            self.assertEqual(a_grad, a.grad)
            self.assertEqual(b_grad, b.grad)

    def test_multi_backward(self):
        x = torch.randn(5, 5, requires_grad=True)
        y = torch.randn(5, 5, requires_grad=True)

        q = torch.randn(5, 5, requires_grad=True)

        a = torch.randn(5, 5, requires_grad=True)
        b = torch.randn(5, 5, requires_grad=True)

        q2 = q * 2
        z = x + y + q2
        c = a * b + q2
        grad_z = torch.randn(5, 5)
        grad_c = torch.randn(5, 5)
        torch.autograd.backward([z, c], [grad_z, grad_c])

        self.assertEqual(x.grad, grad_z)
        self.assertEqual(y.grad, grad_z)
        self.assertEqual(a.grad, grad_c * b)
        self.assertEqual(b.grad, grad_c * a)
        self.assertEqual(q.grad, (grad_c + grad_z) * 2)

    def test_multi_backward_no_grad(self):
        x = torch.randn(5, 5, requires_grad=True)
        y = torch.randn(5, 5, requires_grad=False)

        z = x + y
        q = y * 2

        # NB: we currently raise an exception if any arguments to backwards
        # have requires_grad=False and don't have a grad_fn. We may want to
        # relax that check to a warning.
        def call_backwards():
            torch.autograd.backward([z, q], [torch.ones(5, 5), torch.ones(5, 5)])

        self.assertRaises(RuntimeError, call_backwards)

    def test_backward_with_inputs(self):
        x = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
        y = torch.randn(2, 2, dtype=torch.double, requires_grad=True)

        def fn():
            return x**2 + y * x + y**2

        gradient = torch.ones(2, 2)
        x_grad_expected = 2 * x + y
        y_grad_expected = x + 2 * y

        @torch.no_grad()
        def reset_grad():
            x.grad.zero_()
            y.grad.zero_()

        torch.autograd.backward(fn(), gradient, inputs=[x, y])
        self.assertEqual(x.grad, x_grad_expected)
        self.assertEqual(y.grad, y_grad_expected)

        reset_grad()
        torch.autograd.backward(fn(), gradient, inputs=[x])
        self.assertEqual(x.grad, x_grad_expected)
        self.assertEqual(y.grad, torch.zeros(2, 2), exact_dtype=False)

        reset_grad()
        torch.autograd.backward(fn(), gradient, inputs=[y])
        self.assertEqual(y.grad, y_grad_expected)
        self.assertEqual(x.grad, torch.zeros(2, 2), exact_dtype=False)

        reset_grad()
        torch.autograd.backward(fn(), gradient, inputs=y)
        self.assertEqual(y.grad, y_grad_expected)
        self.assertEqual(x.grad, torch.zeros(2, 2), exact_dtype=False)

        reset_grad()
        self.assertRaisesRegex(
            RuntimeError,
            "cannot be empty",
            lambda: torch.autograd.backward(fn(), gradient, inputs=[]),
        )

    def test_backward_with_nonleaf_inputs(self):
        x = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
        x_nonleaf = x * 1
        y = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
        z = torch.randn(2, 2, dtype=torch.double, requires_grad=True)

        out = x_nonleaf**2 + y * x_nonleaf + y**2

        out.backward(
            torch.ones(2, 2, dtype=torch.double),
            create_graph=True,
            inputs=[x, y, x_nonleaf],
        )
        x_grad_expected = 2 * x + y
        y_grad_expected = x + 2 * y
        x_non_leaf_expected = 2 * x_nonleaf + y

        self.assertEqual(y.grad, y_grad_expected)
        self.assertEqual(x.grad, x_grad_expected)
        self.assertEqual(x_nonleaf.grad, x_non_leaf_expected)

        # backward doesn't have an allow_unused flag, so the behavior of backward
        # when variable is not part of the graph is as if allow_used were true
        # x.grad will simply be None.
        out.backward(
            torch.ones(2, 2, dtype=torch.double), create_graph=True, inputs=[z]
        )
        self.assertIsNone(z.grad)

    def test_dependent_backward(self):
        x = torch.randn(10, requires_grad=True)
        y = x**2
        z = y**3

        go_y = torch.randn(10)
        go_z = torch.randn(10)
        torch.autograd.backward([y, z], [go_y, go_z])

        xd = x
        self.assertEqual(x.grad, 2 * xd * go_y + 6 * xd.pow(5) * go_z)

    def test_save_output_nr(self):
        x = torch.randn(10, requires_grad=True)

        class MultiOutputFn(Function):
            @staticmethod
            def forward(ctx, x):
                return x[:5], x[5:]

            @staticmethod
            def backward(ctx, *grad):
                return torch.cat(grad)

        a, b = MultiOutputFn.apply(x)
        self.assertEqual(b.output_nr, 1)

        class TestFn(Function):
            @staticmethod
            def forward(ctx, b):
                ctx.save_for_backward(b)
                return b * 2

            @staticmethod
            def backward(ctx, grad_b):
                (b,) = ctx.saved_tensors
                self.assertEqual(b.output_nr, 1)

        TestFn.apply(b).sum().backward()

    def test_first_grad_fn_access_in_no_grad_mode(self):
        a = torch.tensor([1 + 1j], requires_grad=True).clone()
        v = a.real
        a.add_(1)
        with torch.autograd.grad_mode.no_grad():
            v.grad_fn

    @skipIfTorchDynamo("too slow")
    def test_free_deep_graph(self):
        def scope():
            depth = 150000
            x = torch.randn(1, requires_grad=True)
            y = x.clone()

            # build a "chain" computation graph
            for _ in range(depth):
                y = y + y * 0.000001

            # graph deletion occurs when the above locals go out of scope.
            # In this case `del y` will trigger it but it's easier to leave
            # it to Python to delete the locals.

        # Should not stack overflow
        scope()

    @skipIfTorchDynamo("too slow")
    def test_free_deep_graph_complicated(self):
        def scope():
            depth = 100000
            randchoice = torch.randint(2, [depth, 2])
            x = torch.randn(1, requires_grad=True)
            y = x.clone()

            # Hold the two previous values
            prev_values = [None, None]

            # Build a "chain with skip connections" graph
            for _ in range(depth):
                prev_tensors = [
                    tensor for tensor in prev_values[:-1] if tensor is not None
                ]
                prev_values.append(y)
                prev_values.pop(0)

                # Definitely pick one tensor to add
                y += y * 0.000001

                # Possibly add other tensors
                nprev = len(prev_tensors)
                if nprev == 2:
                    y += randchoice[depth].mul(torch.cat(prev_tensors)).sum()

            # graph deletion occurs when the above locals go out of scope.

        # Should not stack overflow
        scope()

    @skipIfTorchDynamo("too slow")
    def test_free_deep_graph_pyfunction(self):
        class MyOp(Function):
            @staticmethod
            def forward(ctx, tensor1, tensor2):
                return tensor1 + tensor2

            @staticmethod
            def backward(ctx, grad_output):
                return grad_output, grad_output

        def scope():
            depth = 150000
            x = torch.randn(1, requires_grad=True)
            y = x.clone()

            # build deeply nested computation graph
            for _ in range(depth):
                y = MyOp.apply(y, y)

            # graph deletion occurs when the above locals go out of scope.

        # Should not stack overflow
        scope()

    def test_no_unnecessary_save(self):
        # If we kept x in the derivative Function of x * 2 we would
        # get an error in the backward that would complain that we've
        # modified x, which was needed for gradient computation.
        # Since we should elide unnecessary saves, this test should pass.
        mu = torch.ones(1, requires_grad=True)
        x = torch.empty(1)
        loss = 0
        for i in range(3):
            x.detach_()
            x.copy_(mu + i)
            ft = torch.tensor([float(i)])
            multiplied = x * ft
            s = multiplied.sum()
            loss += s
        loss.backward()

    def test_no_grad(self):
        x = torch.ones(5, 5, requires_grad=True)
        y = torch.ones(5, 5) * 4
        with torch.no_grad():
            w = x + y

        def adder(x, y):
            return x + y

        adders = [torch.no_grad()(adder), torch.no_grad(adder)]

        for adder in adders:
            z = adder(x, y)

            self.assertFalse(w.requires_grad)
            self.assertRaises(RuntimeError, lambda: w.backward(torch.ones(5, 5)))
            self.assertIsNone(w.grad_fn)
            self.assertFalse(z.requires_grad)
            self.assertRaises(RuntimeError, lambda: z.backward(torch.ones(5, 5)))
            self.assertIsNone(z.grad_fn)

        # test nested decorator and with-statement on no_grad
        with torch.no_grad():
            self.assertFalse(torch.is_grad_enabled())
            w = adder(x, y)
            self.assertFalse(torch.is_grad_enabled())

    def test_enable_grad_decorator_no_paren(self):
        x = torch.ones(1, requires_grad=True)

        @torch.enable_grad
        def doubler(x):
            return x * 2

        with torch.no_grad():
            z = doubler(x)
        self.assertTrue(z.requires_grad)

    def test_set_grad_generator_functions(self):
        @torch.no_grad()
        def gen_no_grad():
            for i in range(10):
                self.assertEqual(torch.is_grad_enabled(), False)
                yield i

        with torch.enable_grad():
            for _ in gen_no_grad():
                self.assertEqual(torch.is_grad_enabled(), True)

        @torch.enable_grad()
        def gen_enable_grad():
            for i in range(10):
                self.assertEqual(torch.is_grad_enabled(), True)
                yield i

        with torch.no_grad():
            for _ in gen_enable_grad():
                self.assertEqual(torch.is_grad_enabled(), False)

    def test_set_grad_generator_functions_recursive(self):
        # enable_grad_decorator_recursive and no_grad_decorator_recursive call each other
        # recursively, to ensure that the decorators preserve the caller's setting
        @torch.enable_grad()
        def enable_grad_decorator_recursive(depth):
            self.assertTrue(torch.is_grad_enabled())
            if depth > 0:
                no_grad_decorator_recursive(depth - 1)
                self.assertTrue(torch.is_grad_enabled())

        @torch.no_grad()
        def no_grad_decorator_recursive(depth):
            self.assertFalse(torch.is_grad_enabled())
            if depth > 0:
                enable_grad_decorator_recursive(depth - 1)
                self.assertFalse(torch.is_grad_enabled())

        # enable_grad_context_manager_recursive and no_grad_context_manager_recursive call
        # each other recursively, to ensure that the decorators preserve the caller's setting
        def enable_grad_context_manager_recursive(depth):
            with torch.enable_grad():
                self.assertTrue(torch.is_grad_enabled())
                if depth > 0:
                    no_grad_context_manager_recursive(depth - 1)
                    self.assertTrue(torch.is_grad_enabled())

        def no_grad_context_manager_recursive(depth):
            with torch.no_grad():
                self.assertFalse(torch.is_grad_enabled())
                if depth > 0:
                    enable_grad_context_manager_recursive(depth - 1)
                    self.assertFalse(torch.is_grad_enabled())

        with torch.enable_grad():
            self.assertTrue(torch.is_grad_enabled())
            enable_grad_decorator_recursive(10)
            self.assertTrue(torch.is_grad_enabled())
            enable_grad_context_manager_recursive(10)
            self.assertTrue(torch.is_grad_enabled())

        with torch.no_grad():
            self.assertFalse(torch.is_grad_enabled())
            enable_grad_decorator_recursive(10)
            self.assertFalse(torch.is_grad_enabled())
            enable_grad_context_manager_recursive(10)
            self.assertFalse(torch.is_grad_enabled())

    def test_set_grad_coroutines(self):
        @torch.no_grad()
        def coro_no_grad(n=10):
            self.assertFalse(torch.is_grad_enabled())
            for i in range(n):
                self.assertFalse(torch.is_grad_enabled())
                r = yield i
                self.assertFalse(torch.is_grad_enabled())
                self.assertEqual(i, r)
            self.assertFalse(torch.is_grad_enabled())

        @torch.enable_grad()
        def coro_enable_grad(n=10):
            self.assertTrue(torch.is_grad_enabled())
            for i in range(n):
                self.assertTrue(torch.is_grad_enabled())
                r = yield i
                self.assertTrue(torch.is_grad_enabled())
                self.assertEqual(i, r)
            self.assertTrue(torch.is_grad_enabled())

        with torch.enable_grad():
            self.assertTrue(torch.is_grad_enabled())
            coro, r = coro_no_grad(), None
            try:
                while True:
                    self.assertTrue(torch.is_grad_enabled())
                    r = coro.send(r)
                    self.assertTrue(torch.is_grad_enabled())

            except StopIteration:
                pass

        with torch.no_grad():
            self.assertFalse(torch.is_grad_enabled())
            coro, r = coro_enable_grad(), None
            try:
                while True:
                    self.assertFalse(torch.is_grad_enabled())
                    r = coro.send(r)
                    self.assertFalse(torch.is_grad_enabled())

            except StopIteration:
                pass

    def test_set_grad_coroutines_benign_exceptions(self):
        class RecoverableException(Exception):
            pass

        @torch.no_grad()
        def coro_no_grad(n=10):
            has_raised = False
            for i in range(n):
                try:
                    self.assertFalse(torch.is_grad_enabled())
                    yield (-i if has_raised else i)

                except RecoverableException:
                    self.assertFalse(torch.is_grad_enabled())
                    has_raised = True

        @torch.enable_grad()
        def coro_enable_grad(n=10):
            has_raised = False
            for i in range(n):
                try:
                    self.assertTrue(torch.is_grad_enabled())
                    yield (-i if has_raised else i)

                except RecoverableException:
                    self.assertTrue(torch.is_grad_enabled())
                    has_raised = True

        with torch.enable_grad():
            coro = coro_no_grad()
            assert 0 == next(coro)
            try:
                while True:
                    r = coro.throw(RecoverableException)
                    self.assertLess(r, 0)

            except StopIteration:
                pass

        with torch.no_grad():
            coro = coro_enable_grad()
            assert 0 == next(coro)
            try:
                while True:
                    r = coro.throw(RecoverableException)
                    self.assertLess(r, 0)

            except StopIteration:
                pass

    def test_set_grad_coroutines_critical_exceptions(self):
        class UnrecoverableException(Exception):
            pass

        class SecondaryException(Exception):
            pass

        @torch.no_grad()
        def coro_no_grad(n=10):
            has_raised = False
            for i in range(n):
                try:
                    self.assertFalse(torch.is_grad_enabled())
                    yield (-i if has_raised else i)

                except UnrecoverableException:
                    self.assertFalse(torch.is_grad_enabled())
                    raise SecondaryException from None

        @torch.enable_grad()
        def coro_enable_grad(n=10):
            has_raised = False
            for i in range(n):
                try:
                    self.assertTrue(torch.is_grad_enabled())
                    yield (-i if has_raised else i)

                except UnrecoverableException:
                    self.assertTrue(torch.is_grad_enabled())
                    raise SecondaryException from None

        with torch.enable_grad():
            coro = coro_no_grad()
            assert 0 == next(coro)
            with self.assertRaises(SecondaryException):
                coro.throw(UnrecoverableException)

        with torch.no_grad():
            coro = coro_enable_grad()
            assert 0 == next(coro)
            with self.assertRaises(SecondaryException):
                coro.throw(UnrecoverableException)

    def test_set_grad_coroutines_exit(self):
        @torch.no_grad()
        def coro_no_grad(state):
            for i in range(10):
                try:
                    self.assertFalse(torch.is_grad_enabled())
                    yield i

                except GeneratorExit:
                    self.assertFalse(torch.is_grad_enabled())
                    state.add("GeneratorExit")
                    raise

        @torch.enable_grad()
        def coro_enable_grad(state):
            for i in range(10):
                try:
                    self.assertTrue(torch.is_grad_enabled())
                    yield i

                except GeneratorExit:
                    self.assertTrue(torch.is_grad_enabled())
                    state.add("GeneratorExit")
                    raise

        state = set()
        with torch.enable_grad():
            coro = coro_no_grad(state)
            for i in range(5):
                next(coro)

            coro.close()
        self.assertTrue("GeneratorExit" in state)

        state = set()
        with torch.no_grad():
            coro = coro_enable_grad(state)
            for i in range(5):
                next(coro)

            coro.close()
        self.assertTrue("GeneratorExit" in state)

    def test_no_grad_python_function(self):
        """Python Functions should respect grad mode."""
        x = torch.ones(5, 5, requires_grad=True)

        class MyOp(Function):
            @staticmethod
            def forward(self, x):
                return x + 1

            @staticmethod
            def backward(self, dy):
                return dy

        with torch.no_grad():
            y = MyOp.apply(x)
        self.assertFalse(y.requires_grad)

    def test_indexing(self):
        x = torch.arange(1.0, 17).view(4, 4)
        y = Variable(x, requires_grad=True)

        def compare(x, y, idx, indexed_tensor, indexed_var):
            indexed_var_t = indexed_var.data
            if not isinstance(indexed_tensor, torch.Tensor):
                indexed_var_t = indexed_var_t[0]
            self.assertEqual(indexed_tensor, indexed_var_t)

            indexed_var.sum().backward()
            expected_grad = torch.empty(x.size()).fill_(0)
            expected_grad[idx] = 1
            self.assertEqual(y.grad, expected_grad)

        def check_index(x, y, idx):
            if y.grad is not None:
                with torch.no_grad():
                    y.grad.zero_()
            indexed_tensor = x[idx]
            indexed_var = y[idx]
            compare(x, y, idx, indexed_tensor, indexed_var)

        check_index(x, y, 1)
        check_index(x, y, (1, 1))
        check_index(x, y, slice(1, None))
        check_index(x, y, slice(None, 2))
        check_index(x, y, (slice(None, 2), 2))
        check_index(x, y, (slice(1, 2), 2))
        check_index(x, y, (1, slice(2, None)))
        check_index(x, y, (slice(None, None), slice(2, None)))
        check_index(x, y, torch.LongTensor([0, 2]))
        check_index(x, y, torch.rand(4, 4).bernoulli().bool())
        check_index(x, y, (Ellipsis, slice(2, None)))
        check_index(x, y, ([0], [0]))
        check_index(x, y, ([1, 2, 3], [0]))
        check_index(x, y, ([1, 2], [2, 1]))
        check_index(x, y, ([[1, 2], [3, 0]], [[0, 1], [2, 3]]))
        check_index(x, y, ([slice(None), [2, 3]]))
        check_index(x, y, ([[2, 3], slice(None)]))

        # advanced indexing, with less dim, or ellipsis
        check_index(x, y, ([0]))
        check_index(x, y, ([0],))

        x = torch.arange(1.0, 49).view(4, 3, 4)
        y = Variable(x, requires_grad=True)

        check_index(x, y, (slice(None), [0], [0]))
        check_index(x, y, ([0], [0], slice(None)))
        check_index(x, y, (slice(None), [0, 1, 2], [0]))
        check_index(x, y, ([0, 1, 2], [0], slice(None)))
        check_index(x, y, (slice(None), [1, 2], [2, 1]))
        check_index(x, y, ([1, 2], [2, 1], slice(None)))
        check_index(x, y, (slice(None), [[1, 2], [2, 0]], [[0, 1], [2, 3]]))
        check_index(x, y, ([[1, 2], [3, 0]], [[0, 1], [2, 2]], slice(None)))
        check_index(x, y, (slice(None), slice(None), [2, 1]))
        check_index(x, y, (slice(None), [2, 1], slice(None)))
        check_index(x, y, ([2, 1], slice(None), slice(None)))

        # advanced indexing, with less dim, or ellipsis
        check_index(x, y, ([0],))
        check_index(x, y, ([0], slice(None)))
        check_index(x, y, ([0], Ellipsis))
        check_index(x, y, ([1, 2], [0, 1]))
        check_index(x, y, ([1, 2], [0, 1], Ellipsis))
        check_index(x, y, (Ellipsis, [1, 2], [0, 1]))

        # advanced indexing, with a tensor wrapped in a variable
        z = torch.LongTensor([0, 1])
        zv = Variable(z, requires_grad=False)
        seq = [z, Ellipsis]
        seqv = [zv, Ellipsis]

        if y.grad is not None:
            with torch.no_grad():
                y.grad.zero_()
        indexed_tensor = x[seq]
        indexed_var = y[seqv]
        compare(x, y, seq, indexed_tensor, indexed_var)

    def test_indexing_duplicates(self):
        x = torch.arange(1.0, 17).view(4, 4)
        y = Variable(x, requires_grad=True)

        idx = torch.LongTensor([1, 1, 3, 2, 1, 2])
        y[idx].sum().backward()
        expected_grad = torch.zeros(4, 4)
        for i in idx:
            expected_grad[i] += 1
        self.assertEqual(y.grad, expected_grad)

        # with advanced indexing
        x = torch.arange(1.0, 17).view(4, 4)
        y = Variable(x, requires_grad=True)

        idx = [[1, 1, 3, 2, 1, 2], [0]]
        y[idx].sum().backward()
        expected_grad = torch.zeros(4, 4)
        for i in idx[0]:
            for j in idx[1]:
                expected_grad[i][j] += 1

        self.assertEqual(y.grad, expected_grad)

        x = torch.arange(1.0, 17).view(4, 4)
        y = Variable(x, requires_grad=True)
        idx = [[[1, 2], [0, 0]], [[0, 1], [1, 1]]]
        y[idx].sum().backward()
        expected_grad = torch.tensor(
            [
                [0.0, 2.0, 0.0, 0.0],
                [1.0, 0.0, 0.0, 0.0],
                [0.0, 1.0, 0.0, 0.0],
                [0.0, 0.0, 0.0, 0.0],
            ]
        )
        self.assertEqual(y.grad, expected_grad)

        x = torch.arange(1.0, 65).view(4, 4, 4)
        y = Variable(x, requires_grad=True)

        idx = [[1, 1, 1], slice(None), slice(None)]
        y[idx].sum().backward()
        expected_grad = torch.empty(4, 4, 4).zero_()
        expected_grad[1].fill_(3)
        self.assertEqual(y.grad, expected_grad)

    def test_index_backward_does_not_save_tensor(self):
        # Example from https://github.com/pytorch/pytorch/issues/24853.
        # if `index(tensor, indices)` saves `tensor` for backwards, then it will
        # trigger a version check on `tensor` during the backward pass, which
        # will cause the following code to error because `tensor` gets modified
        # by the indexing line.
        a = torch.tensor([1.0, 0, 0])
        b = torch.zeros(3, requires_grad=True)
        tensor = b + 0
        tensor[a != 0] = tensor[a != 0]
        tensor.backward(torch.zeros_like(tensor))

    def test_volatile_deprecated(self):
        v = torch.autograd.torch.randn(3, 3)
        with warnings.catch_warnings(record=True) as w:
            self.assertFalse(v.volatile)
        self.assertIn("volatile", str(w[0].message))

    def test_saved_variables_deprecated(self):
        class MyFunction(Function):
            @staticmethod
            def forward(ctx, tensor1, tensor2):
                ctx.save_for_backward(tensor1, tensor2)
                return tensor1 + tensor2

            @staticmethod
            def backward(ctx, grad_output):
                var1, var2 = ctx.saved_variables
                return (grad_output, grad_output)

        with warnings.catch_warnings(record=True) as warns:
            warnings.simplefilter("always")
            x = torch.randn((3, 3), requires_grad=True)
            y = torch.randn((3, 3), requires_grad=True)
            MyFunction.apply(x, y).sum().backward()

            has_deprecated = (
                "deprecated" in str(warn) and "saved_variables" in str(warn)
                for warn in warns
            )
            has_deprecated = reduce(lambda x, y: x or y, has_deprecated)
            self.assertTrue(has_deprecated)

    def test_requires_grad(self):
        x = torch.randn(5, 5)
        y = torch.randn(5, 5)
        z = torch.randn(5, 5, requires_grad=True)
        a = x + y
        self.assertFalse(a.requires_grad)
        b = a + z
        self.assertTrue(b.requires_grad)

        def error():
            raise RuntimeError

        # Make sure backward isn't called on these
        a._backward_hooks = OrderedDict()
        x._backward_hooks = OrderedDict()
        y._backward_hooks = OrderedDict()
        a._backward_hooks["test"] = error
        x._backward_hooks["test"] = error
        y._backward_hooks["test"] = error
        b.backward(torch.ones(5, 5))

    def test_requires_grad_(self):
        x = torch.randn(5, 5)
        y = torch.randn(5, 5, requires_grad=True)
        self.assertIs(x, x.requires_grad_())
        self.assertTrue(x.requires_grad)
        self.assertIs(y, y.requires_grad_())
        self.assertTrue(y.requires_grad)
        self.assertIs(x, x.requires_grad_(True))
        self.assertTrue(x.requires_grad)
        self.assertIs(y, y.requires_grad_(True))
        self.assertTrue(y.requires_grad)
        z = x * y
        self.assertRaises(RuntimeError, lambda: z.requires_grad_(False))
        self.assertIs(z, z.requires_grad_())
        self.assertTrue(z.requires_grad)
        self.assertIs(z, z.requires_grad_(True))
        self.assertTrue(z.requires_grad)

        self.assertIs(x, x.requires_grad_(False))
        self.assertFalse(x.requires_grad)
        self.assertIs(y, y.requires_grad_(False))
        self.assertFalse(y.requires_grad)

    def test_requires_grad_inplace(self):
        a = torch.randn(5, 5)
        b = torch.randn(5, 5, requires_grad=True)
        a += b
        self.assertTrue(a.requires_grad)

        # non-leaf
        a = torch.randn(5, 5) + 0
        b = torch.randn(5, 5, requires_grad=True)
        a += b
        self.assertTrue(a.requires_grad)

    def test_no_requires_grad_inplace(self):
        # basic case, should be able to modify inplace while requires_grad is False
        a = torch.randn(2, 3)
        a.add_(5)
        a.requires_grad = True
        a.sum().backward()
        self.assertEqual(a.grad, torch.ones(2, 3))

        # same but with a view
        a = torch.randn(2, 3)
        b = a[:]
        b.add_(5)
        a.requires_grad = True
        a.sum().backward()
        self.assertEqual(a.grad, torch.ones(2, 3))

        # should fail if requires_grad = True when we modify inplace
        a = torch.randn(2, 3)
        b = a[:]
        a.requires_grad = True
        with self.assertRaises(RuntimeError):
            a.add_(5)
        with self.assertRaises(RuntimeError):
            b.add_(5)

    @xfailIfS390X
    def test_attribute_deletion(self):
        x = torch.randn((5, 5), requires_grad=True)
        del x.grad
        self.assertIsNone(x.grad)
        with self.assertRaises(RuntimeError):
            del x.data
        with self.assertRaises(TypeError):
            x.data = None
        with self.assertRaises(RuntimeError):
            del x.requires_grad
        with self.assertRaises(RuntimeError):
            del x._grad_fn
        with self.assertRaises(RuntimeError):
            del x._backward_hooks

    def test_duplicate_backward_root(self):
        a = torch.randn(5, 5, requires_grad=True)
        b = torch.randn(5, 5, requires_grad=True)

        x = a * b
        grad_output = torch.randn_like(x)
        torch.autograd.backward([x, x], [grad_output, grad_output])

        self.assertEqual(a.grad, b * grad_output * 2)
        self.assertEqual(b.grad, a * grad_output * 2)

    def test_backward_no_grad(self):
        a = torch.randn(5, 5, requires_grad=True)
        b = a + 2
        with self.assertRaises(RuntimeError):
            torch.autograd.backward([b], [None])

    def test_backward_twice_with_saved_values(self):
        b = torch.randn(3, requires_grad=True, dtype=torch.double)
        c = torch.zeros(3, dtype=torch.double)
        c[[1, 2]] = b[[1, 1]]
        c.backward(torch.tensor([1, 1, 1], dtype=torch.double))
        self.assertRaisesRegex(
            RuntimeError,
            "Specify retain_graph=True",
            lambda: c.backward(torch.tensor([1, 1, 1], dtype=torch.double)),
        )

    def test_backward_twice_retained_graph_with_saved_values(self):
        b = torch.randn(3, requires_grad=True, dtype=torch.double)
        c = torch.zeros(3, dtype=torch.double)
        c[[1, 2]] = b[[1, 1]]
        c.backward(torch.tensor([1, 1, 1], dtype=torch.double), retain_graph=True)
        c.backward(torch.tensor([1, 1, 1], dtype=torch.double))

    def test_backward_twice_without_saved_values(self):
        b = torch.randn(3, requires_grad=True, dtype=torch.double)
        c = b + 1
        c.backward(torch.tensor([1, 1, 1], dtype=torch.double))
        c.backward(torch.tensor([1, 1, 1], dtype=torch.double))

    def test_backward_twice_retained_graph_without_saved_values(self):
        b = torch.randn(3, requires_grad=True, dtype=torch.double)
        c = torch.zeros(3, dtype=torch.double)
        c[[1, 2]] = b[[1, 1]]
        c.backward(torch.tensor([1, 1, 1], dtype=torch.double), retain_graph=True)
        c.backward(torch.tensor([1, 1, 1], dtype=torch.double))

    def test_backward_create_graph_warns(self):
        with set_warn_always_context(True):
            b = torch.randn(3, requires_grad=True, dtype=torch.double)
            c = b * b
            with warnings.catch_warnings(record=True) as ws:
                c.backward(torch.ones_like(c), create_graph=True)
            b.grad = None
            self.assertTrue(
                any(
                    "Using backward() with create_graph=True" in str(w.message)
                    for w in ws
                )
            )

            # Should not warn for grad
            with warnings.catch_warnings(record=True) as ws:
                torch.autograd.grad(c, b, torch.ones_like(c), create_graph=True)
            self.assertFalse(
                any(
                    "Using backward() with create_graph=True" in str(w.message)
                    for w in ws
                )
            )

    def test_next_functions(self):
        x = torch.randn(5, 5, requires_grad=True)
        y = torch.randn(5, 5, requires_grad=True)

        a = x + y
        self.assertIsNotNone(a.grad_fn)
        next_functions = a.grad_fn.next_functions
        self.assertEqual(len(next_functions), 2)
        self.assertIsInstance(next_functions[0][0], torch._C._functions.AccumulateGrad)
        self.assertEqual(next_functions[0][1], 0)
        self.assertIsInstance(next_functions[1][0], torch._C._functions.AccumulateGrad)
        self.assertEqual(next_functions[1][1], 0)

        b = a + 5
        next_functions = b.grad_fn.next_functions
        self.assertEqual(len(next_functions), 2)
        self.assertIs(next_functions[0][0], a.grad_fn)
        self.assertIs(next_functions[1][0], None)

    def test_inplace(self):
        x = torch.ones(5, 5, requires_grad=True)
        y = Variable(torch.ones(5, 5) * 4, requires_grad=True)

        z = x * y
        q = z + y
        w = z * y
        z.add_(2)
        # Add doesn't need it's inputs to do backward, so it shouldn't raise
        q.backward(torch.ones(5, 5), retain_graph=True)
        # Mul saves both inputs in forward, so it should raise
        self.assertRaises(RuntimeError, lambda: w.backward(torch.ones(5, 5)))

        z = x * y
        q = z * y
        r = z + y
        w = z.add_(y)
        # w is a the last expression, so this should succeed
        w.backward(torch.ones(5, 5), retain_graph=True)
        # r doesn't use the modified value in backward, so it should succeed
        r.backward(torch.ones(5, 5), retain_graph=True)
        # q uses dirty z, so it should raise
        self.assertRaises(RuntimeError, lambda: q.backward(torch.ones(5, 5)))

        with torch.no_grad():
            x.grad.zero_()
        m = x / 2
        z = m + y / 8
        q = z * y
        r = z + y
        prev_version = z._version
        w = z.exp_()
        self.assertNotEqual(z._version, prev_version)
        r.backward(torch.ones(5, 5), retain_graph=True)
        self.assertEqual(x.grad, torch.ones(5, 5) / 2)
        w.backward(torch.ones(5, 5), retain_graph=True)
        self.assertEqual(x.grad, torch.empty(5, 5).fill_((1 + math.e) / 2))
        self.assertRaises(RuntimeError, lambda: q.backward(torch.ones(5, 5)))

        leaf = torch.ones(5, 5, requires_grad=True)
        x = leaf.clone()
        x.add_(10)
        self.assertEqual(x, torch.ones(5, 5) * 11)
        # x should be still usable
        y = x + 2
        y.backward(torch.ones(5, 5))
        self.assertEqual(leaf.grad, torch.ones(5, 5))
        z = x * y
        x.add_(2)
        self.assertRaises(RuntimeError, lambda: z.backward(torch.ones(5, 5)))

    def test_mark_non_differentiable(self):
        class MyFunction(Function):
            @staticmethod
            def forward(ctx, input):
                output = input > 0
                ctx.mark_non_differentiable(output)
                return output

            @staticmethod
            def backward(ctx, grad_output):
                return (grad_output * 0).to(torch.double)

        x = torch.randn(5, 5, requires_grad=True)
        mask = MyFunction.apply(x)
        self.assertFalse(mask.requires_grad)
        y = x.masked_fill(mask, 0)
        y.sum().backward()

    @skipIfTorchDynamo("compile tested in test/dynamo/test_autograd_function.py")
    def test_mark_non_differentiable_mixed(self):
        class MyFunction(Function):
            @staticmethod
            def forward(ctx, input):
                a = input + 1
                b = input + 2
                ctx.mark_non_differentiable(a)
                return a, b

            @staticmethod
            def backward(ctx, grad_a, grad_b):
                self.assertTrue((grad_a == 0).all())
                self.assertTrue((grad_b == 1).all())
                return grad_b

        x = torch.randn(5, 5, requires_grad=True)
        a, b = MyFunction.apply(x)
        self.assertFalse(a.requires_grad)
        self.assertTrue(b.requires_grad)
        b.sum().backward()
        self.assertEqual(x.grad, torch.ones(5, 5))

    def test_mark_non_differentiable_none(self):
        # This used to segfault because MyFunction would send back null
        # gradients to MulBackward, which is implemented in C++. C++
        # implemented functions expect incoming grad_outputs to be non-null.
        class MyFunction(Function):
            @staticmethod
            def forward(ctx, input):
                output = input.clone()
                ctx.mark_non_differentiable(output)
                return output

            @staticmethod
            def backward(ctx, grad_output):
                return None

        x = torch.randn(5, 5, requires_grad=True)
        r = MyFunction.apply(x * x)
        (r * x).sum().backward()

    def test_return_duplicate(self):
        class DoubleDuplicate(Function):
            @staticmethod
            def forward(ctx, x):
                output = x * 2
                return output, output

            @staticmethod
            def backward(ctx, grad1, grad2):
                return grad1 * 2 + grad2 * 2

        def fn(x):
            a, b = DoubleDuplicate.apply(x)
            self.assertIs(a, b)
            return a + b

        x = torch.randn(5, 5, dtype=torch.double, requires_grad=True)
        gradcheck(fn, [x])
        gradgradcheck(fn, [x])

    def test_return_duplicate_inplace(self):
        class DoubleInplace(Function):
            @staticmethod
            def forward(ctx, x):
                x.mul_(2)
                ctx.mark_dirty(x)
                return x, x

            @staticmethod
            def backward(ctx, grad1, grad2):
                return grad1 * 2 + grad2 * 2

        def inplace_fn(x):
            a, b = DoubleInplace.apply(x.clone())
            self.assertIs(a, b)
            return a + b

        x = torch.randn(5, 5, dtype=torch.double, requires_grad=True)
        gradcheck(inplace_fn, [x])
        gradgradcheck(inplace_fn, [x])

        # Can't modify leaf variables in-place
        self.assertRaises(RuntimeError, lambda: InplaceFunction.apply(x))
        # Functions which modify views in-place must return only one output
        self.assertRaises(RuntimeError, lambda: InplaceFunction.apply(x.clone()[0]))

    def _test_setitem(self, size, index):
        x = torch.ones(*size, requires_grad=True)
        y = x + 2
        y_version = y._version
        y[index] = 2
        self.assertNotEqual(y._version, y_version)
        y.backward(torch.ones(*size))
        expected_grad = torch.ones(*size)
        expected_grad[index] = 0
        self.assertEqual(x.grad, expected_grad)

    def _test_setitem_tensor(self, size, index):
        x = torch.ones(*size, requires_grad=True)
        y = x + 2
        y_version = y._version
        value = x.new(x[index].size()).fill_(7)
        value.requires_grad = True
        y[index] = value
        self.assertNotEqual(y._version, y_version)
        y.backward(torch.ones(*size))
        expected_grad_input = torch.ones(*size)
        expected_grad_input[index] = 0
        self.assertEqual(x.grad, expected_grad_input)
        self.assertEqual(value.grad, torch.ones_like(value))

        # case when x broadcasts to as y[1]
        x = torch.randn(4, requires_grad=True)
        y = torch.zeros(2, 3, 4)
        y[1] = x
        y.backward(torch.randn(2, 3, 4))
        self.assertEqual(x.size(), x.grad.size())

    def test_setitem(self):
        self._test_setitem((5, 5), 1)
        self._test_setitem((5,), 1)
        self._test_setitem((1,), 0)
        self._test_setitem((10,), [[0, 4, 2]])
        self._test_setitem((5, 5), [[0, 4], [2, 2]])
        self._test_setitem((5, 5, 5), [slice(None), slice(None), [1, 3]])
        self._test_setitem((5, 5, 5), [slice(None), [1, 3], slice(None)])
        self._test_setitem((5, 5, 5), [[1, 3], slice(None), slice(None)])
        self._test_setitem((5, 5, 5), [slice(None), [2, 4], [1, 3]])
        self._test_setitem((5, 5, 5), [[1, 3], [2, 4], slice(None)])
        self._test_setitem_tensor((5, 5), 3)
        self._test_setitem_tensor((5, 5), [[0, 1], [1, 0]])
        self._test_setitem_tensor((5,), 3)
        self._test_setitem_tensor(
            (5,), Variable(torch.LongTensor([3]), requires_grad=False).sum()
        )
        self._test_setitem_tensor((5,), [[0, 1, 2, 3]])
        self._test_setitem_tensor((5, 5, 5), [slice(None), slice(None), [1, 3]])
        self._test_setitem_tensor((5, 5, 5), [slice(None), [1, 3], slice(None)])
        self._test_setitem_tensor((5, 5, 5), [[1, 3], slice(None), slice(None)])
        self._test_setitem_tensor((5, 5, 5), [slice(None), [2, 4], [1, 3]])
        self._test_setitem_tensor((5, 5, 5), [[1, 3], [2, 4], slice(None)])
        self._test_setitem_tensor(
            (5, 5, 5),
            [
                Variable(torch.LongTensor([1, 3]), requires_grad=False),
                [2, 4],
                slice(None),
            ],
        )

    def test_setitem_mask(self):
        mask = torch.BoolTensor(5, 5).bernoulli_()
        self._test_setitem((5, 5), Variable(mask))
        self._test_setitem((5,), Variable(mask[0]))
        self._test_setitem((1,), Variable(mask[0, 0:1]))
        self._test_setitem_tensor((5, 5), Variable(mask))
        self._test_setitem_tensor((5,), Variable(mask[0]))

    def test_select_sum(self):
        # both select and sum return Scalars in ATen; ensure they work together.
        x = torch.randn(10, dtype=torch.double, requires_grad=True)

        def func(x):
            return x.select(0, 1).sum()

        gradcheck(func, [x])
        gradgradcheck(func, [x])

    def test_diagonal_expanded_v(self):
        value = torch.rand([])
        v_expanded = torch.tensor(value).expand(10)
        a = torch.rand(10, 10, dtype=torch.double, requires_grad=True)
        (result,) = torch.autograd.grad(a.diagonal(), a, v_expanded)
        self.assertEqual(result, torch.eye(10, dtype=torch.double) * value)

    def test_select_expanded_v(self):
        v_expanded = torch.rand(10).expand(10, 10)
        a = torch.rand(10, 10, 10, requires_grad=True)
        (result,) = torch.autograd.grad(a[0], a, v_expanded)
        expected = torch.zeros(10, 10, 10)
        expected[0] = v_expanded
        self.assertEqual(result, expected)

    def test_slice_expanded_v(self):
        v_expanded = torch.rand(10, 1).expand(2, 10, 10)
        a = torch.rand(10, 10, 10, requires_grad=True)
        (result,) = torch.autograd.grad(a[3:5], a, v_expanded)
        expected = torch.zeros(10, 10, 10)
        expected[3:5] = v_expanded
        self.assertEqual(result, expected)

    def test_unused_output(self):
        x = torch.randn(10, 10, requires_grad=True)
        outputs = x.chunk(5)
        o = outputs[2]
        o = o * 4 + 2
        o.sum().backward()
        expected_grad = torch.zeros(10, 10)
        expected_grad[4:6] = 4
        self.assertEqual(x.grad, expected_grad)

        with torch.no_grad():
            x.grad.zero_()
        grad_output = torch.randn(2, 10)
        outputs = x.chunk(5)
        outputs[0].backward(grad_output)
        expected_grad = torch.zeros(10, 10)
        expected_grad[:2] = grad_output
        self.assertEqual(x.grad, expected_grad)

    # TODO: opinfo this or move to the sparse test suite
    def _test_sparse_gather(self, size_x, size_ind, dim):
        x = torch.randn(size_x, requires_grad=True)
        if len(size_ind) > 0 and len(size_x) > 0:
            ind = torch.randint(x.size(dim), size_ind)
        else:
            ind = torch.zeros(size_ind, dtype=torch.int64)
        out = torch.gather(x, dim, ind, sparse_grad=False)
        grad = torch.rand_like(out)
        out.backward(grad)
        grad_dense = x.grad.clone()
        x.grad = None
        out = torch.gather(x, dim, ind, sparse_grad=True)
        out.backward(grad)
        self.assertEqual(grad_dense, x.grad.to_dense())

    def test_sparse_gather_dim0(self):
        self._test_sparse_gather((10, 10), (5, 10), 0)

    def test_sparse_gather_dim1(self):
        self._test_sparse_gather((10, 10, 5), (10, 5, 5), 1)

    def test_sparse_gather_dim_neg(self):
        self._test_sparse_gather((10, 10, 5), (10, 10, 2), -1)

    def test_sparse_gather_ind_scalar(self):
        self._test_sparse_gather((10,), (), 0)

    def test_sparse_gather_x_scalar(self):
        self._test_sparse_gather((), (2,), 0)

    def test_sparse_gather_both_scalar(self):
        self._test_sparse_gather((), (), 0)

    def test_gc_in_destructor(self):
        """
        Previously, if a Function destructor triggered a garbage collection,
        the Variable's tp_dealloc handler would get called twice leading to a
        segfault.
        """

        class CollectOnDelete(Function):
            def forward(self, x):
                return x

            def backward(self, grad_output):
                return grad_output

            def __del__(self):
                gc.collect()

        for _ in range(10):
            CollectOnDelete().forward(torch.randn(1, requires_grad=True)).backward()

    def test_naughty_autograd_function_attribute_access(self):
        class Id(Function):
            @staticmethod
            def forward(ctx, x):
                return x

            @staticmethod
            def backward(ctx, grad_x):
                return grad_x

        with self.assertWarnsRegex(DeprecationWarning, "should not be instantiated"):
            f = Id()

        # After raising warning, should still return an instance
        self.assertIsInstance(f, Id)
        x = torch.zeros(1, requires_grad=True)
        with self.assertRaisesRegex(
            RuntimeError, "non-static forward method is deprecated"
        ):
            f(x)
        t = Id.apply(x)
        self.assertEqual(t.grad_fn.name(), "IdBackward")

        # THPFunction is the base class of both grad_fn and autograd functions,
        # which means that a lot of accessors on them may segfault. Test that we
        # properly error in this case.
        t = torch.ones(1, requires_grad=True)
        t._backward_hooks = {}
        with self.assertRaisesRegex(
            RuntimeError, "Attribute '_register_hook_dict' is invalid"
        ):
            f._register_hook_dict(t)
        with self.assertRaisesRegex(
            RuntimeError, "Attribute 'register_hook' is invalid"
        ):
            f.register_hook(lambda x, y: None)
        with self.assertRaisesRegex(
            RuntimeError, "Attribute 'next_functions' is invalid"
        ):
            f.next_functions
        with self.assertRaisesRegex(RuntimeError, "Attribute 'name' is invalid"):
            f.name()
        with self.assertRaisesRegex(
            RuntimeError, "underlying PyNode has already been deallocated"
        ):
            f.metadata

    @unittest.expectedFailure
    def test_naughty_anomaly_access(self):
        class MyFunction(Function):
            @staticmethod
            def forward(ctx, x):
                return x

            @staticmethod
            def backward(ctx, g):
                return g

        x = torch.zeros(1, requires_grad=True)
        y = MyFunction.apply(x)
        y.backward()
        y.grad_fn.metadata
        g = y.grad_fn
        del y
        g.metadata  # this currently fails, but shouldn't

    def test_naughty_autograd_function_stashing_ctx(self):
        saved_ctx = []

        class Id(Function):
            @staticmethod
            def forward(ctx, x):
                ctx.save_for_backward(x)
                return x

            @staticmethod
            def backward(ctx, grad_x):
                saved_ctx.append(ctx)
                return ctx.saved_tensors

        p = torch.zeros(1, requires_grad=True)
        loss = Id.apply(p)
        loss.backward(retain_graph=True)
        del loss
        # At this point in time, it complains that the graph has been freed
        # (which indeed true, although a somewhat indirect way of stating the
        # problem).
        self.assertRaises(RuntimeError, lambda: saved_ctx[0].saved_tensors)

    def test_custom_autograd_repeated_grad_grad(self):
        # This test failed the equality check in PR #22983; it's an interesting
        # and different test case worth enshrining.  mult1 is not testing
        # anything that interesting, but mult2 is the interesting case.

        def mult1(x):
            return x.prod(dim=-1).prod(dim=-1)

        class Mult(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                y = mult1(x)
                ctx.save_for_backward(x, y)
                return y

            @staticmethod
            def backward(ctx, grad_output):
                x, y = ctx.saved_tensors
                return (grad_output * y)[:, None, None] / x

        mult2 = Mult.apply

        def check_gradgrad_repeated(x, y):
            (gy,) = torch.autograd.grad(y[0], x, create_graph=True)
            (ggy_1,) = torch.autograd.grad(gy[0, 0, 0], x, retain_graph=True)
            (gy,) = torch.autograd.grad(y[0], x, create_graph=True)
            (ggy_2,) = torch.autograd.grad(gy[0, 0, 0], x, retain_graph=True)
            self.assertEqual(ggy_1[0, 0, 1], ggy_2[0, 0, 1])

        x = torch.ones(2, 4, 4).requires_grad_()
        check_gradgrad_repeated(x, mult1(x))
        check_gradgrad_repeated(x, mult2(x))

    def test_custom_autograd_no_early_free(self):
        # This test failed complaining that buffers had already been freed
        # prior to #22983.  Also pretty interesting test case.
        class Double(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                y = x**2
                ctx.save_for_backward(x, y)
                return y

            @staticmethod
            def backward(ctx, grad_output):
                x, _ = ctx.saved_tensors
                return grad_output * 2 * x

        # this is equivalent, but uses the output of .forward() in .backward()
        class Double2(Double):
            @staticmethod
            def backward(ctx, grad_output):
                x, y = ctx.saved_tensors
                return grad_output * 2 * y / x

        double = Double.apply
        double2 = Double2.apply

        x = torch.tensor(2).double().requires_grad_()

        self.assertTrue(gradcheck(double, x))
        self.assertTrue(gradgradcheck(double, x))
        self.assertTrue(gradcheck(double2, x))
        self.assertTrue(gradgradcheck(double2, x))

        y = double(x)
        torch.autograd.grad(y, x, create_graph=True)
        torch.autograd.grad(y, x)

        y = double2(x)
        torch.autograd.grad(y, x, create_graph=True)
        torch.autograd.grad(y, x)  # should not error!

    def test_detach(self):
        x = torch.randn(10, 10, requires_grad=True)
        y = x + 2
        y = y.detach()
        z = y * 4 + 2
        self.assertFalse(y.requires_grad)
        self.assertFalse(z.requires_grad)

        x = torch.randn(10, 10, requires_grad=True)
        y = x * 2
        y = y.detach()
        self.assertFalse(y.requires_grad)
        self.assertIsNone(y.grad_fn)
        z = x + y
        z.sum().backward()
        # This is an incorrect gradient, but we assume that's what the user
        # wanted. detach() is an advanced option.
        self.assertEqual(x.grad, torch.ones(10, 10))

        # in-place detach
        x = torch.randn(10, 10, requires_grad=True)
        y = torch.randn(10, 10, requires_grad=True)
        a = x * 2
        (y + a).sum().backward(retain_graph=True)
        a.detach_()
        self.assertFalse(a.requires_grad)
        (y + a).sum().backward()  # this won't backprop to x
        self.assertEqual(x.grad, torch.ones(10, 10) * 2)
        self.assertEqual(y.grad, torch.ones(10, 10) * 2)

        # in-place detach on a view raises an exception
        view = x.narrow(0, 1, 4)
        self.assertRaisesRegex(RuntimeError, "view", lambda: view.detach_())

    def test_detach_base(self):
        "detaching base does not detach view"
        x = torch.randn(10, 10, requires_grad=True)
        view = x.narrow(0, 1, 4)
        x.detach_()
        self.assertFalse(x.requires_grad)
        self.assertTrue(view.requires_grad)
        self.assertIsNotNone(view.grad_fn)
        self.assertIs(view._base, x)

    def test_detach_then_inplace_raises_in_autograd(self):
        x = torch.randn([], requires_grad=True)
        orig_x = x.detach().clone()

        y = x**2  # saves x
        z = x.detach()
        z.zero_()
        with self.assertRaisesRegex(RuntimeError, "has been modified by an inplace"):
            y.backward()

    def _test_type_conversion_backward(self, t):
        fvar = Variable(t(torch.randn(5, 5).float()), requires_grad=True)
        fvar.double().sum().backward()
        self.assertEqual(fvar.grad, torch.ones_like(fvar))
        self.assertEqual(type(fvar.grad), type(fvar))
        dvar = Variable(t(torch.randn(5, 5).double()), requires_grad=True)
        dvar.float().sum().backward()
        self.assertEqual(dvar.grad, torch.ones_like(dvar))
        self.assertEqual(type(dvar.grad), type(dvar))

    def test_type_conversions(self):
        x = torch.randn(5, 5)
        self.assertIsInstance(x.float(), torch.FloatTensor)
        self.assertIsInstance(x.int(), torch.IntTensor)
        if torch.cuda.is_available():
            self.assertIsInstance(x.float().cuda(), torch.cuda.FloatTensor)
            self.assertIsInstance(x.int().cuda(), torch.cuda.IntTensor)
            self.assertIsInstance(x.int().cuda().cpu(), torch.IntTensor)
            if torch.cuda.device_count() >= 2:
                x2 = x.float().cuda(1)
                self.assertIsInstance(x2, torch.cuda.FloatTensor)
                self.assertIs(x2.get_device(), 1)
                x2 = x.float().cuda()
                self.assertIsInstance(x2, torch.cuda.FloatTensor)
                self.assertIs(x2.get_device(), 0)
                x2 = x2.cuda(1)
                self.assertIsInstance(x2, torch.cuda.FloatTensor)
                self.assertIs(x2.get_device(), 1)
                y = Variable(torch.randn(5).cuda(1), requires_grad=True)
                y.cpu().sum().backward()
                self.assertIs(y.grad.get_device(), 1)
                self.assertIs(y.long().get_device(), 1)

        for t in [
            torch.DoubleTensor,
            torch.FloatTensor,
            torch.IntTensor,
            torch.ByteTensor,
        ]:
            for y_var in (True, False):
                y = torch.randint(5, (5, 5), dtype=t.dtype)
                y = Variable(y) if y_var else y
                self.assertIsInstance(x.type(t), t)
                self.assertIsInstance(x.type_as(y), t)
                # TODO: t.dtype should work
                t_dtype = t().dtype
                self.assertIsInstance(x.type(t_dtype), t)
                self.assertIs(t_dtype, x.type(t_dtype).dtype)
                self.assertEqual(y.data_ptr(), y.type(t).data_ptr())
                if torch.cuda.is_available():
                    for x_cuda in (True, False):
                        for y_cuda in (True, False):
                            x_c = x.cuda() if x_cuda else x
                            y_c = y.cuda() if y_cuda else y
                            _, y_type = y_c.type().rsplit(".", 1)
                            y_typestr = ("torch.cuda." if y_cuda else "torch.") + y_type
                            self.assertEqual(y_c.type(), x_c.type(y_typestr).type())
                            self.assertIs(y_c.dtype, x_c.type(y_c.dtype).dtype)
                            self.assertEqual(
                                y_c.data_ptr(),
                                y_c.cuda().data_ptr() if y_cuda else y_c.data_ptr(),
                            )

        self._test_type_conversion_backward(lambda x: x)
        if torch.cuda.is_available():
            self._test_type_conversion_backward(lambda x: x.cuda())
            if torch.cuda.device_count() >= 2:
                # one of these has to be the non-default device
                self._test_type_conversion_backward(lambda x: x.cuda(0))
                self._test_type_conversion_backward(lambda x: x.cuda(1))

    def test_isolated_node(self):
        x = torch.randn(5, 5, requires_grad=True)
        y = torch.randn(5, 5, requires_grad=True)

        a = x + y
        b = torch.max(a, 1, True)[1].repeat(1, 5).double()
        o = (b + a).sum()
        o.backward()

    def test_shape(self):
        x = torch.randn(3, 4)
        self.assertEqual(2, len(x.shape))
        self.assertEqual(x.shape[0], 3)
        self.assertEqual(x.shape[1], 4)

    def test_numpy_requires_grad(self):
        x = torch.randn(2, 2, requires_grad=True)
        err_msg_outputs = r"Can't call numpy\(\) on Tensor that requires grad. Use tensor.detach\(\).numpy\(\) instead."
        with self.assertRaisesRegex(RuntimeError, err_msg_outputs):
            x.numpy()

        with torch.no_grad():
            x.numpy()

        x = torch.randn(2, 2)
        x.numpy()

        with torch.no_grad():
            x.numpy()

    def test_return_leaf(self):
        class Identity(Function):
            @staticmethod
            def forward(ctx, a, b):
                return a, a + b

            @staticmethod
            def backward(ctx, grad_a, grad_b):
                return grad_a + grad_b, grad_b

        hook_called = [False]
        x = torch.randn(5, 5, requires_grad=True)
        y = torch.randn(5, 5, requires_grad=True)

        q, p = Identity.apply(x, y)

        # Make sure hooks only receive grad from usage of q, not x.
        def hook(grad):
            hook_called[0] = True
            self.assertEqual(grad, torch.ones(5, 5))

        q.register_hook(hook)
        (q + p + x).sum().backward()
        self.assertEqual(x.grad, torch.ones(5, 5) * 3)
        self.assertEqual(y.grad, torch.ones(5, 5))
        self.assertTrue(hook_called[0])

    def test_return_leaf_inplace(self):
        class Inplace(InplaceFunction):
            @staticmethod
            def forward(ctx, a, b):
                ctx.mark_dirty(a)
                return a.add_(b), b + 2

            @staticmethod
            def backward(ctx, grad_a, grad_b):
                return grad_a, grad_a + grad_b

        x = torch.randn(5, 5)
        y = torch.randn(5, 5, requires_grad=True)

        q, p = Inplace.apply(x, y)
        self.assertIs(q, x)
        self.assertIs(q.grad_fn.__class__, Inplace._backward_cls)
        self.assertTrue(q.requires_grad)
        q.sum().backward()
        self.assertEqual(y.grad, torch.ones(5, 5))

    def test_leaf_assignment(self):
        x = torch.randn(5, 5)
        y = torch.randn(5, requires_grad=True)
        z = torch.randn(5, requires_grad=True)

        x[0] = y
        x[1] = 2 * z
        self.assertTrue(x.requires_grad)
        self.assertIsNot(x.grad_fn, None)
        x.sum().backward()
        self.assertEqual(y.grad, torch.ones(5))
        self.assertEqual(z.grad, torch.ones(5) * 2)

    def test_no_grad_assignment(self):
        x = torch.randn(5, 5, requires_grad=True)
        y = torch.randn(5)
        with torch.no_grad():
            x[0] = y

        self.assertTrue(x.requires_grad)
        self.assertIsNone(x.grad_fn)

    def test_no_grad_modifies_version(self):
        x = torch.randn(5, requires_grad=True)
        y = torch.randn(5, requires_grad=True)
        z = (x * y).sum()
        with torch.no_grad():
            x *= 2
        self.assertRaisesRegex(
            RuntimeError, "modified by an inplace operation", lambda: z.backward()
        )

    def test_increment_version(self):
        a = torch.rand(5, requires_grad=True)
        v = a._version
        torch.autograd.graph.increment_version(a)
        self.assertEqual(a._version, v + 1)

        a = torch.zeros(5, dtype=torch.int)
        v = a._version
        torch.autograd.graph.increment_version(a)
        self.assertEqual(a._version, v + 1)

        with torch.inference_mode():
            a = torch.rand(5, requires_grad=True)
            # does not error
            torch.autograd.graph.increment_version(a)

        # does not error
        torch.autograd.graph.increment_version(a)

    def test_no_grad_input(self):
        class MyFunction(Function):
            @staticmethod
            def forward(self, x):
                return x

            @staticmethod
            def backward(self, grad_output):
                return grad_output

        x = torch.randn(5, requires_grad=True)
        with torch.no_grad():
            y = MyFunction.apply(x)

        self.assertTrue(x.requires_grad)
        self.assertIsNone(y.grad_fn)

    def test_backward_copy(self):
        # This tests checks backward engine for a very subtle bug that appreared
        # in one of the initial versions of autograd. Gradients tensors were
        # simply stored in lists while the function waited for all its gradients
        # to be computed. However, sometimes an output was used multiple times,
        # so the gradients needed to be summed. Engine used to keep a need_copy
        # set of tensors that will need a clone upon next addition and removed
        # them from the set as soon as the clone was performed. However, this
        # could lead to incorrect results if the same gradient tensor was
        # buffered in three places in the graph:
        # 1. When accumulating gradients in one of these places it was cloned
        #    and removed from need_copy set.
        # 2. When accumulating in second place, it wasn't in the need_copy set,
        #    so the gradients were simply accumulated in-place (which already
        #    modified the grad in 3rd place)
        # 3. When accumulating in the third place, it wasn't in the need_copy set
        #    as well, so the incoming gradient was summed in-place, yielding
        #    incorrect results in all functions, except the first one.
        x = torch.ones(5, 5, requires_grad=True)
        y = torch.ones(5, 5, requires_grad=True)
        # Simulate that we're in the middle of the graph
        a = x + 2
        b = y + 2
        c = x + 2
        # This op will just return grad_output two times in backward
        add1 = a + b
        add2 = add1 + c
        # Simulate a long branch, so grad_output will get buffered.
        for _ in range(4):
            a = a * 2
            b = b * 2
            c = c * 2
        branch = a + b + c
        out = add2 + branch
        # expected gradients are:
        # for x: 34 (16 from final a, 16 from final c, 2 from add2)
        # for y: 17 (16 from final b, 1 from add2)
        grad_output = torch.ones(5, 5)
        out.backward(grad_output)
        self.assertEqual(x.grad, torch.ones(5, 5) * 34)
        self.assertEqual(y.grad, torch.ones(5, 5) * 17)

    def test_save_none_for_backward(self):
        test_case = self

        class MyFn(Function):
            @staticmethod
            def forward(ctx, input):
                ctx.save_for_backward(None, input, None)
                return input * input

            @staticmethod
            def backward(ctx, grad_output):
                n1, input, n2 = ctx.saved_tensors
                test_case.assertIsNone(n1)
                test_case.assertIsNone(n2)
                return 2 * input * grad_output

        x = torch.randn(5, 5, requires_grad=True)
        y = MyFn.apply(x)
        y.sum().backward()
        self.assertEqual(x.grad, 2 * x)

    def test_too_many_grads(self):
        class MyFn(Function):
            @staticmethod
            def forward(ctx, input):
                return input

            @staticmethod
            def backward(ctx, grad_output):
                return grad_output, None, None

        x = torch.randn(5, 5, requires_grad=True)
        y = MyFn.apply(x)
        y.sum().backward()
        self.assertEqual(x.grad, torch.ones_like(x))

    def test_pickle(self):
        x = torch.randn(10, 10, requires_grad=True)
        y = torch.randn(10, 10, requires_grad=False)

        def assert_strict_equal(var1, var2):
            self.assertEqual(var1, var2)
            self.assertEqual(var1.requires_grad, var2.requires_grad)

        serialized = [pickle.dumps([x, y], protocol=p) for p in range(3)]
        for dump in serialized:
            xc, yc = pickle.loads(dump)
            assert_strict_equal(xc, x)
            assert_strict_equal(yc, y)

    @skipIfTorchDynamo("compile tested in test/dynamo/test_autograd_function.py")
    def test_dep_nograd(self):
        class F1(Function):
            @staticmethod
            def forward(ctx, input):
                out = torch.randn(input.size())
                ctx.mark_non_differentiable(out)
                return input, out

            @staticmethod
            def backward(ctx, grad_output, ignored):
                return grad_output

        class F2(Function):
            @staticmethod
            def forward(ctx, input, ignored):
                return input

            @staticmethod
            def backward(ctx, grad_output):
                return grad_output, None

        x = torch.randn(5, requires_grad=True)
        a, b = F1.apply(x)
        b = b + 1  # separate F1 from F2 by another op
        self.assertTrue(a.requires_grad)
        self.assertFalse(b.requires_grad)
        c = F2.apply(a, b)
        c.backward(torch.ones(c.size()))
        self.assertEqual(x.grad, torch.ones(x.size()))

    def test_set_grad_enabled(self):
        x = torch.tensor([1.0], requires_grad=True)
        with torch.set_grad_enabled(False):
            y = x * 2
        self.assertFalse(y.requires_grad)
        with torch.set_grad_enabled(True):
            y = x * 2
        self.assertTrue(y.requires_grad)
        with torch.set_grad_enabled(False):
            torch.set_grad_enabled(True)
            y = x * 2
        self.assertTrue(y.requires_grad)

    def test_set_grad_enabled_wraps(self):
        for decorator in [True, False]:
            with torch.enable_grad():
                self.assertTrue(torch.is_grad_enabled())

                if decorator:
                    # This should not mutate the global grad mode!
                    @torch.set_grad_enabled(False)
                    def inner_func(x):
                        return x.sin()

                else:

                    def inner_func(x):
                        return x.sin()

                    # This is non-idiomatic usage!
                    # More idiomatic usage: torch.set_grad_enabled(False)(inner_func)
                    obj = torch.set_grad_enabled(False)
                    self.assertTrue(not torch.is_grad_enabled())

                    # this will consume the set_grad_enabled global mutation!
                    inner_func = obj(inner_func)
                    self.assertTrue(torch.is_grad_enabled())

                self.assertTrue(torch.is_grad_enabled())

                x = torch.zeros(1, requires_grad=True)
                self.assertTrue(not inner_func(x).requires_grad)

    def test_simple_reentrant(self):
        y_data = torch.randn(2, 2)

        class Reenter(Function):
            @staticmethod
            def forward(ctx, x):
                with torch.enable_grad():
                    ctx.x = Variable(x, requires_grad=True)
                    ctx.y = Variable(y_data, requires_grad=True)
                    ctx.output_var = ctx.x * ctx.y
                return ctx.output_var.detach()

            @staticmethod
            def backward(ctx, grad_output):
                with torch.enable_grad():
                    ctx.output_var.sum().backward()
                return ctx.x.grad * grad_output

        # Reentrant starts on CPU thread, finishs on GPU thread
        x = torch.randn(2, 2, requires_grad=True)
        out = Reenter.apply(x)
        out.sum().backward()
        self.assertEqual(x.grad, y_data)

    def test_reentrant_child_error(self):
        # Parent graph.
        a = torch.rand(3, 3, requires_grad=True)
        c = a * a

        # Reentrant child graph.
        b = torch.rand(3, 3, requires_grad=True)
        e = b * b
        f = TestAutograd.SimulateBackwardError.apply(e)
        reentrant_root = f.sum()

        class ReentrantFunc(Function):
            @staticmethod
            def forward(ctx, inp):
                return inp.clone()

            @staticmethod
            def backward(ctx, grad):
                # Reentrant backward in child will throw an error.
                reentrant_root.backward()
                return grad

        d = ReentrantFunc.apply(c)
        with self.assertRaisesRegex(Exception, "Simulate error"):
            d.sum().backward()

    def test_var_mean_differentiable(self):
        dim = [2, 4]
        keepdim = False
        input1 = torch.randn(3, 4, 5, 6, 2, 3, requires_grad=True)
        input2 = deepcopy(input1)
        var1, mean1 = torch.var_mean(input1, dim=dim, keepdim=keepdim)
        var2 = input2.var(dim=dim, keepdim=keepdim)
        mean2 = input2.mean(dim=dim, keepdim=keepdim)
        grad = torch.randn(3, 4, 6, 3, requires_grad=True)

        r1 = var1 * var1 * mean1 * mean1
        r2 = var2 * var2 * mean2 * mean2
        self.assertEqual(r1, r2, rtol=0.01, atol=0.0)

        torch.autograd.backward(r1, grad)
        torch.autograd.backward(r2, grad)
        self.assertEqual(input1.grad, input2.grad, rtol=0.01, atol=0.0)

    @skipIfNoLapack
    def test_lobpcg(self):
        def func(k, A, largest=True, B=None):
            X_shape = list(A.shape)
            X_shape[-1] = k
            X = torch.eye(A.size(-2), k, dtype=A.dtype, device=A.device)
            if A.dim() > 2:
                X = X.expand(X_shape)

            D, U = torch.lobpcg(A=A, k=k, B=B, X=X, largest=largest)

            # LOBPCG uses a random initial eigenspace approximation
            # if parameter `X` is not provided.
            # This may cause a non-deterministic behavior
            # when it comes to the sign of an eigenvector
            # (note if v is an eigenvector, so is -v),
            # hence we eliminate this non-determinism
            # by making sure that each column of U
            # gets multiplied by the sign of its max (in absolute value) element.
            # Also, gradcheck changes the content of the input by +/- eps (default to 1e-06)
            # to compute the numerical gradient which can also cause the signs to flip.
            _, idx = U.abs().max(-2, keepdim=True)
            sign = U.gather(-2, idx).sign()
            U = U * sign
            return D, U

        # TODO: review if this can be ported to OpInfos or moved to test_linalg.py
        def run_symeig_test(k, sizes, largest=True):
            A = torch.rand(*sizes).double()
            A = (A @ A.mT) / 10
            A.requires_grad_(True)

            gradcheck(lambda A: func(k, A, largest), A, check_batched_grad=False)

            # Custom gradient vectors for better stability due to some
            # non-determinism in the lobpcg's forward.
            # Note it is not required if symeig is in forward instead (tested).
            D_grad = torch.rand(*A.shape[:-2], k) / 100
            U_grad = torch.rand(*A.shape[:-1], k) / 100
            gradgradcheck(
                lambda A: func(k, A, largest),
                A,
                [D_grad, U_grad],
                atol=1e-4,
                check_batched_grad=False,
            )

            # check whether A.grad is symmetric
            A = A.detach().requires_grad_(True)
            D, U = func(k, A, largest)
            (D.sum() + U.sum()).backward()
            self.assertEqual(A.grad, A.grad.mT)

        for largest in [True, False]:
            run_symeig_test(1, (6, 6), largest=largest)
            run_symeig_test(1, (2, 6, 6), largest=largest)
            run_symeig_test(1, (2, 2, 6, 6), largest=largest)
            run_symeig_test(2, (6, 6), largest=largest)
            run_symeig_test(2, (2, 6, 6), largest=largest)
            run_symeig_test(2, (2, 2, 6, 6), largest=largest)
            run_symeig_test(3, (9, 9), largest=largest)
            run_symeig_test(3, (2, 9, 9), largest=largest)
            run_symeig_test(3, (2, 2, 9, 9), largest=largest)

    def test_variable_traverse(self):
        def get_out_and_unrefed_cycle():
            inp = torch.randn(10, requires_grad=True)
            tmp = inp.view(10, 1)
            out = tmp.view(10)

            # Create a reference cycle that contains an
            # intermediary Variable in the graph
            my_list = []
            my_list.append(tmp)
            my_list.append(my_list)

            return out

        out = get_out_and_unrefed_cycle()
        gc.collect()
        # This will segfault if things have been erroneously released
        out.backward(torch.randn(out.size()))

    # TODO: review porting these to OpInfo tests
    def test_pow_zero_tensor_gradient(self):
        def run_test(input_size, exponent):
            input = torch.zeros(*input_size, requires_grad=True)
            input.pow(exponent).sum().backward()
            self.assertEqual(input.grad.abs().sum(), 0)

        run_test((10,), torch.zeros(10))
        run_test((10, 10), torch.zeros(10, 10))
        run_test((10,), 0)

    @unittest.skipIf(not TEST_CUDA, "test requires CUDA")
    def test_node_ordering_when_none_returned(self):
        class Matmul(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x, w):
                # x: [M, N]
                # w: [N, K]
                ctx.save_for_backward(x, w)
                return x @ w

            @staticmethod
            def backward(ctx, g_out):
                # g_out: [M, K]
                x, w = ctx.saved_tensors
                g_x = g_out @ w.T
                g_w = x.T @ g_out
                w.main_grad = g_w.float()
                return g_x, None

        executed = []

        class HookFunction(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                return x

            @staticmethod
            def backward(ctx, g):
                executed.append("A")
                return g

        def hook(*args, **kwargs):
            executed.append("B")

        x = torch.randn((3, 3), dtype=torch.bfloat16, device="cuda", requires_grad=True)
        x = HookFunction.apply(x)
        w = torch.randn((3, 3), dtype=torch.bfloat16, device="cuda", requires_grad=True)
        w.register_hook(hook)
        o = Matmul.apply(x, w)
        o.sum().backward()

        self.assertEqual(executed, ["B", "A"])

    def test_current_graph_task_id(self):
        id = [-1]

        def hook(_):
            id[0] = torch._C._current_graph_task_id()

        t = torch.tensor(1.0, requires_grad=True).clone()
        t.register_hook(hook)

        t.backward(retain_graph=True)
        base = id[0]
        t.backward(retain_graph=True)
        self.assertEqual(id[0] - base, 1)
        t.backward(retain_graph=True)
        self.assertEqual(id[0] - base, 2)

        self.assertEqual(torch._C._current_graph_task_id(), -1)

    def test_current_graph_task_execution_order(self):
        predicted = [None]

        def hook(_):
            predicted[0] = torch._C._current_graph_task_execution_order()

        def names(nodes):
            return ", ".join([node.name().split(" ")[-1] for node in nodes]) + "\n"

        def grad_fns(*tensors):
            # or grad accumulator
            out = []
            for t in tensors:
                if t.requires_grad and t.grad_fn is None:
                    out.append(t.clone().grad_fn.next_functions[0][0])
                else:
                    out.append(t.grad_fn)
            return out

        actual = []

        def register_logging_hooks(*tensors):
            # register hooks that log the order in which they are called
            def get_hook(i):
                def hook(t_):
                    actual.append(tensors[i])

                return hook

            for i, t in enumerate(tensors):
                t.register_hook(get_hook(i))

        # Basic example: single path
        t = torch.tensor(1.0, requires_grad=True).clone().sin().exp()
        t.register_hook(hook)
        with torch.autograd.set_multithreading_enabled(False):
            t.backward()
        self.assertExpectedInline(
            names(predicted[0]),
            """\
ExpBackward0, SinBackward0, CloneBackward0, torch::autograd::AccumulateGrad
""",
        )

        # We don't exactly follow sequence_nr order
        a = torch.tensor(1.0, requires_grad=True)
        b = torch.tensor(2.0, requires_grad=True)
        c = b.sin()
        d = a.cos()
        out = c * d
        register_logging_hooks(a, b, c, d, out)
        out.register_hook(hook)
        with torch.autograd.set_multithreading_enabled(False):
            out.backward()
        self.assertEqual(predicted[0], grad_fns(*actual))
        actual = []

        # Accumulate grad node has more than one input
        a = torch.tensor(1.0, requires_grad=True)
        b = a.sin()
        c = a.cos()
        out = b * c
        register_logging_hooks(a, b, c, out)
        out.register_hook(hook)
        with torch.autograd.set_multithreading_enabled(False):
            out.backward()
        self.assertEqual(predicted[0], grad_fns(*actual))
        actual = []

        # Multiple roots are also OK
        a = torch.tensor(1.0, requires_grad=True)
        b = a * 2
        out = b.sin()
        out2 = b.cos()
        out3 = b.cos()
        register_logging_hooks(a, b, out, out2, out3)
        out3.register_hook(hook)
        with torch.autograd.set_multithreading_enabled(False):
            torch.autograd.grad((out, out3, out2), inputs=(a,))
        self.assertExpectedInline(
            names(predicted[0]),
            """\
CosBackward0, CosBackward0, SinBackward0, MulBackward0, torch::autograd::AccumulateGrad
""",
        )
        # TODO: Uncomment after update to hooks behavior
        # self.assertEqual(predicted[0], grad_fns(*actual))
        actual = []

        # Case where next node is nullptr
        a = torch.tensor(1.0, requires_grad=True)
        b = a * 2
        out = b.sin()
        register_logging_hooks(a, b, out)
        out.register_hook(hook)
        with torch.autograd.set_multithreading_enabled(False):
            out.backward()
        self.assertEqual(predicted[0], grad_fns(*actual))
        actual = []

        # Case where two `inputs` on the same path
        a = torch.tensor(1.0, requires_grad=True)
        b = a * 2
        out = b.sin()
        register_logging_hooks(a, b, out)
        out.register_hook(hook)
        with torch.autograd.set_multithreading_enabled(False):
            torch.autograd.grad((out,), inputs=(a, b))
        self.assertEqual(
            names(predicted[0]),
            """\
SinBackward0, MulBackward0, torch::autograd::AccumulateGrad
""",
        )
        # TODO: Uncomment after update to hooks behavior
        # self.assertEqual(predicted[0], grad_fns(*actual))
        actual = []

        # Case where `inputs` specifies a subgraph
        a = torch.tensor(1.0, requires_grad=True)
        b = torch.tensor(1.0, requires_grad=True)
        c = a * b
        out = c.sin()
        register_logging_hooks(a, b, c, out)
        out.register_hook(hook)
        with torch.autograd.set_multithreading_enabled(False):
            torch.autograd.grad((out,), inputs=(a,))
        self.assertEqual(
            names(predicted[0]),
            """\
SinBackward0, MulBackward0, torch::autograd::AccumulateGrad
""",
        )
        # TODO: Uncomment after update to hooks behavior
        # self.assertEqual(predicted[0], grad_fns(*actual))
        actual = []

        # Errors when not called in a backward
        with self.assertRaisesRegex(
            RuntimeError, "should only be called during the backward pass"
        ):
            torch._C._current_graph_task_execution_order()

        # Errors when context manager not enabled
        t = torch.tensor(1.0, requires_grad=True).clone().sin().exp()
        t.register_hook(hook)
        with self.assertRaisesRegex(
            RuntimeError,
            "expects the current backward to be executed with multithreading disabled",
        ):
            t.backward()

    @skipIfWindows(msg="node name demangling inconsistent on windows")
    def test_backward_hook_relative_ordering(self):
        order = []

        class MyModule(nn.Module):
            def __init__(self):
                super().__init__()
                self.linear = torch.nn.Linear(10, 10)

            def forward(self, x):
                return self.linear(x)

        x = torch.randn(10, 10, requires_grad=True)
        module = MyModule()
        module.register_full_backward_hook(
            lambda _1, _2, _3: order.append(
                "module_full_backward_hook_BackwardHookFunctionBackward0"
            )
        )

        def make_pre_hook(id):
            return lambda _: order.append(f"pre_hook_{id}")

        def make_post_hook(id):
            return lambda _1, _2: order.append(f"post_hook_{id}")

        count = 0

        def register_hooks_on_all_nodes(nodes):
            nonlocal count
            for node, _ in nodes:
                count += 1
                id = f"{node.name()}_{count}"
                node.register_prehook(make_pre_hook(id))
                node.register_hook(make_post_hook(id))
                register_hooks_on_all_nodes(node.next_functions)

        loss = module(x).sum()
        register_hooks_on_all_nodes(((loss.grad_fn, None),))

        def make_tensor_pre_hook(id):
            return lambda _: order.append(f"tensor_pre_hook_{id}")

        def make_post_acc_grad_hook(id):
            return lambda _: order.append(f"post_acc_grad_hook_{id}")

        x.register_hook(make_tensor_pre_hook("x"))
        module.linear.weight.register_hook(make_tensor_pre_hook("weight"))
        module.linear.bias.register_hook(make_tensor_pre_hook("bias"))

        x.register_post_accumulate_grad_hook(make_post_acc_grad_hook("x"))
        module.linear.weight.register_post_accumulate_grad_hook(
            make_post_acc_grad_hook("weight")
        )
        module.linear.bias.register_post_accumulate_grad_hook(
            make_post_acc_grad_hook("bias")
        )

        loss.backward()

        expected_order = [
            "pre_hook_SumBackward0_1",
            "post_hook_SumBackward0_1",
            "pre_hook_BackwardHookFunctionBackward_2",
            "post_hook_BackwardHookFunctionBackward_2",
            "pre_hook_AddmmBackward0_3",
            "post_hook_AddmmBackward0_3",
            "tensor_pre_hook_bias",
            "pre_hook_torch::autograd::AccumulateGrad_4",
            "post_acc_grad_hook_bias",
            "post_hook_torch::autograd::AccumulateGrad_4",
            "pre_hook_TBackward0_7",
            "post_hook_TBackward0_7",
            "tensor_pre_hook_weight",
            "pre_hook_torch::autograd::AccumulateGrad_8",
            "post_acc_grad_hook_weight",
            "post_hook_torch::autograd::AccumulateGrad_8",
            "pre_hook_BackwardHookFunctionBackward_5",
            "module_full_backward_hook_BackwardHookFunctionBackward0",
            "post_hook_BackwardHookFunctionBackward_5",
            "tensor_pre_hook_x",
            "pre_hook_torch::autograd::AccumulateGrad_6",
            "post_acc_grad_hook_x",
            "post_hook_torch::autograd::AccumulateGrad_6",
        ]

        self.assertEqual(len(expected_order), len(order))
        for expected, actual in zip(expected_order, order):
            self.assertEqual(expected, actual)

    def test_view_replay_enabled(self):
        def f(x):
            out = x.clone().view(-1)
            # mutate the view, triggering autograd view-replay logic
            out.add_(1)
            return out

        x = torch.ones(2, 2, requires_grad=True)

        # Test as a context manager
        with torch.autograd._force_original_view_tracking(False):
            out = f(x)
            self.assertTrue("AsStridedBackward" in str(out.grad_fn))
            self.assertFalse(torch.autograd.is_view_replay_enabled())
        self.assertFalse(torch.autograd.is_view_replay_enabled())

        with torch.autograd._force_original_view_tracking(True):
            out = f(x)
            self.assertTrue("ViewBackward" in str(out.grad_fn))
            self.assertTrue(torch.autograd.is_view_replay_enabled())
        out = f(x)
        self.assertTrue("AsStridedBackward" in str(out.grad_fn))
        self.assertFalse(torch.autograd.is_view_replay_enabled())

        with torch.autograd._force_original_view_tracking(False):
            torch.autograd._force_original_view_tracking(True)
            out = f(x)
            self.assertTrue("ViewBackward" in str(out.grad_fn))
            self.assertTrue(torch.autograd.is_view_replay_enabled())
        self.assertFalse(torch.autograd.is_view_replay_enabled())

        # Test as a function
        torch.autograd._force_original_view_tracking(False)
        out = f(x)
        self.assertTrue("AsStridedBackward" in str(out.grad_fn))
        self.assertFalse(torch.autograd.is_view_replay_enabled())

        torch.autograd._force_original_view_tracking(True)
        out = f(x)
        self.assertTrue("ViewBackward" in str(out.grad_fn))
        self.assertTrue(torch.autograd.is_view_replay_enabled())

    def test_unsafe_set_version_counter(self):
        x = torch.ones(2, requires_grad=True).clone()
        x.add_(1)
        x.add_(2)
        self.assertEqual(2, x._version)
        with torch.autograd._unsafe_preserve_version_counter(x):
            x.mul_(2)
            x.mul_(3)
        # version counter doesn't change inside of the context manager
        self.assertEqual(2, x._version)

        torch._C._autograd._unsafe_set_version_counter(x, 0)
        self.assertEqual(0, x._version)
        with self.assertRaisesRegex(RuntimeError, "Cannot set"):
            torch._C._autograd._unsafe_set_version_counter(x, -1)

    def test_current_node(self):
        pr = []

        class MyMode(TorchDispatchMode):
            def __torch_dispatch__(self, func, types, args, kwargs=None):
                node = torch._C._current_autograd_node()
                # Don't use node.name() here as it is not consistent on windows
                node_name = node.__class__.__name__ if node else "None"
                pr.append(f"Running {func} from within {node_name}")
                return func(*args, **(kwargs or {}))

        with MyMode():
            pr.append("FW")
            a = torch.rand(10, requires_grad=True)
            b = a.mul(2).div(3).sum()
            pr.append("BW")
            b.backward()
            pr.append("Done")

        self.assertExpectedInline(
            "\n".join(pr),
            """\
FW
Running aten.rand.default from within None
Running aten.mul.Tensor from within None
Running aten.div.Tensor from within None
Running aten.sum.default from within None
BW
Running aten.ones_like.default from within None
Running aten.expand.default from within SumBackward0
Running aten.div.Tensor from within DivBackward0
Running aten.mul.Tensor from within MulBackward0
Running aten.detach.default from within AccumulateGrad
Running aten.detach.default from within AccumulateGrad
Done""",
        )

    def test_profiler(self):
        x = torch.randn(10, 10)

        with profile(use_kineto=kineto_available()) as p:
            self.assertTrue(torch.autograd._profiler_enabled())
            y = x * 2 + 4

        self.assertFalse(torch.autograd._profiler_enabled())

        names = ["aten::mul", "aten::add"]
        found_indices = set()
        for evt in p.function_events:
            if evt.name in names:
                found_indices.add(names.index(evt.name))
        self.assertEqual(len(found_indices), len(names))

    def test_profiler_seq_nr(self):
        with profile(use_kineto=kineto_available()) as p:
            x = torch.randn(10, 10, requires_grad=True)
            y = torch.randn(10, 10, requires_grad=True)
            z = x + y
            s = z.sum(dim=None)
            s.backward()
        print(p.key_averages().table(sort_by="self_cpu_time_total", row_limit=-1))
        # expecting aten::add, aten::sum to have the sequence numbers,
        # expecting the corresponding backward nodes to have the same numbers
        # as the forward ops
        autograd_ops = {
            ("aten::add", "Add"): [],
            ("aten::sum", "Sum"): [],
        }
        accumulate_ops = []
        found_empty = False
        for e in p.function_events:
            for (fwd_name, bwd_name), ops in autograd_ops.items():
                if e.name == fwd_name or (bwd_name in e.name and "Backward" in e.name):
                    ops.append(e)

            if "AccumulateGrad" in e.name:
                accumulate_ops.append(e)

            # check that nested ops (e.g. empty) don't have
            # sequence number
            if e.name == "aten::empty":
                self.assertEqual(e.sequence_nr, -1)
                found_empty = True

        for idx, ((fwd_name, bwd_name), ops) in enumerate(autograd_ops.items()):
            self.assertEqual(len(ops), 3)
            self.assertEqual(ops[0].name, fwd_name)
            self.assertEqual(
                ops[1].name,
                f"autograd::engine::evaluate_function: {bwd_name}Backward{idx}",
            )
            self.assertEqual(ops[2].name, f"{bwd_name}Backward{idx}")
            self.assertGreaterEqual(ops[0].sequence_nr, 0)
            self.assertEqual(ops[1].sequence_nr, ops[0].sequence_nr)
            self.assertEqual(ops[2].sequence_nr, ops[0].sequence_nr)
            self.assertEqual(ops[0].fwd_thread, 0)
            self.assertEqual(ops[1].fwd_thread, ops[0].thread)
            self.assertEqual(ops[2].fwd_thread, ops[0].thread)
        self.assertTrue(found_empty)

    def test_profiler_unboxed_only(self):
        x = torch.rand(3, 4)

        with torch.autograd.profiler.profile(use_kineto=kineto_available()) as prof:
            x.resize_([3, 2])

    def test_profiler_propagation(self):
        def foo(x):
            with record_function("in_foo") as rf:
                return x * 2

        x = torch.rand(3, 4)
        traced_foo = torch.jit.trace(foo, x)

        def bar(x):
            with record_function("in_bar") as rf:
                # we expect that profiler will be able
                # propagate across fork
                fut = torch.jit._fork(traced_foo, x)
                y = torch.jit._wait(fut)
                # note: continuation (and rf's end) can
                # be executed in a different thread
                with record_function("in_bar_after_wait") as rf2:
                    y = y * 2
                return y

        traced_bar = torch.jit.trace(bar, x)

        with profile(use_kineto=kineto_available()) as p:
            traced_bar(x)

        found_foo = False
        found_bar = False
        found_bar_after_wait = False
        for info in p.function_events:
            if info.name == "in_foo":
                self.assertFalse(found_foo)
                found_foo = True
            elif info.name == "in_bar":
                self.assertFalse(found_bar)
                found_bar = True
            elif info.name == "in_bar_after_wait":
                self.assertFalse(found_bar_after_wait)
                found_bar_after_wait = True
        self.assertTrue(found_foo)
        self.assertTrue(found_bar)
        self.assertTrue(found_bar_after_wait)

    def test_record_function_callbacks(self):
        x = torch.randn(10, 10)
        with profile(use_kineto=kineto_available()) as p:
            with record_function("foo"):
                y = x * 2 + 4

        function_events = p.function_events
        foo_event = next(event for event in function_events if "foo" in event.name)
        self.assertEqual(foo_event.count, 1)

    def test_record_function_legacy(self):
        # Test the new _record_function ops work
        # Note: Remove once record_function uses these directly
        x = torch.randn(10, 10)
        with profile(use_kineto=kineto_available()) as p:
            handle = torch.ops.profiler._record_function_enter("bar", None)
            try:
                y = x * 2 + 4
            finally:
                torch.ops.profiler._record_function_exit(handle)

        function_events = p.function_events
        foo_event = next(event for event in function_events if "bar" in event.name)
        self.assertEqual(foo_event.count, 1)

    def test_profiler_aggregation_fake(self):
        events = EventList()
        id = [0]

        def get_id():
            id[0] = id[0] + 1
            return id[0]

        # [[thread_id, [(start, end, id), ....]], ...]
        # Using list instead of a dict so order is guaranteed for any Python
        # version
        threads = [
            [1, [(0, 1, get_id()), (1, 2, get_id())]],
            [0, [(0, 2, get_id()), (1, 2, get_id()), (1, 3, get_id())]],
        ]
        for thread, ranges in threads:
            for range in ranges:
                assert len(range) == 3
                events.append(
                    FunctionEvent(
                        id=range[2],
                        node_id=0,
                        name="",
                        thread=thread,
                        start_us=range[0],
                        end_us=range[1],
                    )
                )

        events._populate_cpu_children()

        # Note that [1, 3] pushes out [0, 2] first. Then we record [1, 2]
        # as a child of [1, 3]
        res = [[], [], [], [], [4]]

        def get_children_ids(event):
            return [child.id for child in event.cpu_children]

        assert [get_children_ids(event) for event in events] == res

    def test_profiler_aggregation_table(self):
        """
        Test if the profiling result is aggregated for `str(prof)`

        See: https://github.com/pytorch/pytorch/issues/37500
        """

        x = torch.randn(1024)
        with torch.autograd.profiler.profile(use_kineto=kineto_available()) as prof:
            torch.einsum("i->", x)

        prof_str = str(prof)
        prof_table = prof.table()

        self.assertEqual(prof_table, prof_str)

    def test_profiler_function_event_avg(self):
        avg = FunctionEventAvg()
        avg.add(
            FunctionEvent(id=0, node_id=0, name="foo", thread=0, start_us=10, end_us=15)
        )
        avg.add(
            FunctionEvent(id=1, node_id=0, name="foo", thread=0, start_us=20, end_us=30)
        )
        avg.add(avg)
        self.assertEqual(avg.key, "foo")

        # aggregate stats
        self.assertEqual(avg.count, 4)
        self.assertEqual(avg.cpu_time_total, 30)
        self.assertEqual(avg.self_cpu_time_total, 30)
        self.assertEqual(avg.device_time_total, 0)

        # average stats
        self.assertEqual(avg.cpu_time, 7.5)
        self.assertEqual(avg.device_time_total, 0)

    def test_profiler_shapes(self):
        print()
        layer1 = torch.nn.Linear(20, 30)
        layer2 = torch.nn.Linear(30, 40)
        input = torch.randn(128, 20)
        with profile(record_shapes=True, use_kineto=kineto_available()) as prof:
            layer2(layer1(input))

        print(prof.function_events)

        linear_expected_shapes = [
            [[128, 20], [30, 20], [30]],
            [[128, 30], [40, 30], [40]],
        ]

        found_indices = set()
        for event in prof.function_events:
            if event.name == "aten::linear":
                self.assertTrue(event.input_shapes in linear_expected_shapes)
                found_indices.add(linear_expected_shapes.index(event.input_shapes))
        self.assertEqual(len(found_indices), len(linear_expected_shapes))

    def test_profiler_aggregation_lstm(self):
        print()
        rnn = torch.nn.LSTM(10, 20, 2)
        total_time_s = 0
        with profile(record_shapes=True, use_kineto=kineto_available()) as prof:
            for i in range(20):
                input = torch.randn(5, 3, 10)
                h = torch.randn(2, 3, 20)
                c = torch.randn(2, 3, 20)
                start = time.time()
                rnn(input, (h, c))
                end = time.time()
                total_time_s += end - start

        print(prof.table(sort_by="self_cpu_time_total", row_limit=10, header="TEST"))
        print(
            prof.key_averages(group_by_input_shape=True).table(
                sort_by="self_cpu_time_total", row_limit=10
            )
        )
        print(
            prof.table(
                sort_by="self_cpu_time_total",
                row_limit=10,
                max_src_column_width=300,
                header="TEST",
                top_level_events_only=True,
            )
        )
        print(
            prof.key_averages(group_by_input_shape=True).table(
                sort_by="self_cpu_time_total", row_limit=10, top_level_events_only=True
            )
        )

        total_time_us = (
            total_time_s * 1000.0 * 1000.0
        )  # make it us which is profiler default
        print("Total time based on python measurements: ", _format_time(total_time_us))
        print(
            f"CPU time measurement python side overhead: {(total_time_us / prof.self_cpu_time_total - 1.0) * 100.0:.2f}%"
        )

        if sys.platform != "win32":
            with tempfile.NamedTemporaryFile() as trace_file:
                prof.export_chrome_trace(trace_file.name)

    def test_record_function(self):
        x = torch.randn(10, 10)

        def forward(x):
            with record_function("outer"):
                y = x * 2 + 4
                with record_function("inner"):
                    y = y - 1
            y = y / 1

        forward(x)

        with profile(use_kineto=kineto_available()) as p:
            forward(x)

        events = p.function_events
        important_events = [
            "outer",
            "aten::mul",
            "aten::add",
            "inner",
            "aten::sub",
            "aten::div",
        ]
        idx = 0
        for info in events:
            if info.name == important_events[idx]:
                idx = idx + 1
            if idx == len(important_events):
                break
        self.assertEqual(idx, len(important_events))

        # We can also use record_function to decorate arbitrary function
        @record_function("my_func")
        def f(x, y):
            return x + y

        with profile(use_kineto=kineto_available()) as p:
            f(1, 2)

        self.assertTrue("my_func" in str(p))

    def test_record_function_multithreaded(self):
        rf = record_function("outer")
        rf.__enter__()
        with record_function("inner"):
            # test that exiting the record function after starting another one
            # doesn't throw.
            rf.__exit__(None, None, None)

        with record_function("inner"):
            rf.__enter__()
        # test that exiting the record function after ending another one
        # doesn't throw.
        rf.__exit__(None, None, None)

    def test_dir(self):
        x = torch.randn(10, 10)
        keys = dir(x)
        self.assertIn("shape", keys)

        # real and imag are only implemented for complex tensors.
        y = torch.randn(10, 10, dtype=torch.cfloat)
        imag_key = "imag"
        self.assertRaises(RuntimeError, lambda: hasattr(x, imag_key))
        self.assertTrue(hasattr(y, imag_key))
        keys.remove(imag_key)

        for key in keys:
            self.assertTrue(hasattr(x, key))

    def test_inplace_on_view_saved_output(self):
        # Test an in-place operation on a view in which the in-place op saves
        # its output. Previously, this created a reference cycle.
        dealloc = [0]

        class IncrementOnDelete:
            def __del__(self):
                dealloc[0] += 1

        def test():
            root = torch.randn(3, 3, requires_grad=True)
            copy = root.clone()
            copy.grad_fn.register_hook(IncrementOnDelete())
            view = copy.view(9)
            torch.nn.functional.relu(view, inplace=True)

        test()
        self.assertEqual(dealloc[0], 1)

    def test_inplace_on_view_leaf_errors(self):
        # Issue #21875: Fail faster (when we try to modify the view vs. in backward())
        x = torch.zeros(1, requires_grad=True)
        y = x.view_as(x)
        with self.assertRaisesRegex(
            RuntimeError,
            "a view of a leaf Variable that "
            "requires grad is being used in "
            "an in-place operation.",
        ):
            y.add_(1)

    def test_inplace_on_view_backward(self):
        # Issue #10532: Make sure that this does not raise RuntimeError.
        net = nn.Sequential(nn.InstanceNorm2d(2), nn.ReLU(True))

        x = torch.tensor([[[[1.0, 1.0]]]], requires_grad=True)
        (g,) = torch.autograd.grad(
            net(x).pow(2), [x], grad_outputs=x.new_ones(x.shape), create_graph=True
        )
        torch.autograd.grad(g.sum(), [x])
        self.assertEqual(x, torch.tensor([[[[1.0, 1.0]]]]))

        # https://discuss.pytorch.org/t/freeing-buffer-strange-behavior/31955/8
        inputs = torch.ones((1, 3, 256, 256), requires_grad=True)

        tmp1 = (inputs + 1).view_as(inputs)
        tmp2 = torch.nn.functional.threshold(tmp1, 0.0, 0.0, True)
        prob_interpolated = torch.sigmoid(tmp2)

        gradients = torch.autograd.grad(
            outputs=prob_interpolated,
            inputs=inputs,
            grad_outputs=torch.ones(prob_interpolated.size()),
            create_graph=True,
            retain_graph=True,
        )[0]

        gradient_penalty = gradients.sum()
        gradient_penalty.backward()

        fn = gradient_penalty.grad_fn.next_functions[0][0].next_functions[1][0]
        self.assertEqual(fn.name(), "ThresholdBackwardBackward0")

    def test_inplace_on_view_weak_grad_fn(self):
        # Issue 23502: Test that b's grad_fn is preserved.
        a = torch.arange(10.0, requires_grad=True)

        b = a.narrow(0, 0, 2).clone().view(-1)
        b.relu_()

        c = b.clone()
        del b
        gc.collect()

        s = c.sum()
        s.backward()
        self.assertEqual(s, torch.tensor(1.0))

        # Issue #21875: Fail faster (when we try to modify the view vs. in backward())
        a = torch.rand(10, requires_grad=True).narrow(0, 0, 10)
        with self.assertRaises(RuntimeError):
            b = a.relu_()

    def test_out_variant_raises_when_inputs_require_grad(self):
        a = torch.randn(2, 2, requires_grad=True)
        b = torch.randn(2, 2, requires_grad=True)
        x = torch.zeros_like(a)

        # out=... functions don't support automatic differentiation currently
        self.assertRaisesRegex(RuntimeError, "out=", lambda: torch.mul(a, b, out=x))

        # the inputs can require grad if we're in no_grad() mode
        with torch.no_grad():
            torch.mul(a, b, out=x)
            self.assertEqual(x, a * b)

        a = torch.randn(2, 2)
        b = torch.randn(2, 2)
        x = torch.zeros(2, 2, requires_grad=True)
        # we should throw an exception if the output requires grad
        self.assertRaisesRegex(RuntimeError, "out=", lambda: torch.mul(a, b, out=x))

    def test_anomaly_detect_nan(self):
        size = 10

        class MyFunc(Function):
            @staticmethod
            def forward(ctx, inp1, inp2, fail_0th):
                ctx.fail_0th = fail_0th
                return inp1.sum(0, keepdim=True)

            @staticmethod
            def backward(ctx, gO):
                gI = gO.clone().expand(size)
                gI[0] = 0
                gI[0] /= 0  # Generate a nan
                if ctx.fail_0th:
                    return gI, None, None
                else:
                    return None, gI, None

        inp = torch.rand(size, requires_grad=True)
        out = MyFunc.apply(inp, inp, True)
        out.backward()  # Should not fail

        inp = torch.rand(size, requires_grad=True)
        out = MyFunc.apply(inp, inp, True)
        with self.assertRaisesRegex(
            RuntimeError,
            "Function 'MyFuncBackward' returned nan values in its 0th output.",
        ):
            with warnings.catch_warnings(record=True) as w:
                with detect_anomaly():
                    out.backward()
            self.assertIn("No forward pass information", str(w[0].message))

        inp = torch.rand(size, requires_grad=True)
        with self.assertRaisesRegex(
            RuntimeError,
            "Function 'MyFuncBackward' returned nan values in its 1th output.",
        ):
            with warnings.catch_warnings(record=True) as w:
                with detect_anomaly():
                    out = MyFunc.apply(inp, inp, False)
                    out.backward()
            self.assertIn("MyFunc.apply", str(w[0].message))

    def test_calculate_shape_util(self):
        out = torch.randn(10, 5, requires_grad=True)
        grad = torch.randn(5, 10, requires_grad=True)
        out_shape, grad_shape = _calculate_shape(out, grad, False)

        assert out_shape == torch.Size([10, 5])
        assert grad_shape == torch.Size([5, 10])

        out = torch.nested.as_nested_tensor(
            [
                torch.randn(10, 5, requires_grad=True),
                torch.randn(10, 5, requires_grad=True),
                torch.randn(10, 5, requires_grad=True),
            ]
        )
        grad = torch.nested.as_nested_tensor(
            [
                torch.randn(5, 10, requires_grad=True),
                torch.randn(5, 10, requires_grad=True),
            ]
        )
        out_shape, grad_shape = _calculate_shape(out, grad, False)

        assert torch.equal(out_shape, torch.tensor([[10, 5], [10, 5], [10, 5]]))
        assert torch.equal(grad_shape, torch.tensor([[5, 10], [5, 10]]))

    def test_nested_anomaly_detect_nan(self):
        size = 10

        class MyFunc(Function):
            @staticmethod
            def forward(ctx, inp1, fail_0th):
                ctx.fail_0th = fail_0th
                ctx.save_for_backward(inp1)
                return inp1.sum(0, keepdim=True)

            @staticmethod
            def backward(ctx, gO):
                (inp,) = ctx.saved_tensors
                fail_0th = ctx.fail_0th
                g = gO.clone().expand(size)
                gI = MyFunc2.apply(g * inp, g + inp, fail_0th)
                return gI, None

        class MyFunc2(Function):
            @staticmethod
            def forward(ctx, inp1, inp2, fail_0th):
                ctx.fail_0th = fail_0th
                return inp1 * 2.0 + inp2

            @staticmethod
            def backward(ctx, gO):
                fail_0th = ctx.fail_0th
                g1 = gO.clone()
                g2 = gO.clone()
                g1[0] = 0
                g2[0] = 0
                # generate a nan
                if fail_0th:
                    g1[0] /= 0
                else:
                    g2[0] /= 0
                return g1, g2, None

        inp = torch.rand(size, requires_grad=True)
        out = MyFunc.apply(inp, True)
        (ginp,) = torch.autograd.grad(out, (inp,), create_graph=True)
        gsum = ginp.sum()
        gsum.backward()  # should not fail

        inp = torch.rand(size, requires_grad=True)
        out = MyFunc.apply(inp, True)
        (ginp,) = torch.autograd.grad(out, (inp,), create_graph=True)
        gsum = ginp.sum()
        with warnings.catch_warnings(record=True) as w:
            with self.assertRaisesRegex(
                RuntimeError,
                "Function 'MyFunc2Backward' returned nan values in its 0th output.",
            ):
                with detect_anomaly():
                    gsum.backward()
        self.assertIn("No forward pass information", str(w[1].message))

        inp = torch.rand(size, requires_grad=True)
        with warnings.catch_warnings(record=True) as w:
            with self.assertRaisesRegex(
                RuntimeError,
                "Function 'MyFunc2Backward' returned nan values in its 1th output.",
            ):
                with detect_anomaly():
                    out = MyFunc.apply(inp, False)
                    (ginp,) = torch.autograd.grad(out, (inp,), create_graph=True)
                    gsum = ginp.sum()
                    gsum.backward()
        self.assertIn("MyFunc2.apply", str(w[1].message))
        self.assertIn("MyFunc.apply", str(w[2].message))

    def test_anomaly_grad_warnings(self):
        # PyTorch won't throw warnings if there is an error
        # but we'd want to at least see them in stderr

        class StdErrDiverter:
            def __enter__(self):
                self.stderr_orig = sys.stderr
                self.stderr_new = io.StringIO()
                sys.stderr = self.stderr_new
                return self

            def __exit__(self, *args):
                self.captured = self.stderr_new.getvalue()
                sys.stderr = self.stderr_orig

        # if the warnings don't throw, they will be handled as regular warnings
        with self.assertRaisesRegex(
            RuntimeError,
            "one of the variables needed for gradient computation has been "
            "modified by an inplace operation",
        ):
            with warnings.catch_warnings(record=True) as w:
                with detect_anomaly():
                    a = torch.randn(5, requires_grad=True)
                    d1 = a + 1
                    d2 = d1**2
                    d1 += 1
                    torch.autograd.grad(d2.sum(), a)

        self.assertEqual(len(w), 2)
        self.assertIn("Anomaly Detection has been enabled", str(w[0].message))
        self.assertIn("Error detected in PowBackward0", str(w[1].message))

        # if the warning throws, it will be printed to sys.stderr
        with self.assertRaisesRegex(
            RuntimeError,
            "one of the variables needed for gradient computation has been "
            "modified by an inplace operation",
        ):
            with warnings.catch_warnings(record=True) as w:
                with detect_anomaly():
                    warnings.simplefilter("error")
                    with StdErrDiverter() as s:
                        a = torch.randn(5, requires_grad=True)
                        d1 = a + 1
                        d2 = d1**2
                        d1 += 1
                        torch.autograd.grad(d2.sum(), a)

        self.assertEqual(len(w), 1)
        self.assertIn("Anomaly Detection has been enabled", str(w[0].message))
        self.assertIn("Error detected in PowBackward0", s.captured)

    def test_anomaly_assign_parent_cleanup(self):
        # Test that python objects created are properly cleaned up when assign_parent is called

        def get_ref():
            # we use torch.exp here but any function that will construct a new node in its
            # backward call in grad mode will work
            x = torch.randn(2, 2, requires_grad=True)
            t = x.exp()

            # ExpBackward calls mul, creating the MulBackward node when create_graph=True.
            # In anomaly mode, a PyObject referencing MulBackward's "parent" ExpBackward is added to
            # MulBackward's anomaly metadata dict, creating the following reference chain:
            #
            # grad -> MulBackward -> PyObject -> ExpBackward
            #
            with detect_anomaly():
                grad = torch.autograd.grad(t, x, torch.ones_like(t), create_graph=True)

            # We add a weak reference to a new Foo object, which we insert into ExpBackward's metadata dict
            #
            # (PyObject) -> ExpBackward -> dict -> *Foo*
            #            t ----^        WeakRef ---^
            #
            # We want to test that when grad goes out of scope at the end of this function that PyObject is destroyed
            # We can test this by seeing whether Foo is not kept alive once t is destroyed
            class Foo:
                pass

            my_obj = Foo()
            meta_dict = t.grad_fn.metadata
            meta_dict[0] = my_obj
            ref = weakref.ref(my_obj)
            return t, ref

        t, ref = get_ref()
        self.assertIsNotNone(ref())
        del t
        self.assertIsNone(ref())

    def test_nested_anomaly_printstack_cleanup(self):
        # Test if metadata dict PyObject is properly destroyed
        def get_ref():
            # This is similar to the construction in test_anomaly_assign_parent_cleanup:
            #
            # MyFuncBackward2 -> PyObject -> MyFuncBackward -> dict -> Foo
            #                               out ---^         WeakRef ---^
            #
            # We want to check that Foo is still properly destroyed even when MyFunc2Backward's
            # AnomalyMetadata calls printstack, which does some python object manipulation.
            #
            # You might be wondering why we still have to test_anomaly_assign_parent_cleanup,
            # since if PyObject is not destroyed here, wouldn't this test would detect that also?
            # The answer is that custom function's PyObject (THPFunction) actually only hold
            # a weak reference to the c++ node!
            class MyFunc(Function):
                @staticmethod
                def forward(ctx, x):
                    ctx.save_for_backward(x)
                    return x

                @staticmethod
                def backward(ctx, gO):
                    (x,) = ctx.saved_tensors
                    return MyFunc2.apply(x)

            class MyFunc2(Function):
                @staticmethod
                def forward(ctx, x):
                    return x

                @staticmethod
                def backward(ctx, gO):
                    return gO + float("NaN")

            inp = torch.rand(1, requires_grad=True)
            out = MyFunc.apply(inp)
            (ginp,) = torch.autograd.grad(out, (inp,), create_graph=True)

            with warnings.catch_warnings(record=True) as w:
                with self.assertRaisesRegex(
                    RuntimeError,
                    "Function 'MyFunc2Backward' returned nan values in its 0th output.",
                ):
                    with detect_anomaly():
                        ginp.backward()

            class Foo:
                pass

            my_obj = Foo()
            meta_dict = out.grad_fn.metadata
            meta_dict[0] = my_obj
            ref = weakref.ref(my_obj)
            return out, ref

        t, ref = get_ref()
        self.assertIsNotNone(ref())
        del t
        self.assertIsNone(ref())

    def test_anomaly_mode_no_check_nan(self):
        class MyFunc(torch.autograd.Function):
            @staticmethod
            def forward(ctx, inp):
                return inp.clone()

            @staticmethod
            def backward(ctx, gO):
                return torch.tensor(float("nan")).expand(10, 10)

        def run_fn(a):
            out = MyFunc.apply(a)
            return out.sum()

        with warnings.catch_warnings(record=True) as w:
            with torch.autograd.detect_anomaly(check_nan=False):
                inp = torch.rand(10, 10, requires_grad=True)
                out = run_fn(inp)
                out.backward(retain_graph=True)

                with torch.autograd.detect_anomaly(check_nan=True):
                    with self.assertRaisesRegex(
                        RuntimeError,
                        "Function 'MyFuncBackward' returned nan values in its 0th output.",
                    ):
                        out.backward(retain_graph=True)

                out.backward()

    def test_no_grad_copy(self):
        # create autograd function that saves grad pointer as class static
        class MyFunc(Function):
            static_grad_ptr = None

            @staticmethod
            def forward(ctx, inp1, inp2):
                return inp1 + inp2

            @staticmethod
            def backward(ctx, grad):
                MyFunc.static_grad_ptr = grad.data_ptr()
                return grad, grad

        class NonContGradFunc(Function):
            @staticmethod
            def forward(ctx, inp1):
                ctx.size = inp1.size()
                return torch.tensor([1.0])

            @staticmethod
            def backward(ctx, grad):
                return torch.ones(1).expand(ctx.size)

        a = torch.randn(5, 6, requires_grad=True)
        b = torch.randn(5, 6, requires_grad=True)
        # non-contiguous grad should be copied
        NonContGradFunc.apply(MyFunc.apply(a, b)).backward()
        self.assertFalse(a.grad.data_ptr() == MyFunc.static_grad_ptr)
        self.assertFalse(b.grad.data_ptr() == MyFunc.static_grad_ptr)
        # test case that should trigger no copy for one of a,b
        a.grad = b.grad = None
        MyFunc.apply(a, b)[1][0].backward()
        p_g = MyFunc.static_grad_ptr
        p_a = a.grad.data_ptr()
        p_b = b.grad.data_ptr()
        # check a,b uses different grad buffer
        self.assertFalse(p_a == p_b)
        # check one of them is using the computed buffer
        self.assertTrue(p_a == p_g or p_b == p_g)

    def test_no_grad_copy_sparse(self):
        # create autograd function that saves grad pointer as class static
        class MyFunc(Function):
            static_grad_ptr = None

            @staticmethod
            def forward(ctx, inp1, inp2):
                return inp1 + inp2

            @staticmethod
            def backward(ctx, grad):
                MyFunc.static_grad_ptr = grad._values().data_ptr()
                return grad, grad

        class NonContGradFunc(Function):
            static_grad_ptr = None

            @staticmethod
            def forward(ctx, inp1, inp2):
                return inp1 + inp2

            @staticmethod
            def backward(ctx, grad):
                # Create a sparse tensor with non-contigous indices and values
                # and return as grad.
                v = torch.rand(1, 3)
                i = torch.ones(1, 1, dtype=torch.long)
                nv = v.expand(8, 3)
                ni = i.expand(1, 8)
                ngrad = torch.sparse_coo_tensor(ni, nv, (10, 3), dtype=torch.float32)
                NonContGradFunc.static_grad_ptr = ngrad._values().data_ptr()
                return ngrad, ngrad

        a = torch.randn(10, 3, requires_grad=True)
        b = torch.randn(10, 3, requires_grad=True)
        input = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9])
        offsets = torch.tensor([0, 4])
        import torch.nn.functional as F

        # test case that should trigger no copy for one of a,b
        emb_matrix = MyFunc.apply(a, b)
        loss = F.embedding_bag(emb_matrix, input, offsets, sparse=True).sum()
        loss.backward(retain_graph=True)
        p_g = MyFunc.static_grad_ptr
        p_a = a.grad._values().data_ptr()
        p_b = b.grad._values().data_ptr()
        # check a,b uses different grad buffer
        self.assertFalse(p_a == p_b)
        # check one of them is using the computed buffer
        self.assertTrue(p_a == p_g or p_b == p_g)

        # Run backwards multiple times to ensure accumulation works.
        for i in range(10):
            loss.backward(retain_graph=True)

        # non-contiguous indices and value, we should trigger a copy.
        a.grad = b.grad = None
        emb_matrix = NonContGradFunc.apply(a, b)
        loss = F.embedding_bag(emb_matrix, input, offsets, sparse=True).sum()
        loss.backward(retain_graph=True)
        p_g = NonContGradFunc.static_grad_ptr
        p_a = a.grad._values().data_ptr()
        p_b = b.grad._values().data_ptr()
        # check a,b uses different grad buffer
        self.assertFalse(p_a == p_b)
        # Verify we cloned both grads.
        self.assertFalse(p_a == p_g)
        self.assertFalse(p_b == p_g)

        # Run backwards multiple times to ensure accumulation works.
        for i in range(10):
            loss.backward(retain_graph=True)

    def test_gradcheck_single_input(self):
        def check(fast_mode):
            def f(inp):
                return inp.mul(5)

            gradcheck(
                f,
                torch.rand(10, dtype=torch.float64, requires_grad=True),
                fast_mode=fast_mode,
            )
            gradgradcheck(
                f,
                torch.rand(10, dtype=torch.float64, requires_grad=True),
                fast_mode=fast_mode,
            )

        check(fast_mode=True)
        check(fast_mode=False)

    @parametrize(
        "layout",
        (
            torch.sparse_coo,
            torch.sparse_csr,
            torch.sparse_csc,
            torch.sparse_bsr,
            torch.sparse_bsc,
        ),
    )
    def test_gradcheck_input(self, layout):
        if layout in {torch.sparse_bsr, torch.sparse_bsc}:
            blocksize = (2, 2)
            size = (4, 8)
        else:
            blocksize = None
            size = (2, 2)

        def check(fast_mode, masked):
            def fn(sparse):
                return torch.sum(sparse)

            gradcheck(
                fn,
                torch.rand(size, dtype=torch.double)
                .to_sparse(layout=layout, blocksize=blocksize)
                .requires_grad_(),
                masked=masked,
                check_batched_grad=False,
                fast_mode=fast_mode,
            )

        for fast_mode, masked in product(*[(True, False)] * 2):
            check(fast_mode=fast_mode, masked=masked)

    def test_gradcheck_nondeterministic(self):
        class NonDetFunc(Function):
            @staticmethod
            def forward(ctx, x, jitter=0.0):
                ctx._jitter = jitter
                return x

            @staticmethod
            def backward(ctx, grad_out):
                return (
                    NonDetFunc.apply(grad_out, ctx._jitter)
                    * (1 + torch.rand_like(grad_out) * ctx._jitter),
                    None,
                )

        def check(fast_mode):
            inp = torch.randn(5, 5, dtype=torch.double, requires_grad=True)
            gradcheck(
                lambda x: NonDetFunc.apply(x, 0.0),
                inp,
                check_batched_grad=False,
                fast_mode=fast_mode,
            )
            with self.assertRaisesRegex(RuntimeError, "Backward is not reentrant"):
                gradcheck(
                    lambda x: NonDetFunc.apply(x, 1e-6),
                    inp,
                    check_batched_grad=False,
                    fast_mode=fast_mode,
                )
            with self.assertRaisesRegex(RuntimeError, "Backward is not reentrant"):
                gradgradcheck(
                    lambda x: NonDetFunc.apply(x, 1e-12),
                    inp,
                    check_batched_grad=False,
                    fast_mode=fast_mode,
                )
            gradcheck(
                lambda x: NonDetFunc.apply(x, 0.0),
                inp,
                nondet_tol=1e-5,
                check_batched_grad=False,
                fast_mode=fast_mode,
            )
            gradcheck(
                lambda x: NonDetFunc.apply(x, 1e-6),
                inp,
                nondet_tol=1e-5,
                check_batched_grad=False,
                fast_mode=fast_mode,
            )
            gradgradcheck(
                lambda x: NonDetFunc.apply(x, 1e-12),
                inp,
                nondet_tol=1e-5,
                check_batched_grad=False,
                fast_mode=fast_mode,
            )

        check(fast_mode=True)
        check(fast_mode=False)

    def test_gradcheck_validates_inputs(self):
        def check(fast_mode):
            x = torch.rand(10, requires_grad=True).to_sparse()
            self.assertTrue(
                gradcheck(
                    lambda x: x.to_dense(),
                    (x,),
                    check_batched_grad=False,
                    atol=1e-1,
                    fast_mode=fast_mode,
                    masked=True,
                )
            )
            self.assertFalse(
                gradcheck(
                    lambda x: x.to_dense(),
                    (x,),
                    masked=False,
                    check_batched_grad=False,
                    raise_exception=False,
                    fast_mode=fast_mode,
                )
            )
            self.assertTrue(
                gradcheck(
                    lambda x: x.to_dense(masked_grad=False),
                    (x,),
                    masked=False,
                    atol=1e-1,
                    check_batched_grad=False,
                    raise_exception=False,
                    fast_mode=fast_mode,
                )
            )

            # when none of the inputs require grad (always raises even if raise_exception=False)
            x = torch.rand(10, requires_grad=False)
            with self.assertRaisesRegex(
                ValueError, "at least one input tensor to require gradient"
            ):
                gradcheck(lambda x: x, (x,), raise_exception=False, fast_mode=fast_mode)

            # (warning) when inputs are not double precision
            x = torch.ones(1, dtype=torch.float32, requires_grad=True)
            with self.assertWarnsRegex(
                UserWarning, "Input #0 requires gradient and is not a double precision"
            ):
                self.assertTrue(
                    gradcheck(lambda x: x, (x,), atol=1e-1, fast_mode=fast_mode)
                )

            # when layout is not mkldnn(aka has strides) and input has a dimension with stride 0. (always raises
            # even if raise_exception=False)
            x = torch.ones(1, dtype=torch.float64, requires_grad=True)
            x = x.expand((2, 2))
            with self.assertRaisesRegex(
                RuntimeError, "The 0th input has a dimension with stride 0"
            ):
                gradcheck(lambda x: x, (x,), raise_exception=False, fast_mode=fast_mode)

        check(fast_mode=True)
        check(fast_mode=False)

    @unittest.skipIf(
        not torch.backends.mkldnn.is_available(), "MKL-DNN build is disabled"
    )
    def test_gradcheck_validates_input_mkldnn(self):
        # when mkldnn inputs, forward mode testing is not allowed
        # Update tolerances below to make sure the gradient match even in single precision floats
        # Use the warning assert to hide the float32 warning
        x = torch.ones(1).to_mkldnn().requires_grad_()
        with self.assertWarnsRegex(
            UserWarning, "Input #0 requires gradient and is not a double precision"
        ):
            with self.assertRaisesRegex(
                ValueError, "MKLDNN inputs are not support for forward AD gradcheck."
            ):
                gradcheck(
                    lambda x: x.to_dense(),
                    (x,),
                    raise_exception=False,
                    fast_mode=False,
                    check_forward_ad=True,
                    atol=1e-1,
                    rtol=1e-1,
                )

        with self.assertWarnsRegex(
            UserWarning, "Input #0 requires gradient and is not a double precision"
        ):
            with self.assertRaisesRegex(
                ValueError, "MKLDNN inputs are not support for forward AD gradcheck."
            ):
                gradcheck(
                    lambda x: x.to_dense(),
                    (x,),
                    raise_exception=False,
                    fast_mode=True,
                    check_forward_ad=True,
                    atol=1e-1,
                    rtol=1e-1,
                )

    @unittest.skipIf(
        not torch.backends.mkldnn.is_available(), "MKL-DNN build is disabled"
    )
    def test_gradcheck_test_outputs(self):
        def check(fast_mode):
            # when sparse outputs (always raise even if raise_exception=False)
            x = torch.rand(10, requires_grad=True).to_sparse()
            with self.assertRaisesRegex(
                ValueError, "Sparse output is not supported at gradcheck yet"
            ):
                gradcheck(
                    lambda x: x,
                    (x,),
                    masked=True,
                    check_batched_grad=False,
                    raise_exception=False,
                    fast_mode=fast_mode,
                )

            # when mkldnn outputs (always raise even if raise_exception=False)
            root = torch.randn(4, 5, dtype=torch.float32, requires_grad=True)
            with self.assertRaisesRegex(
                ValueError, "MKLDNN output is not supported at gradcheck yet"
            ):
                gradcheck(
                    lambda x: x.to_mkldnn(),
                    (root,),
                    check_batched_grad=False,
                    raise_exception=False,
                    fast_mode=fast_mode,
                )

        check(fast_mode=True)
        check(fast_mode=False)

    def test_gradcheck_check_no_differentiable_outputs(self):
        def check(fast_mode):
            # When none of the outputs are differentiable, but numerical gradient is not zero
            x = torch.ones((1,), requires_grad=True)
            with self.assertRaisesRegex(
                RuntimeError, "Numerical gradient for function expected to be zero"
            ):
                gradcheck(lambda x: torch.tensor([x]), x)
            self.assertFalse(
                gradcheck(
                    lambda x: torch.tensor([x]),
                    x,
                    raise_exception=False,
                    fast_mode=fast_mode,
                )
            )

            # succeed when no outputs at all
            self.assertTrue(gradcheck(lambda x: (), (x,), fast_mode=fast_mode))

        check(fast_mode=True)
        check(fast_mode=False)

    def test_gradcheck_check_batched_grad(self):
        def check(fast_mode):
            x = torch.rand(10, dtype=torch.double, requires_grad=True).to_sparse()
            # runtime error while compute batched grad (print big error)
            with self.assertRaisesRegex(
                RuntimeError,
                "gradcheck or gradgradcheck failed while testing batched gradient",
            ):
                gradcheck(
                    lambda x: x.to_dense(),
                    (x,),
                    masked=True,
                    check_batched_grad=True,
                    fast_mode=fast_mode,
                )
            self.assertFalse(
                gradcheck(
                    lambda x: x.to_dense(),
                    (x,),
                    masked=True,
                    check_batched_grad=True,
                    raise_exception=False,
                    fast_mode=fast_mode,
                )
            )

        check(fast_mode=True)
        check(fast_mode=False)

    def test_gradcheck_backward_mul_by_grad_output(self):
        # when grad_input is sparse and has incorrect sparse_dim/dense_dim
        def check(fast_mode):
            def fn(x):
                def hook(grad):
                    if grad is not None:
                        return grad.to_dense().to_sparse(1)
                    return grad

                y = x.clone()
                y.register_hook(hook)
                return y.to_dense()

            x = torch.ones((2, 2), dtype=torch.double, requires_grad=True).to_sparse()
            with self.assertRaisesRegex(
                RuntimeError, "grad is sparse tensor, but has incorrect sparse_dim"
            ):
                gradcheck(
                    fn,
                    (x,),
                    atol=1e-1,
                    masked=True,
                    check_batched_grad=False,
                    fast_mode=fast_mode,
                )
            self.assertFalse(
                gradcheck(
                    fn,
                    (x,),
                    atol=1e-1,
                    masked=True,
                    check_batched_grad=False,
                    raise_exception=False,
                    fast_mode=fast_mode,
                )
            )

            # when backward not multiplied by grad_output (non-sparse case)
            def fn2(x):
                y = x.clone()
                y.register_hook(lambda x: x + 1e-2)
                return y

            x = torch.ones(1, dtype=torch.double, requires_grad=True)
            with self.assertRaisesRegex(
                RuntimeError, "backward not multiplied by grad_output"
            ):
                gradcheck(fn2, (x,), atol=1e-1, fast_mode=fast_mode)
            self.assertFalse(
                gradcheck(
                    fn2, (x,), atol=1e-1, raise_exception=False, fast_mode=fast_mode
                )
            )

            # when backward not multiplied by grad_output (sparse case)
            def fn3(x):
                y = x.clone().to_dense()
                y.register_hook(lambda x: x + 1e-2)
                return y

            x = torch.ones(1, dtype=torch.double, requires_grad=True).to_sparse()
            with self.assertRaisesRegex(
                RuntimeError, "backward not multiplied by grad_output"
            ):
                gradcheck(
                    fn3,
                    (x,),
                    atol=1e-1,
                    masked=True,
                    check_batched_grad=False,
                    fast_mode=fast_mode,
                )
            self.assertFalse(
                gradcheck(
                    fn3,
                    (x,),
                    atol=1e-1,
                    masked=True,
                    check_batched_grad=False,
                    raise_exception=False,
                    fast_mode=fast_mode,
                )
            )

            # when layout of grad_input is not the same as input
            class Test(Function):
                @staticmethod
                def forward(ctx, x):
                    return x

                @staticmethod
                def backward(ctx, x):
                    return x.to_sparse()

            x = torch.ones(1, dtype=torch.double, requires_grad=True)
            with self.assertRaisesRegex(RuntimeError, "grad is incorrect layout"):
                gradcheck(
                    Test.apply, (x,), check_batched_grad=False, fast_mode=fast_mode
                )
            self.assertFalse(
                gradcheck(
                    Test.apply,
                    (x,),
                    check_batched_grad=False,
                    raise_exception=False,
                    fast_mode=fast_mode,
                )
            )

        check(fast_mode=True)
        check(fast_mode=False)

    def test_gradcheck_undefined_grad(self):
        def check(fast_mode):
            # when encounter runtime error while running backward
            def fn(x):
                def hook(x):
                    if x is None:
                        raise RuntimeError("x is undefined")

                y = x.clone()
                y.register_hook(hook)
                return y

            x = torch.ones(1, dtype=torch.double, requires_grad=True)
            with self.assertWarnsRegex(
                UserWarning,
                "Backwards compatibility: New undefined gradient support checking feature",
            ):
                with self.assertRaisesRegex(
                    RuntimeError,
                    "Expected backward function to handle undefined output grads",
                ):
                    gradcheck(fn, (x,), fast_mode=fast_mode)
                self.assertFalse(
                    gradcheck(fn, (x,), raise_exception=False, fast_mode=fast_mode)
                )

        check(fast_mode=True)
        check(fast_mode=False)

    def test_gradcheck_jacobian_mismatch(self):
        def check(fast_mode):
            def fn(x):  # R -> R, C -> C
                y = x.clone()
                y.register_hook(lambda x: x + 1e-2)
                return y

            x = torch.ones(2, 2, requires_grad=True)
            with self.assertRaisesRegex(
                RuntimeError, "Jacobian mismatch for output 0 with respect to input 0"
            ):
                gradcheck(fn, (x,), fast_mode=fast_mode)
            self.assertFalse(
                gradcheck(fn, (x,), raise_exception=False, fast_mode=fast_mode)
            )

            x_c = torch.ones(2, 2, requires_grad=True, dtype=torch.complex128)
            with self.assertRaisesRegex(
                RuntimeError,
                "While considering the imaginary part of complex outputs only",
            ):
                gradcheck(fn, (x_c,), fast_mode=False)
            self.assertFalse(
                gradcheck(fn, (x_c,), raise_exception=False, fast_mode=False)
            )

            def fn2(x):  # R -> C
                y = torch.complex(x, x)
                y.register_hook(lambda x: x + 1e-2)
                return y

            x = torch.ones(2, 2, requires_grad=True)
            with self.assertRaisesRegex(
                RuntimeError,
                "While considering the imaginary part of complex outputs only",
            ):
                gradcheck(fn2, (x,), fast_mode=False)
            self.assertFalse(
                gradcheck(fn2, (x,), raise_exception=False, fast_mode=False)
            )

            def fn3(x):  # C -> R
                y = torch.real(x)
                y.register_hook(lambda x: x + 1e-2)
                return y

            with self.assertRaisesRegex(
                RuntimeError, "Jacobian mismatch for output 0 with respect to input 0"
            ):
                gradcheck(fn3, (x_c,), fast_mode=False)
            self.assertFalse(
                gradcheck(fn3, (x_c,), raise_exception=False, fast_mode=False)
            )

        check(fast_mode=True)
        check(fast_mode=False)

    def test_gradcheck_dense_and_sparse_inputs(self):
        def check(fast_mode):
            def fn(x, y):
                return x * y.coalesce().to_dense()

            a = torch.rand(2, 2, dtype=torch.double, requires_grad=True)
            b = torch.rand(2, 2, dtype=torch.double).to_sparse().requires_grad_(True)
            self.assertTrue(
                gradcheck(
                    fn,
                    (a, b),
                    masked=True,
                    check_batched_grad=False,
                    fast_mode=fast_mode,
                )
            )

        check(fast_mode=True)
        check(fast_mode=False)

    @unittest.skipIf(
        not torch.backends.mkldnn.is_available(), "MKL-DNN build is disabled"
    )
    def test_gradcheck_multiple_mkldnn_inputs(self):
        def check(fast_mode):
            def fn(x, y):
                return x + y.to_dense()

            a = torch.rand(10, requires_grad=True)
            b = torch.rand(10, dtype=torch.float32).to_mkldnn().requires_grad_(True)
            self.assertTrue(
                gradcheck(
                    fn, (a, b), atol=1e-1, check_batched_grad=False, fast_mode=fast_mode
                )
            )

            def fn2(x, y):
                return x.to_dense() + y.to_dense()

            c = torch.rand(10, dtype=torch.float32).to_mkldnn().requires_grad_(True)
            self.assertTrue(
                gradcheck(
                    fn, (a, c), atol=1e-1, check_batched_grad=False, fast_mode=fast_mode
                )
            )

        check(fast_mode=True)
        check(fast_mode=False)

    def test_gradcheck_output_shape_or_dtype_depend_on_values(self):
        def check(fast_mode):
            def fn(x):
                if torch.all(x >= 1):
                    return torch.cat([x, x])
                else:
                    return x

            a = torch.ones(1, dtype=torch.double, requires_grad=True)
            with self.assertRaisesRegex(
                AssertionError,
                "return outputs with the same shape when inputs are perturbed",
            ):
                self.assertTrue(gradcheck(fn, (a,), fast_mode=fast_mode))

            def fn2(x):
                if torch.all(x >= 1):
                    return x.to(torch.float32)
                else:
                    return x

            with self.assertRaisesRegex(
                AssertionError,
                "return outputs with the same dtype when inputs are perturbed",
            ):
                self.assertTrue(gradcheck(fn2, (a,), fast_mode=fast_mode))

        check(fast_mode=True)
        check(fast_mode=False)

    def test_gradcheck_complex_non_complex_outputs(self):
        def fn(x, y):
            z = torch.complex(x, y)
            return z, x + 1

        a = torch.ones(2, 2, requires_grad=True, dtype=torch.float64)
        b = torch.ones(2, 2, requires_grad=True, dtype=torch.float64)
        self.assertTrue(gradcheck(fn, (a, b)))

        def fn2(z):
            return z, torch.real(z)

        c = torch.ones(2, 2, requires_grad=True, dtype=torch.complex128)
        self.assertTrue(gradcheck(fn2, (c)))

    def test_gradcheck_get_numerical_jacobian(self):
        # get_numerical_jacobian is deprecated and no longer used internally by gradcheck
        from torch.autograd.gradcheck import get_numerical_jacobian

        def fn(inputs):
            # get_numerical_jacobian requires fn to take inputs as a tuple
            # and returns the jacobian wrt the first output
            x = inputs[0]
            y = inputs[1]
            return 2 * x + y, x + 2 * y

        a = torch.rand(2, 2, requires_grad=True, dtype=torch.float64)
        b = torch.rand(2, 2, requires_grad=True, dtype=torch.float64)

        with self.assertWarnsRegex(
            FutureWarning, "`get_numerical_jacobian` was part of PyTorch's private API"
        ):
            jacobian = get_numerical_jacobian(fn, (a, b), target=a, eps=1e-6)
        self.assertEqual(jacobian[0], 2 * torch.eye(4, dtype=torch.double))

        with self.assertWarnsRegex(
            FutureWarning, "`get_numerical_jacobian` was part of PyTorch's private API"
        ):
            jacobian = get_numerical_jacobian(fn, (a, b), eps=1e-6)
        self.assertEqual(jacobian[0], 2 * torch.eye(4, dtype=torch.double))
        self.assertEqual(jacobian[1], 1 * torch.eye(4, dtype=torch.double))

        with self.assertRaisesRegex(ValueError, "Expected grad_out to be 1.0"):
            jacobian = get_numerical_jacobian(fn, (a, b), eps=1e-6, grad_out=2.0)

    def test_gradcheck_get_analytical_jacobian(self):
        from torch.autograd.gradcheck import get_analytical_jacobian

        def fn(x, y):
            return 2 * x + y, x + 2 * y

        a = torch.rand(2, 2, requires_grad=True, dtype=torch.float64)
        b = torch.rand(2, 2, requires_grad=True, dtype=torch.float64)

        outputs = fn(a, b)
        with self.assertWarnsRegex(
            FutureWarning, "`get_analytical_jacobian` was part of PyTorch's private API"
        ):
            (
                jacobians,
                reentrant,
                correct_grad_sizes,
                correct_grad_types,
            ) = get_analytical_jacobian((a, b), outputs[0])
        self.assertEqual(jacobians[0], 2 * torch.eye(4, dtype=torch.double))
        self.assertEqual(jacobians[1], 1 * torch.eye(4, dtype=torch.double))
        self.assertTrue(reentrant)

        class NonDetFunc(Function):
            @staticmethod
            def forward(ctx, x, jitter=0.0):
                ctx._jitter = jitter
                return x

            @staticmethod
            def backward(ctx, grad_out):
                return (
                    NonDetFunc.apply(grad_out, ctx._jitter)
                    * (1 + torch.rand_like(grad_out) * ctx._jitter),
                    None,
                )

        outputs = NonDetFunc.apply(a, 1e-6)
        with self.assertWarnsRegex(
            FutureWarning, "`get_analytical_jacobian` was part of PyTorch's private API"
        ):
            (
                jacobians,
                reentrant,
                correct_grad_sizes,
                correct_grad_types,
            ) = get_analytical_jacobian((a,), outputs)
        self.assertFalse(reentrant)

        with self.assertRaisesRegex(ValueError, "Expected grad_out to be 1.0"):
            jacobians, _, _, _ = get_analytical_jacobian((a,), outputs, grad_out=2.0)

    def test_gradcheck_custom_error(self):
        from torch.autograd.gradcheck import GradcheckError

        def check(fast_mode):
            def fn(x):
                y = x.clone()
                y.register_hook(lambda x: x + 1e-2)
                return y

            x = torch.ones(2, 2, requires_grad=True)
            with self.assertRaisesRegex(
                GradcheckError, "Jacobian mismatch for output 0 with respect to input 0"
            ):
                gradcheck(fn, (x,), fast_mode=fast_mode)
            with self.assertRaisesRegex(
                RuntimeError, "Jacobian mismatch for output 0 with respect to input 0"
            ):
                gradcheck(fn, (x,), fast_mode=fast_mode)
            self.assertFalse(
                gradcheck(fn, (x,), raise_exception=False, fast_mode=fast_mode)
            )

            def fn2(x):
                raise RuntimeError("Not a GradcheckError!")

            # Checks that when raise_exception=False, non-GradcheckErrors are not caught by gradcheck
            with self.assertRaisesRegex(RuntimeError, "Not a GradcheckError!"):
                gradcheck(fn2, (x,), fast_mode=fast_mode, raise_exception=False)

        check(fast_mode=True)
        check(fast_mode=False)

    def test_gradcheck_forward_ad(self):
        def fn(x, y):
            return x + y, y

        def bad_fn(x, y):
            # Hacky way to check if we're currently inside a forward ad level
            is_running_forward_ad = fwAD._current_level >= 0

            if is_running_forward_ad:
                y_p, y_d = fwAD.unpack_dual(y)
                y = fwAD.make_dual(y_p, y_d * 1.1)

            return x + y, y

        err_msg = "Jacobian computed with forward mode mismatch for output 0 with respect to input 1"

        for fast_mode in [True, False]:
            # Test for all inputs and outputs being real
            x = torch.rand(2, dtype=torch.double, requires_grad=True)
            y = torch.rand(2, dtype=torch.double, requires_grad=True)

            gradcheck(fn, (x, y), check_forward_ad=True, fast_mode=fast_mode)
            with self.assertRaisesRegex(RuntimeError, err_msg):
                gradcheck(bad_fn, (x, y), check_forward_ad=True, fast_mode=fast_mode)

            def basic_mul(x):
                return torch.view_as_real(torch.resolve_conj(x * 1j))

            gradcheck(basic_mul, x, check_forward_ad=True, fast_mode=fast_mode)

            # Test for one input and one output being complex
            x = torch.rand(2, dtype=torch.cdouble, requires_grad=True)

            gradcheck(fn, (x, y), check_forward_ad=True, fast_mode=fast_mode)
            with self.assertRaisesRegex(RuntimeError, err_msg):
                gradcheck(bad_fn, (x, y), check_forward_ad=True, fast_mode=fast_mode)

            # Test for all inputs and outputs being complex
            y = torch.rand(2, dtype=torch.cdouble, requires_grad=True)

            gradcheck(fn, (x, y), check_forward_ad=True, fast_mode=fast_mode)
            with self.assertRaisesRegex(RuntimeError, err_msg):
                gradcheck(bad_fn, (x, y), check_forward_ad=True, fast_mode=fast_mode)

    def test_gradcheck_forward_ad_runs_with_no_requires_grad(self):
        # Currently requires_grad is used as a easy way for gradcheck to know
        # which inputs of the function are meant to be differentiable
        # This test checks that when the inputs are passed to the function they should not have
        # requires_grad=True even though they may have requires_grad=True when passed
        # to gradcheck
        class UserFn(Function):
            @staticmethod
            def forward(ctx, x, y):
                if fwAD._current_level >= 0:
                    self.assertFalse(x.requires_grad)
                    self.assertFalse(y.requires_grad)
                return x.clone(), y.clone()

            @staticmethod
            def jvp(ctx, x_t, y_t):
                return x_t, y_t

        x = torch.rand(2, dtype=torch.double, requires_grad=True)
        y = torch.rand(2, dtype=torch.double, requires_grad=True)

        gradcheck(
            UserFn.apply,
            (x, y),
            check_forward_ad=True,
            check_undefined_grad=False,
            check_backward_ad=False,
            check_batched_grad=False,
            check_batched_forward_grad=False,
        )

        gradcheck(
            UserFn.apply,
            (x, y),
            check_forward_ad=True,
            check_undefined_grad=True,
            check_backward_ad=False,
            check_batched_grad=False,
            check_batched_forward_grad=False,
        )

        gradcheck(
            UserFn.apply,
            (x, y),
            check_forward_ad=True,
            check_undefined_grad=True,
            check_backward_ad=False,
            check_batched_grad=False,
            check_batched_forward_grad=True,
        )

        x = torch.rand(2, dtype=torch.double, requires_grad=True)
        y = torch.rand(2, dtype=torch.double, requires_grad=False)
        gradcheck(
            UserFn.apply,
            (x, y),
            check_forward_ad=True,
            check_undefined_grad=True,
            check_backward_ad=False,
            check_batched_grad=False,
            check_batched_forward_grad=True,
        )

    def test_gradcheck_forward_ad_respects_requires_grad(self):
        # Currently requires_grad is used as a easy way for gradcheck to know
        # which inputs of the function are meant to be differentiable
        jvp_count = [0]

        class UserFn(Function):
            @staticmethod
            def forward(ctx, x, y):
                return x.clone(), y.clone()

            @staticmethod
            def jvp(ctx, x_t, y_t):
                jvp_count[0] += 1
                return x_t, y_t

        # NB: In slow gradcheck we need to loop through numel times so use numel = 1 to ensure
        #     that fast and slow have the same counts
        x = torch.rand(1, dtype=torch.double, requires_grad=True)
        y = torch.rand(1, dtype=torch.double, requires_grad=True)
        gradcheck(
            UserFn.apply,
            (x, y),
            check_forward_ad=True,
            check_undefined_grad=False,
            check_backward_ad=False,
            check_batched_grad=False,
            check_batched_forward_grad=False,
        )
        self.assertEqual(jvp_count[0], 2)  # (2) once per input
        jvp_count = [0]

        gradcheck(
            UserFn.apply,
            (x, y),
            check_forward_ad=True,
            check_undefined_grad=True,
            check_backward_ad=False,
            check_batched_grad=False,
            check_batched_forward_grad=False,
        )
        self.assertEqual(
            jvp_count[0], 6
        )  # (+4): (once with normal ZT (+1), once with efficient ZT (+1)) for each input (x2)
        jvp_count = [0]

        gradcheck(
            UserFn.apply,
            (x, y),
            check_forward_ad=True,
            check_undefined_grad=True,
            check_backward_ad=False,
            check_batched_grad=False,
            check_batched_forward_grad=True,
        )
        self.assertEqual(
            jvp_count[0], 12
        )  # (+6): (compute batch of 2 with vmap (+1), with a loop (+2)) for each input (x2)
        jvp_count = [0]

        # Repeat the previous test except we mark one input with requires_grad=False
        # NB: _test_undefined_forward_mode is only (+1), when function has single differentiable input, not (+2)!
        #     Otherwise, other counts are halved.
        x = torch.rand(1, dtype=torch.double, requires_grad=True)
        y = torch.rand(1, dtype=torch.double, requires_grad=False)
        gradcheck(
            UserFn.apply,
            (x, y),
            check_forward_ad=True,
            check_undefined_grad=True,
            check_backward_ad=False,
            check_batched_grad=False,
            check_batched_forward_grad=True,
        )
        self.assertEqual(jvp_count[0], 5)  # 1 + 1 + 3

    def test_gradcheck_check_forward_or_backward_only(self):
        """Depending on settings for check_forward_ad and check_backward_ad, the
        correct codepaths should be reached (or not reached)
        """
        fwd_fail_err_msg = "FAIL FWD"
        bwd_fail_err_msg = "FAIL BWD"

        class UserFn(Function):
            @staticmethod
            def forward(ctx, foo, fwd_bad, bwd_bad):
                ctx.fwd_bad = fwd_bad
                ctx.bwd_bad = bwd_bad
                return foo * 2

            @staticmethod
            def vjp(ctx, gO):
                if ctx.bwd_bad:
                    raise RuntimeError(bwd_fail_err_msg)
                else:
                    return 2 * gO, None, None

            @staticmethod
            def jvp(ctx, gI, _1, _2):
                if ctx.fwd_bad:
                    raise RuntimeError(fwd_fail_err_msg)
                else:
                    return 2 * gI

        for fast_mode in (True, False):
            for check_forward_ad in (True, False):
                for check_backward_ad in (True, False):
                    for fwd_bad in (True, False):
                        for bwd_bad in (True, False):
                            fwd_should_fail = fwd_bad and check_forward_ad
                            bwd_should_fail = bwd_bad and check_backward_ad

                            def run():
                                gradcheck(
                                    UserFn.apply,
                                    (x, fwd_bad, bwd_bad),
                                    check_forward_ad=check_forward_ad,
                                    check_backward_ad=check_backward_ad,
                                    check_undefined_grad=check_backward_ad,
                                    check_batched_grad=check_backward_ad,
                                    fast_mode=fast_mode,
                                )

                            x = torch.rand(2, dtype=torch.double, requires_grad=True)

                            if not check_forward_ad and not check_backward_ad:
                                with self.assertRaisesRegex(
                                    AssertionError, "Expected at least one of"
                                ):
                                    run()
                                continue

                            if not fwd_should_fail and not bwd_should_fail:
                                run()
                            else:
                                # If both fail, backward AD failure "hides" forward AD failure
                                if fwd_should_fail:
                                    fail_msg = fwd_fail_err_msg
                                if bwd_should_fail:
                                    fail_msg = bwd_fail_err_msg
                                with self.assertRaisesRegex(RuntimeError, fail_msg):
                                    run()

    def test_gradcheck_forward_ad_batched_grad(self):
        x = torch.rand(2, dtype=torch.double, requires_grad=True)

        # multiple inputs and outputs with non-tensors inputs
        def fn1(a: torch.Tensor, b: int):
            return a.clone(), a + 1

        gradcheck(
            fn1,
            (x, 1),
            check_forward_ad=True,
            check_backward_ad=False,
            check_batched_grad=False,
            check_undefined_grad=False,
            check_batched_forward_grad=True,
        )

        # unrelated inputs: tangent for c is None
        def fn2(a: torch.Tensor, c: torch.Tensor):
            return a.clone()

        gradcheck(
            fn2,
            (x, x.clone()),
            check_forward_ad=True,
            check_backward_ad=False,
            check_batched_grad=False,
            check_undefined_grad=False,
            check_batched_forward_grad=True,
        )

        class Fn(Function):
            @staticmethod
            def forward(ctx, foo):
                return foo * 2

            @staticmethod
            def vjp(ctx, gO):
                return gO * 2

            @staticmethod
            def jvp(ctx, gI):
                torch.randn_like(gI)
                return gI * 2

        msg = "vmap: We do not yet support calling random operations inside of vmap"
        with self.assertRaisesRegex(RuntimeError, msg):
            gradcheck(
                Fn.apply, (x,), check_forward_ad=True, check_batched_forward_grad=True
            )

    def test_version_counter(self):
        x = torch.randn(1, 2)

        # In-place op bumps version
        x_saved_version = x._version
        x.add_(1).add_(1)
        self.assertTrue(x._version > x_saved_version)

        # Differentiable view shares version counter
        xz = x[:]
        self.assertTrue(x._version == xz._version)
        xz.add_(1)
        self.assertTrue(x._version == xz._version)

        # `x.data = y` preserves version counter of `x`
        x_saved_version = x._version
        x.data = torch.randn(2, 3)
        self.assertTrue(x._version == x_saved_version)
        x.add_(1)
        self.assertTrue(x._version > x_saved_version)
        # Make sure `x` is still using the same version counter it shares with `xz`
        self.assertTrue(x._version == xz._version)

        # In-place op on `xz` also updates version of `x`,
        # because they share the version counter
        xz.add_(1)
        self.assertTrue(x._version == xz._version)

    def test_set_data_tensorimpl_type(self):
        # Dense tensor has impl of type `TensorImpl`, while sparse tensor has impl
        # of type `SparseTensorImpl`.
        x = torch.randn(1, 2)
        x_s = torch.sparse_coo_tensor(torch.zeros([1, 1]), torch.ones([1]))
        with self.assertRaisesRegex(RuntimeError, "incompatible tensor type"):
            x.data = x_s

    def test_set_data_preserve_pyobj(self):
        a = torch.randn(1, 2)
        b = torch.randn(1, 2)
        b_id_saved = id(b)
        b.data = a
        self.assertTrue(b_id_saved == id(b))

    def test_set_data_self_requires_grad(self):
        a = torch.tensor(1.0, requires_grad=True)
        b = torch.tensor(2.0)
        c = torch.tensor(3, dtype=torch.int64)
        a.data = b
        with self.assertRaisesRegex(
            RuntimeError, "must be floating point or complex dtype"
        ):
            a.data = c

    @unittest.skipIf(IS_WINDOWS, "Skipping because doesn't work for windows")
    def test_thread_shutdown(self):
        code = """import torch
from torch.autograd import Function
class MyFunction(Function):
    @staticmethod
    def forward(ctx, x):
        return x

    @staticmethod
    def backward(ctx, grad):
        return grad

# Run on cuda if it is available to ensure that the worker thread
# is properly initialized by the time we exit.
device = "cuda" if torch.cuda.is_available() else "cpu"

for shape in [(1,), ()]:
    v = torch.ones(shape, requires_grad=True, device=device)
    MyFunction.apply(v).backward()
"""
        s = TestCase.runWithPytorchAPIUsageStderr(code)
        # The autograd engine creates worker threads only when GPU devices are present.
        # So make sure that we do shutdown threads when we're testing cuda and make sure
        # that there is no thread to shutdown when we're not using cuda.
        if TEST_CUDA or torch.backends.mps.is_available() or torch.xpu.is_available():
            self.assertRegex(s, "PYTORCH_API_USAGE torch.autograd.thread_shutdown")
        else:
            self.assertNotRegex(s, "PYTORCH_API_USAGE torch.autograd.thread_shutdown")

    @unittest.skipIf(
        IS_MACOS,
        "Fails with SIGBUS on macOS; https://github.com/pytorch/pytorch/issues/25941",
    )
    @xfailIfS390X
    def test_deep_reentrant(self):
        class DeepReentrant(Function):
            @staticmethod
            def forward(ctx, x):
                with torch.enable_grad():
                    ctx.x = Variable(x.detach(), requires_grad=True)
                    ctx.x = ctx.x - 1
                return ctx.x.detach()

            @staticmethod
            def backward(ctx, x):
                if ctx.x < 0:
                    return x
                with torch.enable_grad():
                    DeepReentrant.apply(ctx.x).sum().backward()
                return x

        # Test stack overflow escape mechanism
        v = torch.tensor(2000.0, requires_grad=True)
        # This will cause stack overflow if reentrant calls are handled
        # in the same thread recursively
        DeepReentrant.apply(v).sum().backward()

        # Test stack overflow escape mechanism multiple times
        # to ensure reusing workers in the pool works fine
        v2 = torch.tensor(200.0, requires_grad=True)
        DeepReentrant.apply(v2).sum().backward()

    def test_reentrant_priority(self):
        order = []

        class MyFunction(Function):
            @staticmethod
            def forward(ctx, x):
                return x

            @staticmethod
            def backward(ctx, x):
                order.append("MyFunction")
                return x

        class Reentrant(Function):
            @staticmethod
            def forward(ctx, x):
                with torch.enable_grad():
                    ctx.x = Variable(x.detach(), requires_grad=True)
                    ctx.x = ctx.x - 1
                return ctx.x.detach()

            @staticmethod
            def backward(ctx, x):
                order.append("Reentrant")
                if ctx.x < 0:
                    return x
                with torch.enable_grad():
                    Reentrant.apply(ctx.x).backward()
                return x

        a = MyFunction.apply(torch.tensor(6.0, requires_grad=True))
        b = Reentrant.apply(torch.tensor(9.0, requires_grad=True))
        v = a * b
        v.backward()
        # The tasks for the Reentrant and MyFunction backward() will be added
        # to the queue in the autograd engine at the same time. The backward
        # for Reentrant will be executed first, which will then add other
        # backward tasks to the queue. We want to ensure all the reentrant tasks
        # are prioritized over the MyFunction backward task regardless of their
        # sequence numbers
        self.assertEqual(len(order), 11)
        self.assertEqual(order.count("Reentrant"), 10)
        self.assertEqual(order[-1], "MyFunction")

    @slowTest
    def test_checkpointing(self):
        num_inp = 2000
        nz_inp = 10
        nz_out = 10
        nz_bottleneck = 1000

        # small proxy network for some complex reasoning we want to do per input
        module = nn.Sequential(
            nn.Linear(nz_inp, nz_bottleneck),
            nn.ReLU(),
            nn.Linear(nz_bottleneck, nz_inp),
        )

        feat_combined = []
        for r in range(num_inp):
            data_r = torch.empty(1, nz_inp)
            data_r.uniform_()
            data_r.requires_grad = True
            feat_r = checkpoint(module, data_r, use_reentrant=True)
            feat_combined.append(feat_r)

        # compute mean as a proxy for some joint reasoning
        mean_combined = torch.stack(feat_combined).mean()
        mean_combined.backward()

    def _test_checkpointing_non_reentrant_autocast(self, device_type):
        for enabled in [True, False]:

            def foo(x, y, z):
                # torch.mm is on autocast's list of ops that should run in
                # the autocast precision
                x = torch.mm(x, y)
                y = torch.mm(x, z)
                z = torch.mm(z, z)
                expected_dtype = torch.float32 if not enabled else torch.bfloat16
                self.assertEqual(expected_dtype, z.dtype)
                return z

            x = torch.randn(3, 3, requires_grad=True)
            y = torch.randn(3, 3, requires_grad=True)
            z = torch.randn(3, 3, requires_grad=True)
            if device_type == "cuda":
                x = x.cuda()
                y = y.cuda()
                z = z.cuda()

            with torch.autocast(
                enabled=enabled, device_type=device_type, dtype=torch.bfloat16
            ):
                loss = checkpoint(foo, x, y, z, use_reentrant=False)
                loss = loss.sum()

            # Without saving + recasting the autocast type, would raise error in autograd
            # about mismatched dtypes.
            loss.backward()  # triggers recomputation to check it runs in bfloat

    def test_checkpointing_non_reentrant_autocast_cpu(self):
        """
        Test that autocast args such as the dtype are preserved during non-reentrant
        checkpoint recomputation on CPU.
        """
        self._test_checkpointing_non_reentrant_autocast(device_type="cpu")

    @unittest.skipIf(
        not torch.cuda.is_available() or not torch.cuda.is_bf16_supported(),
        "Test requires CUDA bf16 support",
    )
    def test_checkpointing_non_reentrant_autocast_gpu(self):
        """
        Test that autocast args/kwargs such as the dtype are preserved during
        non-reentrant checkpoint recomputation on GPU.
        """
        self._test_checkpointing_non_reentrant_autocast(device_type="cuda")

    @unittest.skipIf(not torch.cuda.is_available(), "Test requires CUDA")
    @slowTest
    def test_checkpointing_without_reentrant_memory_savings(self):
        class MyModel(nn.Module):
            def __init__(self, n, use_checkpoint, use_reentrant):
                super().__init__()
                self.n = n
                self.use_checkpoint = use_checkpoint
                self.use_reentrant = use_reentrant
                self.layers = nn.ModuleList()
                for i in range(self.n):
                    layer = nn.Sequential(
                        nn.Linear(256, 256), nn.Linear(256, 256), nn.Linear(256, 256)
                    )
                    self.layers.append(layer)
                # pre-allocate the grad so that increased memory usage is mainly
                # due to activations.
                for layer in self.layers:
                    for lin in layer:
                        lin.weight.grad = torch.ones_like(lin.weight)
                        lin.bias.grad = torch.ones_like(lin.bias)

            def forward(self, x):
                for i in range(self.n):
                    if not self.use_checkpoint:
                        x = self.layers[i](x)
                    else:
                        x = checkpoint(
                            self.layers[i], x, use_reentrant=self.use_reentrant
                        )

                return x

        model_no_checkpoint = MyModel(
            8, use_checkpoint=False, use_reentrant=False
        ).cuda()
        model_reentrant_checkpoint = MyModel(
            8, use_checkpoint=True, use_reentrant=True
        ).cuda()
        model_no_reentrant_checkpoint = MyModel(
            8, use_checkpoint=True, use_reentrant=False
        ).cuda()

        x = torch.randn(100, 256, requires_grad=True, device="cuda")

        torch.cuda.reset_peak_memory_stats()
        loss = model_no_checkpoint(x.clone()).sum()
        loss.backward()
        mem_no_checkpoint = torch.cuda.max_memory_allocated()

        torch.cuda.reset_peak_memory_stats()
        loss = model_reentrant_checkpoint(x.clone()).sum()
        loss.backward()
        mem_reentrant_checkpoint = torch.cuda.max_memory_allocated()

        torch.cuda.reset_peak_memory_stats()
        loss = model_no_reentrant_checkpoint(x.clone()).sum()
        loss.backward()
        mem_no_reentrant_checkpoint = torch.cuda.max_memory_allocated()

        self.assertTrue(mem_reentrant_checkpoint < mem_no_checkpoint)
        self.assertTrue(mem_no_reentrant_checkpoint < mem_no_checkpoint)

    def test_checkpointing_without_reentrant_custom_function_works(self):
        msg = "Unpack is being triggered for a tensor that was already unpacked once"

        class MyFunc(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x, y, z):
                w = x * y * z
                out = w + w
                ctx.save_for_backward(x, y, z, w, out)
                return out

            @staticmethod
            def backward(ctx, grad_out):
                x, y, z, w, out = ctx.saved_tensors
                # Accessing the saved Tensors a second time will raise because
                # recomputed tensors get cleared as soon as they are unpacked.
                # A recomputation is only triggered if your backward has a new
                # graph-task id.
                with self.assertRaisesRegex(RuntimeError, msg):
                    x_2, y_2, z_2, w_2, out_2 = ctx.saved_tensors
                return x, y, z

        x = torch.tensor(1.0, requires_grad=True)
        y = torch.tensor(2.0, requires_grad=True)
        z = torch.tensor(3.0, requires_grad=True)

        def foo(x, y, z):
            x = x * y * z
            y = y * y * z
            z = z * z
            out = MyFunc.apply(x, y, z)
            return out

        out = checkpoint(foo, x, y, z, use_reentrant=False)
        out.sum().backward()

    def test_checkpointing_without_reentrant_with_context_fn(self):
        class VerboseTorchDispatchMode(TorchDispatchMode):
            def __init__(self) -> None:
                self.operators = []

            def __torch_dispatch__(self, func, types, args=(), kwargs=None):
                if kwargs is None:
                    kwargs = {}
                self.operators.append(func.__name__)
                return func(*args, **kwargs)

        x = torch.tensor(1.0, requires_grad=True)
        verbose_mode = VerboseTorchDispatchMode()

        def context_fn():
            return verbose_mode, contextlib.nullcontext()

        out = checkpoint(
            lambda x: x.exp(), x, use_reentrant=False, context_fn=context_fn
        )
        self.assertEqual(verbose_mode.operators, ["exp.default"])

        verbose_mode.operators = []

        def context_fn():
            return contextlib.nullcontext(), verbose_mode

        out = checkpoint(
            lambda x: x.exp(), x, use_reentrant=False, context_fn=context_fn
        )
        out.backward()
        self.assertEqual(
            verbose_mode.operators, ["exp.default", "detach.default", "detach.default"]
        )

        with self.assertRaisesRegex(
            Exception, "only supported when use_reentrant=False"
        ):
            out = checkpoint(
                lambda x: x.sin(), x, use_reentrant=True, context_fn=context_fn
            )

    def test_checkpoint_warns_if_use_reentrant_not_passed_explcitly(self):
        a = torch.randn(1, requires_grad=True)

        # Passing explicitly should not warn
        self.assertNotWarn(lambda: checkpoint(lambda x: x, a, use_reentrant=False))

        # Not passing explicitly warns
        with self.assertWarnsOnceRegex(
            UserWarning, ".*the use_reentrant parameter should be passed explicitly.*"
        ):
            checkpoint(lambda x: x, a)

    def test_checkpoint_sequential_warns_if_use_reentrant_not_passed_explcitly(self):
        a = torch.randn(3, requires_grad=True)
        modules_list = [
            torch.nn.Linear(3, 3),
            torch.nn.Linear(3, 3),
            torch.nn.Linear(3, 3),
        ]

        # Passing explicitly should not warn
        self.assertNotWarn(
            lambda: checkpoint_sequential(modules_list, 3, a, use_reentrant=False)
        )

        # Not passing explicitly warns
        with self.assertWarnsOnceRegex(
            UserWarning, ".*the use_reentrant parameter should be passed explicitly.*"
        ):
            checkpoint_sequential(modules_list, 3, a)

    def test_checkpoint_detects_non_determinism(self):
        def save_3_tensors(x):
            out = x.sin().exp()
            out = out.sin()
            return out

        def save_2_tensors(x):
            return x.sin().exp()

        def save_2_tensors_alt(x):
            return x.sin() * torch.tensor([1.0, 2.0])

        def get_non_det_fn(orig_fn, recompute_fn):
            counter = [0]

            def fn(x):
                if counter[0] == 0:
                    counter[0] += 1
                    return orig_fn(x)
                else:
                    return recompute_fn(x)

            return fn

        a = torch.randn(1, requires_grad=True)

        # Save fewer tensors during recompute
        fn = get_non_det_fn(orig_fn=save_3_tensors, recompute_fn=save_2_tensors)
        with self.assertRaisesRegex(
            RuntimeError, "A different number of tensors was saved"
        ):
            out = checkpoint(fn, a, use_reentrant=False)
            out.backward()

        # Save more tensors during recompute
        fn = get_non_det_fn(orig_fn=save_2_tensors, recompute_fn=save_3_tensors)
        with torch.utils.checkpoint.set_checkpoint_early_stop(False):
            with self.assertRaisesRegex(
                RuntimeError, "trying to save more tensors during recomputation"
            ):
                out = checkpoint(fn, a, use_reentrant=False)
                out.backward()

        fn = get_non_det_fn(orig_fn=save_2_tensors, recompute_fn=save_3_tensors)
        # If early stopping is enabled, we would not raise (the results would be correct anyway)
        out = checkpoint(fn, a, use_reentrant=False)
        out.backward()

        # Save the same number of tensors but the shape is different
        fn = get_non_det_fn(orig_fn=save_2_tensors, recompute_fn=save_2_tensors_alt)
        with self.assertRaisesRegex(RuntimeError, "tensors have different metadata"):
            out = checkpoint(fn, a, use_reentrant=False)
            out.backward()

        # Get the debug message if debug=True
        fn = get_non_det_fn(orig_fn=save_2_tensors, recompute_fn=save_2_tensors_alt)

        with self.assertRaisesRegex(
            RuntimeError,
            "You are seeing this error because you passed `debug=True` to checkpoint",
        ):
            out = checkpoint(fn, a, use_reentrant=False, debug=True)
            out.backward()

        fn = get_non_det_fn(orig_fn=save_2_tensors, recompute_fn=save_2_tensors_alt)

        with self.assertRaisesRegex(
            RuntimeError,
            "You are seeing this error because you passed `debug=True` to checkpoint",
        ):
            with torch.utils.checkpoint.set_checkpoint_debug_enabled(True):
                out = checkpoint(fn, a, use_reentrant=False, debug=False)
                out.backward()

        fn = get_non_det_fn(orig_fn=save_2_tensors, recompute_fn=save_2_tensors_alt)

        with self.assertRaisesRegex(
            RuntimeError, "Recomputed values for the following tensors have different"
        ):
            with torch.utils.checkpoint.set_checkpoint_debug_enabled(False):
                out = checkpoint(fn, a, use_reentrant=False, debug=True)
                out.backward()

    @xfailIfS390X
    def test_access_saved_tensor_twice_without_recomputation_works(self):
        count = [0]

        def foo(a):
            count[0] += 1
            b = a * a
            c = a * b
            d = torch.exp(a)
            return d

        a = torch.randn(5, requires_grad=True)
        d = checkpoint(foo, a, use_reentrant=False)
        self.assertEqual(count[0], 1)
        # Recomputed variables only persist within a particular backward call.
        # If _saved_result is accessed outside of a backward, it will trigger
        # a recompute. And afterwards, those recomputed results are immediately
        # cleared.
        d.grad_fn._saved_result
        self.assertEqual(count[0], 2)
        # Second access will trigger another recompute
        d.grad_fn._saved_result
        self.assertEqual(count[0], 3)
        # Backward clears the saved variable
        d.sum().backward()
        self.assertEqual(count[0], 4)
        # Now it raises an error
        with self.assertRaisesRegex(
            RuntimeError,
            "or directly access saved tensors after they have already been freed",
        ):
            d.grad_fn._saved_result

    @slowTest
    @parametrize("input_requires_grad", [True, False])
    def test_checkpointing_without_reentrant(self, input_requires_grad):
        """
        Basic test for checkpoint without reentrant autograd.
        """
        num_inp = 2000
        nz_inp = 10
        nz_out = 10
        nz_bottleneck = 1000

        # small proxy network for some complex reasoning we want to do per input
        module = nn.Sequential(
            nn.Linear(nz_inp, nz_bottleneck),
            nn.ReLU(),
            nn.Linear(nz_bottleneck, nz_inp),
        )

        # Module holder for testing activation checkpointing with no_reentrant
        # supports kwargs.
        class MyModule(nn.Module):
            def __init__(self, mod):
                super().__init__()
                self.module = mod

            def forward(self, data):
                return self.module(data)

        module = MyModule(mod=module)

        # Run model with and without checkpointing and verify gradients are
        # equivalent, regardless of if inputs require grads or not.
        module_copy = deepcopy(module)

        feat_combined = []
        feat_combined_no_checkpoint = []
        for r in range(num_inp):
            data_r = torch.empty(1, nz_inp)
            data_r.uniform_()
            data_r.requires_grad = input_requires_grad
            data_r_copy = data_r.clone()
            feat_r = checkpoint(module, data=data_r, use_reentrant=False)
            feat_combined.append(feat_r)
            feat_r_no_checkpoint = module_copy(data_r)
            feat_combined_no_checkpoint.append(feat_r_no_checkpoint)

        # compute mean as a proxy for some joint reasoning
        mean_combined = torch.stack(feat_combined).mean()
        mean_combined.backward()
        mean_combined_no_checkpoint = torch.stack(feat_combined_no_checkpoint).mean()
        mean_combined_no_checkpoint.backward()

        for checkpoint_param, param in zip(
            module.parameters(), module_copy.parameters()
        ):
            self.assertEqual(checkpoint_param.grad, param.grad)

    def test_checkpoint_valid_reset_on_error(self):
        a = torch.randn(2, 2, requires_grad=True)

        with self.assertRaisesRegex(
            Exception, "torch.utils.checkpoint is incompatible"
        ):
            b = checkpoint(torch.exp, a, use_reentrant=True).sum()
            torch.autograd.grad(b, (a,))

        c = checkpoint(torch.exp, a, use_reentrant=True).sum()
        c.backward()

    @parametrize("use_reentrant", [True, False])
    def test_checkpointing_without_reentrant_detached_tensor(self, use_reentrant):
        class NoGradModule(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.linear = nn.Linear(2, 2, bias=False)
                self.lin2 = nn.Linear(2, 2, bias=False)

            def forward(self, x):
                with torch.no_grad():
                    return self.lin2(self.linear(x))

        module = NoGradModule()

        err_ctx = (
            self.assertRaisesRegex(
                RuntimeError, "none of output has requires_grad=True"
            )
            if use_reentrant
            else contextlib.nullcontext()
        )

        a = torch.randn(2, 2, requires_grad=True)
        for _ in range(3):
            with err_ctx:
                # out does not require grad
                out = checkpoint(module, a, use_reentrant=use_reentrant)
                # Make loss require grad, otherwise we would run into
                # "element 0 of tensors does not require grad and does not have a grad_fn"
                out += a
                out.sum().backward()

    def test_checkpointing_without_reentrant_saved_object_identity(self):
        x_backward = None

        class Test(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x, y):
                ctx.save_for_backward(y)
                return x

            @staticmethod
            def backward(ctx, x):
                nonlocal x_backward
                (x_backward,) = ctx.saved_tensors
                return x, None

        a = torch.tensor(1.0, requires_grad=True)
        b = torch.tensor(1.0, requires_grad=False)

        Test.apply(a, b).backward()
        self.assertIs(b, x_backward)

        x_backward = None
        checkpoint(Test.apply, a, b, use_reentrant=False).backward()
        self.assertIs(b, x_backward)

    def test_checkpointing_without_reentrant_correct_grad(self):
        """
        Verifies that correct gradients are calculated for checkpoint
        without reentrant autograd, for both backward() and autograd.grad().
        """
        a = torch.randn(2, 2, requires_grad=True)

        b = torch.exp(a).sum()
        b.backward()
        b_grad = a.grad

        a.grad = None
        c = checkpoint(torch.exp, a, use_reentrant=False).sum()
        c.backward()
        c_grad = a.grad

        a.grad = None
        d = checkpoint(torch.exp, a, use_reentrant=False).sum()
        (d_grad,) = torch.autograd.grad(d, (a,))

        self.assertEqual(b_grad, c_grad)
        self.assertEqual(b_grad, d_grad)

    # PYTORCH_TEST_WITH_DYNAMO=1 test fails on CI but can't repro locally
    @skipIfTorchDynamo("https://github.com/pytorch/pytorch/issues/127115")
    def test_checkpointing_without_reentrant_dataparallel(self):
        """
        Verifies gradient correctness when checkpoint without reentrant autograd
        is used in conjunction with DataParallel.
        """

        class LinearModule(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.linear = nn.Linear(2, 2, bias=False)

            def forward(self, inp):
                return self.linear(inp)

        a = torch.randn(2, 2, requires_grad=True)
        if torch.cuda.is_available():
            a = a.cuda()

        model = LinearModule()
        if torch.cuda.is_available():
            model = model.cuda()

        b = deepcopy(model)(a).sum()
        b.backward()
        b_grad = a.grad

        a.grad = None

        module = torch.nn.DataParallel(deepcopy(model))
        c = checkpoint(module, a, use_reentrant=False).sum()
        c.backward()
        c_grad = a.grad

        self.assertEqual(b_grad, c_grad)

    def test_checkpointing_without_reentrant_parameter_used_in_an_out(self):
        """
        Ensures that gradient hooks are only called once per tensor.
        """
        w = torch.randn(10, 10, requires_grad=True)
        count = 0

        def hook(grad):
            nonlocal count
            count += 1

        w.register_hook(hook)
        x = torch.rand(10, 10, requires_grad=True)
        h = w * x  # Using w outside the checkpoint
        out = checkpoint(
            lambda x: w * x, h, use_reentrant=False
        )  # Using w inside the checkpoint

        out.sum().backward()
        # should only call hook once
        self.assertEqual(count, 1)

    # https://github.com/pytorch/pytorch/issues/127115
    @xfailIfTorchDynamo
    def test_checkpointing_without_reentrant_arbitrary_input_output(self):
        """
        Ensures checkpointing without reentrant autograd works with functions
        with arbitrary input/output structures.
        """

        class MyModel(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.layer = torch.nn.Linear(5, 5, bias=False)

            def forward(self, dict_input):
                tensor = dict_input["tensor"]
                return {"result": self.layer(tensor)}

        model_no_checkpoint = MyModel()
        model_checkpoint_without_reentrant = deepcopy(model_no_checkpoint)

        inp = {"tensor": torch.randn(5, 5)}

        out_no_checkpoint = model_no_checkpoint(inp)["result"].sum()

        out_checkpoint = checkpoint(
            model_checkpoint_without_reentrant, inp, use_reentrant=False
        )["result"].sum()

        self.assertEqual(out_checkpoint, out_no_checkpoint)

        out_no_checkpoint.backward()
        out_checkpoint.backward()

        for param, checkpoint_param in zip(
            model_no_checkpoint.parameters(),
            model_checkpoint_without_reentrant.parameters(),
        ):
            self.assertEqual(param.grad, checkpoint_param.grad)

    def test_callback_adds_callback(self):
        called = [0]

        def callback_final():
            called[0] += 1

        def callback_adds_callback():
            called[0] += 1
            Variable._execution_engine.queue_callback(callback_final)

        class MyFunc(Function):
            @staticmethod
            def forward(ctx, input):
                return input

            @staticmethod
            @once_differentiable
            def backward(ctx, grad):
                Variable._execution_engine.queue_callback(callback_adds_callback)
                return grad

        a = torch.rand((3, 3), requires_grad=True)
        b = MyFunc.apply(a)
        b.sum().backward()

        self.assertEqual(called[0], 2)

    @unittest.skipIf(not TEST_CUDA, "test requires CUDA")
    def test_callback_propagates_errors_from_device_thread(self):
        def callback():
            raise RuntimeError("blah")

        def hook_with_callback(*args):
            torch.autograd.Variable._execution_engine.queue_callback(callback)

        t = torch.tensor([1.0, 2.0], requires_grad=True, device=torch.device("cuda"))
        t.register_hook(hook_with_callback)
        output = t**2
        loss = output.sum()

        with self.assertRaisesRegex(RuntimeError, "blah"):
            loss.backward()

    def _test_reentrant_with_callbacks(self, install_callbacks_in_depths):
        counter = {}
        counter["inner"] = 0
        counter["outer"] = 0

        def inc_inner_counter():
            counter["inner"] += 1

        def inc_outer_counter():
            counter["outer"] += 1

        class MyFunc(Function):
            @staticmethod
            def forward(ctx, input):
                return input

            @staticmethod
            @once_differentiable
            def backward(ctx, input):
                if 1 in install_callbacks_in_depths:
                    # Add a callback to execute.
                    Variable._execution_engine.queue_callback(inc_inner_counter)

                return input

        class MyReentrantFunc(Function):
            @staticmethod
            def forward(ctx, input):
                return input

            @staticmethod
            @once_differentiable
            def backward(ctx, input):
                if 0 in install_callbacks_in_depths:
                    # Add a callback to execute.
                    Variable._execution_engine.queue_callback(inc_outer_counter)
                # Reentrant backward call.
                tmp_inp = input.detach().requires_grad_()
                with torch.enable_grad():
                    tmp_out = (MyFunc.apply(tmp_inp)).sum()
                tmp_out.backward()
                return input

        t1 = torch.rand((3, 3), requires_grad=True)
        t2 = MyReentrantFunc.apply(t1)
        t3 = t2.sum()
        torch.autograd.backward([t3])

        return counter

    def test_reentrant_with_callbacks_depth_0(self):
        # Verify callback is called only once.
        ret = self._test_reentrant_with_callbacks([0])
        self.assertEqual(ret["outer"], 1)
        self.assertEqual(ret["inner"], 0)

    def test_reentrant_with_callbacks_depth_1(self):
        # Verify callback is called only once.
        ret = self._test_reentrant_with_callbacks([1])
        self.assertEqual(ret["outer"], 0)
        self.assertEqual(ret["inner"], 1)

    def test_reentrant_with_callbacks_both_depths(self):
        # Verify callback is called twice.
        ret = self._test_reentrant_with_callbacks([0, 1])
        self.assertEqual(ret["outer"], 1)
        self.assertEqual(ret["inner"], 1)

    def test_reentrant_with_leaf_variable_hook(self):
        handle = None
        param = torch.rand(10, requires_grad=True)

        def add_gradient_penalty_to_grad(grad):
            handle.remove()
            old_param_grad = grad
            param.grad = None
            # Add some sort of gradient penalty by directly updating the gradients
            with torch.enable_grad():
                g = grad.detach().requires_grad_()
                new_param = param.detach().requires_grad_()
                out = ((g * 2) + new_param).sum()
                out.backward()
            res = g.grad + grad
            param.grad = old_param_grad
            return res

        handle = param.register_hook(add_gradient_penalty_to_grad)
        # Forward pass
        tmp = param * param
        loss = tmp.sum()
        # Compute the gradients
        loss.backward()

    def test_reentrant_with_non_leaf_variable_hook(self):
        handle = None
        param = torch.rand(10, requires_grad=True)

        def manual_increase_gradient(grad):
            handle.remove()
            # Add some sort of gradient penalty by directly updating the gradients
            with torch.enable_grad():
                g = grad.detach().requires_grad_()
                out = ((g * 2) + 5).sum()
                out.backward()
            res = g.grad + grad
            return res

        # Forward pass
        tmp = param * param
        handle = tmp.register_hook(manual_increase_gradient)
        loss = tmp.sum()
        # Compute the gradients
        loss.backward()
        self.assertEqual(param.grad, 6 * param)

    def test_grad_fn_attr_bindings(self):
        # Check that the getter of each type returns what we want
        # See `gen_autograd_functions.py` for how the getters are generated
        #
        # This test is only meant to check if the codegen'd bindings work
        # Please help update this test if you update the names of any the fields we check!
        #
        a = torch.ones(1, requires_grad=True)
        b = torch.zeros(1, requires_grad=True)
        out1 = torch.stack([a, b], dim=0)
        out2 = (a * 2) * b
        # TODO: I don't think we have a backward saving a list of tensors
        #       at the moment. It used to be stack, but for no reason...
        #       see discussion in #84993
        # self.assertEqual(out.grad_fn._saved_tensors, (a, b))              # TewnsorList -> Tuple[Tensor]
        self.assertEqual(out2.grad_fn._saved_self, a * 2)
        self.assertIsInstance(out2.grad_fn._saved_self, torch.Tensor)
        self.assertIsInstance(
            out2.grad_fn._raw_saved_self, torch._C._autograd.SavedTensor
        )
        self.assertEqual(out1.grad_fn._saved_dim, 0)  # int64_t -> int
        self.assertIsInstance(out1.grad_fn._saved_dim, int)

        out2.grad_fn._raw_saved_self.register_hooks(lambda x: x, lambda x: x)

        out2.sum().backward()
        with self.assertRaisesRegex(RuntimeError, "after they have already been freed"):
            out2.grad_fn._saved_self
        # TODO: interestingly, this only happens if indexing into a list grad_fn._raw_saved_tensors[0],
        #       not when using a saved tensor, see discussion in #84993
        # with self.assertRaisesRegex(RuntimeError, "after they have already been freed"):
        #     out2.grad_fn._raw_saved_self
        self.assertEqual(out1.grad_fn._saved_dim, 0)

        a = torch.ones(2, 2, requires_grad=True)
        indices = torch.tensor([0, 1])
        out = a[:, indices]
        self.assertEqual(
            out.grad_fn._saved_indices, (None, indices)
        )  # c10::List<std::optional<Tensor>> -> Tuple[Tensor?]
        self.assertIsInstance(out.grad_fn._saved_indices[1], torch.Tensor)
        self.assertIsInstance(
            out.grad_fn._raw_saved_indices[1], torch._C._autograd.SavedTensor
        )
        self.assertEqual(
            out.grad_fn._saved_self_sym_sizes, a.shape
        )  # SymIntArrayRef -> Tuple[SymInt]
        self.assertIsInstance(out.grad_fn._saved_self_sym_sizes[0], int)

        out.grad_fn._raw_saved_indices[1].register_hooks(lambda x: x, lambda x: x)
        with self.assertRaisesRegex(RuntimeError, "None is forbidden"):
            out.grad_fn._raw_saved_indices[0].register_hooks(lambda x: x, lambda x: x)

        out = a.mean()
        self.assertEqual(
            out.grad_fn._saved_self_sym_sizes, a.shape
        )  # IntArrayRef -> Tuple[int]

        a = torch.ones(2, 2, requires_grad=True)
        out = a * a
        out.grad_fn._raw_saved_self.register_hooks(lambda x: x, lambda x: x)
        out.sum().backward()
        with self.assertRaisesRegex(RuntimeError, "after it has been freed"):
            out.grad_fn._raw_saved_self.register_hooks(lambda x: x, lambda x: x)

        a = torch.ones(1, 1, 2, requires_grad=True)
        out = torch.nn.functional.interpolate(a, 4, mode="linear")
        self.assertEqual(
            out.grad_fn._saved_output_size, (4,)
        )  # std::optional<IntArrayRef> -> int[]?
        self.assertIsInstance(out.grad_fn._saved_output_size[0], int)
        self.assertEqual(out.grad_fn._saved_align_corners, False)  # bool -> bool
        self.assertIsInstance(out.grad_fn._saved_align_corners, bool)
        if hasattr(out.grad_fn, "_saved_scale_factors"):
            self.assertIsNone(
                out.grad_fn._saved_scale_factors
            )  # std::optional<ArrayRef<double>> -> float[]?
        else:
            self.assertIsNone(
                out.grad_fn._saved_scales
            )  # std::optional<ArrayRef<double>> -> float[]?

        a = torch.ones(1, 1, 3, 3, requires_grad=True)
        out = nn.Conv2d(1, 1, 3)(a)
        self.assertEqual(
            out.grad_fn._saved_bias_sym_sizes_opt, (1,)
        )  # std::optional<SymIntArrayRef> -> SymInt[]?
        out = nn.Conv2d(1, 1, 3, bias=False)(a)
        # TODO: This is BAD! we converted a std::nullopt into a (0,)
        self.assertEqual(out.grad_fn._saved_bias_sym_sizes_opt, (0,))

        a = torch.ones(1, 3, 3, requires_grad=True)
        out = torch.addbmm(a.squeeze(0), a, a)
        self.assertEqual(out.grad_fn._saved_batch1_sym_argsize_0, 1)  # int64_t
        self.assertEqual(out.grad_fn._saved_batch1_sym_argsize_1, 3)  # int64_t

        a = torch.ones(1, 1, 3, 3, requires_grad=True)
        out = torch.nn.functional.unfold(a, 3)
        self.assertEqual(out.grad_fn._saved_self_sym_argsize_minus_2, 3)  # SymInt
        self.assertEqual(out.grad_fn._saved_self_sym_argsize_minus_1, 3)  # SymInt

        a = torch.ones(1, 1, 2, requires_grad=True)
        out = torch.nn.functional.interpolate(a, scale_factor=0.5, mode="linear")
        self.assertEqual(out.grad_fn._saved_scales, 0.5)

        a = torch.ones(2, 2, requires_grad=True)
        out = torch.pdist(a, p=1)
        self.assertEqual(out.grad_fn._saved_p, 1.0)  # double -> float
        self.assertIsInstance(out.grad_fn._saved_p, float)

        a = torch.ones(1, 1, 2, requires_grad=True)
        out = torch.logit(a, 1.0)
        self.assertEqual(out.grad_fn._saved_eps, 1.0)  # c10:optional<double> -> float?
        self.assertIsInstance(out.grad_fn._saved_eps, float)
        out = torch.logit(a)
        self.assertIsNone(out.grad_fn._saved_eps)

        if torch._C.has_lapack:
            a = torch.ones(1, 1, requires_grad=True)
            q, r = torch.linalg.qr(a, mode="reduced")
            self.assertEqual(q.grad_fn._saved_mode, "reduced")  # std::string -> str

        a = torch.tensor([1.0], requires_grad=True)
        out = torch.div(a, 2.0, rounding_mode="trunc")
        self.assertEqual(
            out.grad_fn._saved_rounding_mode, "trunc"
        )  # std::optional<std::string> -> str?
        out = torch.div(a, 2.0, rounding_mode=None)
        self.assertIsNone(
            out.grad_fn._saved_rounding_mode
        )  # std::optional<std::string> -> str?

        x = torch.zeros(5, requires_grad=True)
        out = torch.threshold(x, threshold=(1 + 0j), value=(1 + 0j))
        self.assertIsInstance(
            out.grad_fn._saved_threshold, complex
        )  # Scalar(complex double) -> complex
        cfloat = torch.tensor(1 + 0j, dtype=torch.complex64)
        out = torch.threshold(x, threshold=cfloat, value=(1 + 0j))
        self.assertIsInstance(
            out.grad_fn._saved_threshold, complex
        )  # Scalar(complex float) -> complex
        out = torch.threshold(x, threshold=1.0, value=1.0)
        self.assertIsInstance(
            out.grad_fn._saved_threshold, float
        )  # Scalar(floating point) -> float
        out = torch.threshold(x, threshold=1, value=1)
        self.assertIsInstance(
            out.grad_fn._saved_threshold, int
        )  # Scalar(integral) -> int
        out = torch.threshold(x, threshold=False, value=False)
        self.assertIsInstance(
            out.grad_fn._saved_threshold, bool
        )  # Scalar(bool) -> bool

        a = torch.ones(2, 2, requires_grad=True)
        out = a.as_strided((3,), (1,), 1)
        self.assertEqual(
            out.grad_fn._saved_storage_offset, 1
        )  # c10:optional<int64_t> -> int?
        self.assertIsInstance(out.grad_fn._saved_storage_offset, int)
        out = a.as_strided((3,), (1,))
        self.assertIsNone(out.grad_fn._saved_storage_offset)

        a = torch.ones(2, requires_grad=True)
        out = torch.tanh(a)
        self.assertEqual(out, out.grad_fn._saved_result)  # saved variable when output

        a = torch.randn(3, 5, requires_grad=True)
        b = torch.tensor([1, 0, 4])
        loss = nn.NLLLoss()
        out = loss(a, b)
        self.assertIsNone(out.grad_fn._saved_weight)
        loss = nn.NLLLoss(weight=torch.ones((5,)))
        out = loss(a, b)
        self.assertEqual(
            out.grad_fn._saved_weight, torch.ones((5,))
        )  # c10:optional<Tensor> -> Tensor?

        out.sum().backward()
        with self.assertRaisesRegex(RuntimeError, "after they have already been freed"):
            out.grad_fn._saved_weight

        num_tensors = 3
        input_tensors = [
            torch.ones(2, 2, requires_grad=True) for _ in range(num_tensors)
        ]
        scalars = [
            0.0 for _ in range(num_tensors)
        ]  # ArrayRef<Scalar> -> Tuple[Scalar, ...]
        results = torch._foreach_maximum(input_tensors, scalars)
        for t in results:
            self.assertEqual(t.grad_fn._saved_scalars, scalars)

    def test_cant_create_saved_tensors(self):
        with self.assertRaisesRegex(
            RuntimeError,
            "Trying to create a SavedTensor object from Python is forbidden",
        ):
            torch.autograd.SavedTensor()

    def test_custom_function_saved_tensors(self):
        def getFn(save=True):
            class MyFn(Function):
                @staticmethod
                def forward(ctx, x):
                    if save:
                        ctx.save_for_backward(x, None)
                    return x

                @staticmethod
                def backward(ctx, g):
                    return g

            return MyFn

        a = torch.randn(5, requires_grad=True)

        y = getFn(True).apply(a)

        self.assertEqual((a, None), y.grad_fn.saved_tensors)
        saved = y.grad_fn._raw_saved_tensors
        self.assertIsInstance(saved[0], torch._C._autograd.SavedTensor)
        # We can't tell the underlying tensor is None without unpacking it
        self.assertIsInstance(saved[1], torch._C._autograd.SavedTensor)

        # We catch that error when the user calls register_hooks on it
        with self.assertRaisesRegex(RuntimeError, "None is forbidden"):
            saved[1].register_hooks(lambda x: x, lambda x: x)

        with self.assertRaisesRegex(TypeError, "incompatible function arguments"):
            saved[0].register_hooks(lambda x: x)
        with self.assertRaisesRegex(TypeError, "incompatible function arguments"):
            saved[0].register_hooks(1, 1)
        saved[0].register_hooks(lambda x: x, lambda x: x)
        with self.assertRaisesRegex(RuntimeError, "already been set"):
            saved[0].register_hooks(lambda x: x, lambda x: x)
        y.sum().backward()

        # Using a reference to the SavedTensor object after the
        # saved variables have been released can lead to undefined behavior
        del saved
        with self.assertRaisesRegex(RuntimeError, "after they have already been freed"):
            y.grad_fn._raw_saved_tensors
        with self.assertRaisesRegex(RuntimeError, "after they have already been freed"):
            y.grad_fn.saved_tensors

        y = getFn(False).apply(a)
        self.assertEqual(y.grad_fn.saved_tensors, ())
        self.assertEqual(y.grad_fn._raw_saved_tensors, ())

    def test_autograd_node_isinstance(self):
        # Node is a "virtual" base class of codegen'd nodes. This means that
        # isinstance and issubclass are overridden, but mro is unchanged
        Node = torch.autograd.graph.Node

        a = torch.rand(3, 3, requires_grad=True)
        b = a.exp()

        # Some nodes have codegened registrations to the torch._C._function module
        self.assertIsInstance(b.grad_fn, Node)
        self.assertTrue(issubclass(type(b.grad_fn), Node))
        self.assertTrue(Node not in type(b.grad_fn).mro())

        # Other nodes have manual registrations to the torch._C._function module
        self.assertNotIsInstance(torch._C._functions.AccumulateGrad, Node)
        self.assertTrue(issubclass(torch._C._functions.AccumulateGrad, Node))
        self.assertIsInstance(b.grad_fn.next_functions[0][0], Node)
        self.assertTrue(issubclass(torch._C._functions.DelayedError, Node))

        # Special cases
        self.assertNotIsInstance(None, Node)
        self.assertNotIsInstance(1, Node)
        self.assertNotIsInstance(Node, Node)
        self.assertTrue(issubclass(Node, Node))

        # Custom function case
        self.assertTrue(issubclass(torch.autograd.function.BackwardCFunction, Node))

        class Func(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                self.assertIsInstance(ctx, Node)
                return x

            @staticmethod
            def backward(ctx, x):
                self.assertIsInstance(ctx, Node)
                return x

        out = Func.apply(a)
        self.assertIsInstance(out.grad_fn, Node)
        self.assertTrue(issubclass(type(out.grad_fn), Node))
        self.assertTrue(Node not in type(out.grad_fn).mro())
        out.sum().backward()

    def test_autograd_views_codegen(self):
        # This is not necessarily the absolute correct behavior, but this is the current
        # one. This test is here to make sure that any change to this behavior is detected
        # and not silent. The TODOs below mark the places with unexpected behavior.
        # Note that any change in these test will be BC-breaking and should be done carefully.

        # This test checks the behavior of two codegen functions (view_as and unbind)
        # with respect to view tracking and inplace operation on the output.

        def run_test(grad_mode, requires_grad, is_view, should_raise_tuple):
            def maybe_check_raise(fn, should_raise):
                self.assertTrue(should_raise is None or isinstance(should_raise, str))
                if should_raise is not None:
                    with self.assertRaisesRegex(RuntimeError, should_raise):
                        fn()
                else:
                    fn()

            inp = torch.rand(2, requires_grad=requires_grad).clone()
            with torch.set_grad_enabled(grad_mode):
                out = inp.view_as(inp)
            # Are they differentiable views?
            self.assertTrue(out._is_view() == is_view)
            # Are inplace allowed?
            maybe_check_raise(lambda: out.add_(1), should_raise_tuple[0])

            inp = torch.rand(2, requires_grad=requires_grad).clone()
            with torch.set_grad_enabled(grad_mode):
                out = inp.unbind()
            # Are they differentiable views?
            self.assertTrue(out[0]._is_view() == is_view)
            self.assertTrue(out[1]._is_view() == is_view)
            # Are inplace allowed?
            maybe_check_raise(lambda: out[0].add_(1), should_raise_tuple[1])
            maybe_check_raise(lambda: out[1].add_(1), should_raise_tuple[2])

        # should_raise contains None if it should not raise
        # should_raise contains a string of the error if it should raise
        # The 3 elements are for view_as, first output of unbind and second output of unbind
        run_test(
            grad_mode=True,
            requires_grad=False,
            is_view=True,
            should_raise_tuple=(None, None, None),
        )
        inp_change_err = (
            "Output {} of UnbindBackward0 is a view and is being modified inplace."
        )
        run_test(
            grad_mode=True,
            requires_grad=True,
            is_view=True,
            should_raise_tuple=(
                None,
                inp_change_err.format("0"),
                inp_change_err.format("1"),
            ),
        )
        leaf_grad_err = (
            "A view was created in no_grad mode and is being modified inplace"
        )
        run_test(
            grad_mode=False,
            requires_grad=True,
            is_view=True,
            should_raise_tuple=(leaf_grad_err, leaf_grad_err, leaf_grad_err),
        )
        run_test(
            grad_mode=False,
            requires_grad=False,
            is_view=True,
            should_raise_tuple=(None, None, None),
        )

    def test_inplace_not_requires_grad(self):
        class MyFn(torch.autograd.Function):
            @staticmethod
            def forward(ctx, inp):
                return inp.view_as(inp)

            @staticmethod
            def backward(ctx, grad):
                return grad

        # Original Tensor does not require grad
        a = torch.rand(1, 2)

        # Tensor being written does require grad
        b = torch.rand(1, requires_grad=True)

        # Take an invalid view on 'a' that should raise an error (warns during deprecation)
        view_a = MyFn.apply(a)

        with self.assertRaisesRegex(
            RuntimeError, "This view was created inside a custom Function"
        ):
            view_a += b

        # Extra test for copy_ that is a manual implementation and could be easily
        # forgotten when the codegen is updated (warns during deprecation)
        a = torch.rand(1, 2)
        b = torch.rand(1, requires_grad=True)
        view_a = MyFn.apply(a)

        with self.assertRaisesRegex(
            RuntimeError, "This view was created inside a custom Function"
        ):
            view_a.copy_(b)

        # Functions that should throw must properly throw
        a = torch.rand(1, 2)
        b = torch.rand(1, requires_grad=True)
        view_a = a.unbind()[0]
        with self.assertRaisesRegex(
            RuntimeError,
            "This view is the output of a function that returns " "multiple views.",
        ):
            view_a.copy_(b)

        # Sanity check that views that should work still work
        a = torch.rand(1, 2)
        b = torch.rand(1, requires_grad=True)
        a.select(1, 0).copy_(b)

    def _do_test_autograd_simple_views_python(self, dtype):
        # This is not necessarily the absolute correct behavior, but this is the current
        # one. This test is here to make sure that any change to this behavior is detected
        # and not silent. The TODOs below mark the places with unexpected behavior.
        # Note that any change in these test will be BC-breaking and should be done carefully.

        # This checks the autograd.Function behavior when we return one or multiple outputs
        # while one of these is an input, a view of an input or of a temporary tensor.

        # This indicator is used to track how many times the backward function was called
        bw_called = [0]
        # This indicator is used to check if the argument `ga` contains non-zero values
        ga_nz = [False]

        class IdOneOutput(Function):
            @staticmethod
            def forward(ctx, a, b, make_view):
                if make_view:
                    a = a.narrow(0, 0, 2)
                else:
                    a = a.clone()
                return a

            @staticmethod
            def backward(ctx, ga):
                bw_called[0] += 1
                return ga, None, None

        class IdTwoOutput(Function):
            @staticmethod
            def forward(ctx, a, b, make_view):
                if make_view:
                    a = a.narrow(0, 0, 2)
                else:
                    a = a.clone()
                return a, a + b

            @staticmethod
            def backward(ctx, ga, gab):
                bw_called[0] += 1
                if ga.eq(0).all():
                    ga_nz[0] = False
                else:
                    ga_nz[0] = True
                return ga + gab, gab, None

        class ViewOfTemp(Function):
            @staticmethod
            def forward(ctx, a, make_view):
                ctx.save_for_backward(a)
                if make_view:
                    a = a.narrow(0, 0, 2)
                else:
                    a = a.clone()
                b = a.clone()
                return b.select(0, 0)

            @staticmethod
            def backward(ctx, grad):
                bw_called[0] += 1
                (a,) = ctx.saved_tensors
                res = torch.zeros_like(a)
                res.select(0, 0).copy_(grad)
                return res, None

        fn_id_to_inplace_on_view_err_msg = {
            "one_output": (
                "Output 0 of IdOneOutputBackward is a view and is being "
                "modified inplace. This view was created inside a custom Function"
            ),
            "two_output": (
                "Output 0 of IdTwoOutputBackward is a view and is being modified inplace."
                " This view is the output of a function that returns multiple views."
            ),
            "view_of_temp": (
                "Output 0 of ViewOfTempBackward is a view and is being "
                "modified inplace. This view was created inside a custom Function"
            ),
        }

        for fn_id in ["one_output", "two_output", "view_of_temp"]:
            for inplace in [True, False]:
                for make_view in [True, False]:
                    # Used for special casing the tests below
                    output_is_a_view = make_view or fn_id == "view_of_temp"

                    def fn(a, b):
                        # never modify a, b inplace for gracheck
                        a = a.clone()
                        b = b.clone()
                        if fn_id == "two_output":
                            tmp1, tmp2 = IdTwoOutput.apply(a, b, make_view)
                            if inplace:
                                tmp1 += 3
                                tmp2 += 3
                            else:
                                tmp1 = tmp1 + 3
                                tmp2 = tmp2 + 3
                            tmp = tmp1 * tmp2
                        else:
                            if fn_id == "one_output":
                                tmp = IdOneOutput.apply(a, b, make_view)
                            else:
                                tmp = ViewOfTemp.apply(a + b, make_view)
                            if inplace:
                                tmp += 3
                            else:
                                tmp = tmp + 3

                        return tmp.sum()

                    a = torch.ones(2, dtype=dtype, requires_grad=True)
                    b = torch.ones(2, dtype=dtype, requires_grad=True)

                    err_msg = fn_id_to_inplace_on_view_err_msg[fn_id]

                    if not inplace or not output_is_a_view:
                        gradcheck(fn, (a, b), check_batched_grad=False)

                    # Was the custom backward called properly
                    bw_called[0] = 0
                    ga_nz[0] = True  # For the case where the backward is called

                    if inplace and output_is_a_view:
                        with self.assertRaisesRegex(RuntimeError, err_msg):
                            fn(a, b)
                    else:
                        fn(a, b).abs().backward()

                    expected_called = 1
                    expected_ga_nz = True

                    if output_is_a_view and inplace:
                        expected_called = 0

                    self.assertTrue(bw_called[0] == expected_called)
                    self.assertTrue(ga_nz[0] == expected_ga_nz)

    def test_autograd_simple_views_python(self):
        self._do_test_autograd_simple_views_python(torch.double)
        self._do_test_autograd_simple_views_python(torch.cdouble)

    def test_autograd_inplace_views_creation_meta(self):
        # Tests creation_meta properly handled for inplace views

        class Func(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                return x.view_as(x)

            @staticmethod
            def backward(ctx, x):
                return x

        view_custom = Func.apply

        def run_test(
            fn, fn_type, grad_mode_view, grad_mode_iview, requires_grad, error1, error2
        ):
            # This test checks the behavior of inplace-view functions when
            # the views are created in grad mode or not
            base = torch.rand(2, 3, requires_grad=requires_grad).clone()
            # 1. Create a view with `grad_mode=grad_mode_view`
            with torch.set_grad_enabled(grad_mode_view):
                if fn_type == "multi_view":
                    inp = base.unbind()[0]
                elif fn_type == "custom":
                    inp = view_custom(base)
                else:
                    inp = base.view_as(base)

            # 2. Perform inplace view with `grad_mode=grad_mode_iview`
            with torch.set_grad_enabled(grad_mode_iview):
                if error1 is not None:
                    with self.assertRaisesRegex(RuntimeError, error1):
                        fn(inp)
                    return
                else:
                    # If error is None, check that runs without error
                    fn(inp)
            # 3. Do inplace on the (new) view
            if error2 is not None:
                with self.assertRaisesRegex(RuntimeError, error2):
                    inp.add_(1)
            else:
                # If error is None, check that runs without error
                inp.add_(1)

        no_grad_err = "A view was created in no_grad mode"
        multi_view_err = "function that returns multiple views"
        custom_err = "view was created inside a custom Function"

        def run_tests(fn):
            for fn_type in ("normal", "multi_view", "custom"):
                for grad_mode_view in (True, False):
                    for grad_mode_iview in (True, False):
                        for requires_grad in (True, False):
                            error1 = None  # expected error when we do inplace_view on original view
                            error2 = None  # expected error when we do inplace on the resulting view

                            if requires_grad:
                                if not grad_mode_view and grad_mode_iview:
                                    error1 = no_grad_err
                                if not grad_mode_view and not grad_mode_iview:
                                    error2 = no_grad_err

                                if fn_type == "multi_view":
                                    if grad_mode_view and grad_mode_iview:
                                        error1 = multi_view_err
                                    if grad_mode_view and not grad_mode_iview:
                                        error2 = multi_view_err

                                if fn_type == "custom":
                                    if grad_mode_view and grad_mode_iview:
                                        error1 = custom_err
                                    if grad_mode_view and not grad_mode_iview:
                                        error2 = custom_err

                            run_test(
                                fn,
                                fn_type,
                                grad_mode_view,
                                grad_mode_iview,
                                requires_grad,
                                error1,
                                error2,
                            )

        # This list was created by logging gen_inplace_or_view_type.py
        #   detach_ is excluded for this test because it cannot be applied to
        #   views and thus does not return a view
        run_tests(lambda v: v.as_strided_((1, 0), (2, 2)))
        run_tests(lambda v: v.transpose_(0, 0))
        run_tests(lambda v: v.t_())
        run_tests(lambda v: v.squeeze_(0))
        run_tests(lambda v: v.unsqueeze_(0))
        run_tests(lambda v: v.swapdims_(0, 0))
        run_tests(lambda v: v.swapaxes_(0, 0))

    def test_autograd_print_tensor(self):
        a = torch.ones(1, requires_grad=True)
        a_clone = a.clone()
        self.assertEqual(repr(a), "tensor([1.], requires_grad=True)")
        self.assertEqual(repr(a_clone), "tensor([1.], grad_fn=<CloneBackward0>)")

        with torch.no_grad():
            b = a[:]
            b *= 2

        # Special handling for printing view created in no-grad and modified
        # in-placed in no-grad.
        self.assertEqual(repr(b), "tensor([2.], grad_fn=<Invalid>)")

        class Func(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                return x

            @staticmethod
            def backward(ctx, x):
                return x

        c = Func.apply(a)
        self.assertEqual(repr(c), "tensor([2.], grad_fn=<FuncBackward>)")

    @xfailIfS390X
    def test_autograd_inplace_view_of_view(self):
        x = torch.zeros(2)
        with torch.no_grad():
            y = x.view(2)
        y.requires_grad_(True)
        z = y.view(2)
        with self.assertRaisesRegex(
            RuntimeError, "a view of a view .* is being .* inside the no_grad block"
        ):
            z /= 2

        x = torch.zeros(2)
        with torch.inference_mode():
            y = x.view(2)
        y.requires_grad_(True)
        z = y.view(2)
        with self.assertRaisesRegex(
            RuntimeError, "a view of a view .* is being .* inside the inference_mode"
        ):
            z /= 2

    # TODO This is not the correct behavior -
    # See https://github.com/pytorch/pytorch/issues/49825#issuecomment-794466627
    def test_autograd_inplace_views_cross_dtype(self):
        # This test is here to make sure that any change to this behavior is detected
        # and not silent. The TODOs below mark the places with unexpected behavior.
        a_orig = torch.rand(3, 3, requires_grad=True, dtype=torch.complex64)
        a = a_orig.clone()
        b = torch.view_as_real(a)
        b = b.transpose(0, 1)
        b += 1
        b.backward(torch.arange(0, 18, dtype=torch.float).view(3, 3, 2))
        non_inplace_grad = a_orig.grad

        a_orig = torch.rand(3, 3, requires_grad=True, dtype=torch.complex64)
        a = a_orig.clone()
        b = torch.view_as_real(a)
        b.transpose_(0, 1)
        b += 1
        b.backward(torch.arange(0, 18, dtype=torch.float).view(3, 3, 2))
        inplace_grad = a_orig.grad

        # TODO: this is a bug!
        # once this is fixed, it should have the transpose removed:
        # self.assertEqual(non_inplace_grad, inplace_grad)
        self.assertEqual(non_inplace_grad.T, inplace_grad)

    def test_autograd_multiple_views_python(self):
        # This is not necessarily the absolute correct behavior, but this is the current
        # one. This test is here to make sure that any change to this behavior is detected
        # and not silent. The TODOs below mark the places with unexpected behavior.
        # Note that any change in these test will be BC-breaking and should be done carefully.

        # This checks that multiples views in the forward are properly traced and how they
        # behave with respect to inplace operations.

        # This indicator is used to track how many times the backward function was called
        bw_called = [0]

        class ComplexView(Function):
            @staticmethod
            def forward(ctx, a, idx):
                res = a.narrow(0, idx, 1)
                res = a.select(0, idx)
                ctx.save_for_backward(a)
                ctx.idx = idx
                return res

            @staticmethod
            def backward(ctx, grad):
                bw_called[0] += 1
                (a,) = ctx.saved_tensors
                res = torch.zeros_like(a)
                res.select(0, ctx.idx).copy_(grad)
                return res, None

        a = torch.ones(2, requires_grad=True)
        idx = 1

        bw_called[0] = 0
        out = ComplexView.apply(a.clone(), idx)
        out.sum().backward()
        self.assertTrue(bw_called[0] == 1)

        out = ComplexView.apply(a.clone(), idx)
        with self.assertRaisesRegex(
            RuntimeError,
            "Output 0 of ComplexViewBackward is a view and is being modified inplace",
        ):
            out += 1

    def test_autograd_python_custom_function_inplace(self):
        # This is not necessarily the absolute correct behavior, but this is the current
        # one. This test is here to make sure that any change to this behavior is detected
        # and not silent. The TODOs below mark the places with unexpected behavior.
        # Note that any change in these test will be BC-breaking and should be done carefully.

        # This test checks custom autograd.Function that perform inplace operations

        bw_called = [0]

        # I) Single output
        class MyAdder(Function):
            @staticmethod
            def forward(ctx, a, b):
                a.add_(b)
                ctx.mark_dirty(a)
                return a

            @staticmethod
            def backward(ctx, grad):
                bw_called[0] += 1
                return grad, grad

        a = torch.ones(2, requires_grad=True)
        b = torch.ones(2, requires_grad=True)

        # No extra inplace
        c = MyAdder.apply(a.clone(), b)
        c.sum().backward()
        self.assertTrue(bw_called[0] == 1)

        # With extra inplace on the output
        bw_called[0] = 0
        c = MyAdder.apply(a.clone(), b)
        c += 2
        c.sum().backward()
        self.assertTrue(bw_called[0] == 1)

        # The input is a view
        bw_called[0] = 0
        c = MyAdder.apply(a.clone().view_as(a), b)
        c.sum().backward()
        self.assertTrue(bw_called[0] == 1)

        # Should not give non-inputs to mark_dirty
        class MyAdderBad(Function):
            @staticmethod
            def forward(ctx, a, b):
                c = 3 * a
                c.add_(b)
                ctx.mark_dirty(c)
                return c

            @staticmethod
            def backward(ctx, grad):
                bw_called[0] += 1
                grad = 3 * grad
                return grad, grad

        a = torch.ones(2, requires_grad=True)
        b = torch.ones(2, requires_grad=True)

        with warnings.catch_warnings(record=True) as w:
            MyAdderBad.apply(a.clone(), b)
        self.assertEqual(len(w), 1)

        # II) Multiple outputs
        class MyBadAdder(Function):
            @staticmethod
            def forward(ctx, a, b):
                a.add_(b)
                ctx.mark_dirty(a)
                return a, a + b

            @staticmethod
            def backward(ctx, ga, gab):
                bw_called[0] += 1
                return ga + gab, ga + gab

        # No extra inplace
        bw_called[0] = 0
        c, d = MyBadAdder.apply(a.clone(), b)
        (c * d).sum().backward()
        self.assertTrue(bw_called[0] == 1)

        # With extra inplace on the output
        bw_called[0] = 0
        c, d = MyBadAdder.apply(a.clone(), b)
        c += 2
        (c * d).sum().backward()
        self.assertTrue(bw_called[0] == 1)

        # The input is a view
        inplace_on_view_err = (
            "your Function modifies inplace an input that is a view of another Tensor"
        )
        with self.assertRaisesRegex(RuntimeError, inplace_on_view_err):
            c, d = MyBadAdder.apply(a.clone().view_as(a), b)

        # III) Inplace + other op
        class MyOutPlaceAdder(Function):
            @staticmethod
            def forward(ctx, a, b):
                a.add_(b)
                ctx.mark_dirty(a)
                return a.clone(), a + b

            @staticmethod
            def backward(ctx, ga, gab):
                bw_called[0] += 1
                return ga + gab, ga + 2 * gab

        # We don't reuse the input
        def fn(a, b):
            orig_a = a.clone().view_as(a)
            c, d = MyOutPlaceAdder.apply(orig_a, b)
            return (c * d).sum()

        bad_mark_dirty_err = "Some elements marked as dirty during the forward method were not returned as output."
        with self.assertRaisesRegex(RuntimeError, bad_mark_dirty_err):
            fn(a, b)

    def test_custom_function_mark_dirty_not_differentiable(self):
        def get_custom_fn(jvp_err):
            class InplaceMul(torch.autograd.Function):
                @staticmethod
                def forward(ctx, x):
                    result = x.mul_(2)
                    ctx.mark_dirty(result)
                    return result

                @staticmethod
                def backward(ctx, grad_output):
                    pass

                @staticmethod
                def jvp(ctx, x_t):
                    if jvp_err:
                        return x_t
                    else:
                        return x_t.mul_(2)

            return InplaceMul

        for requires_grad, jvp_err in product([True, False], repeat=2):
            InplaceMul = get_custom_fn(jvp_err)
            # Make sure that tensor is always returned as-is if marked dirty
            z = torch.tensor(1.0, requires_grad=requires_grad)
            x = z.clone()
            y = InplaceMul.apply(x)
            self.assertTrue(x is y)
            self.assertEqual(x, z * 2)

            # jvp must properly modify the input grad if mark_dirty is set
            with fwAD.dual_level():
                x_tangent = torch.ones_like(x)
                x_dual = fwAD.make_dual(x, x_tangent)

                if jvp_err:
                    bad_mark_dirty_err = (
                        "jvp function must modify the corresponding gradient inplace"
                    )
                    with self.assertRaisesRegex(RuntimeError, bad_mark_dirty_err):
                        InplaceMul.apply(x_dual)
                else:
                    out_dual = InplaceMul.apply(x_dual)
                    _, out_tangent = fwAD.unpack_dual(out_dual)
                    self.assertTrue(out_dual is x_dual)
                    self.assertTrue(out_tangent is x_tangent)

    def test_named_tensor_for_complex_views(self):
        names = ["batch", "height", "width", "complex"]
        z = torch.ones((2, 1, 2, 2), requires_grad=True)
        z_named = z.refine_names(*names)
        z_complex = torch.view_as_complex(z_named.rename(None)).refine_names(
            *names[:-1]
        )
        z_complex.sum().abs().backward()
        expected = torch.ones_like(z_complex).rename(None)
        abs_1_1j = abs(1 + 1j)
        expected.fill_(complex(abs_1_1j / 2, abs_1_1j / 2))
        self.assertEqual(z.grad, torch.view_as_real(expected))

    def test_custom_function_return_view_in_nograd(self):
        class Alias(Function):
            @staticmethod
            def forward(ctx, x):
                return x[:]

            @staticmethod
            def backward(ctx, gx):
                return gx

        inp = torch.rand(2, requires_grad=True)

        with torch.no_grad():
            output = Alias.apply(inp)

        with torch.no_grad():
            expected_output = inp[:]

        # Calling the custom function should operate as if we called an equivalent op
        self.assertEqual(output.requires_grad, expected_output.requires_grad)

        # Check that in-place modification on view throws
        leaf_grad_err = (
            "A view was created in no_grad mode and is being modified inplace"
        )
        with self.assertRaisesRegex(RuntimeError, leaf_grad_err):
            output.zero_()

    def test_custom_function_preserve_torch_function_when_return_as_is(self):
        class Custom(torch.Tensor):
            def __init__(self, data):
                super().__init__()
                self._data = data

            @classmethod
            def __torch_function__(cls, func, types, args=(), kwargs=None):
                kwargs = {} if kwargs is None else kwargs
                args = tuple(a._data if isinstance(a, cls) else a for a in args)
                out = func(*args, **kwargs)
                if isinstance(out, torch.Tensor):
                    out = cls(out)
                return out

        class Fn(torch.autograd.Function):
            @staticmethod
            def forward(ctx, input):
                return input

            @staticmethod
            def backward(ctx):
                pass

        x = Custom(torch.randn(2, 3))
        y = Fn.apply(x)
        self.assertTrue(isinstance(y, Custom))

    def test_grad_mode_restored_reentrant(self):
        class MyFunction(Function):
            @staticmethod
            def forward(ctx, inp):
                return inp.clone()

            @staticmethod
            def backward(ctx, go):
                original = torch._C.is_grad_enabled()
                with torch.enable_grad():
                    self.assertTrue(torch._C.is_grad_enabled())
                    foo = torch.rand(go.size(), requires_grad=True)
                    (grad,) = torch.autograd.grad(foo**3, foo, grad_outputs=go)
                    self.assertTrue(torch._C.is_grad_enabled())
                self.assertTrue(torch._C.is_grad_enabled() == original)
                return grad

        inp = torch.rand(3, requires_grad=True)

        # Case where original==False
        MyFunction.apply(inp).sum().backward()
        # Case where original==True
        MyFunction.apply(inp).sum().backward(create_graph=True)

    def test_power_function(self):
        a = torch.tensor([0.0, 0.0, 0.0])
        b = torch.tensor([-1.0, 0.0, 1.0], requires_grad=True)
        c = torch.sum(a**b)
        c.backward()
        self.assertEqual(b.grad, torch.tensor([-inf, 0.0, 0.0]))

        s = 0
        b = torch.tensor([-1.0, 0.0, 1.0], requires_grad=True)
        c = torch.sum(s**b)
        c.backward()
        self.assertEqual(b.grad, torch.tensor([-inf, 0.0, 0.0]))

    def test_custom_function_error(self):
        class BadFw(Function):
            @staticmethod
            def backward(ctx, foo):
                return foo

        class BadBw(Function):
            @staticmethod
            def forward(ctx, foo):
                return foo.clone()

        class BadBw2(Function):
            @staticmethod
            def forward(ctx, foo):
                return foo.clone()

            @staticmethod
            def backward(ctx, foo):
                return foo

            @staticmethod
            def vjp(ctx, foo):
                return foo

        class BadJvp(Function):
            @staticmethod
            def forward(ctx, foo):
                return foo.clone()

        inp = torch.rand(1, requires_grad=True)
        with self.assertRaisesRegex(NotImplementedError, "must implement the forward"):
            BadFw.apply(inp)

        with self.assertRaisesRegex(RuntimeError, "must implement either the backward"):
            BadBw.apply(inp).sum().backward()

        with self.assertRaisesRegex(
            RuntimeError, "Implementing both 'backward' and 'vjp'"
        ):
            BadBw2.apply(inp).sum().backward()

        with self.assertRaisesRegex(RuntimeError, "must implement the jvp function"):
            with fwAD.dual_level():
                d = fwAD.make_dual(inp, torch.rand_like(inp))
                res = BadJvp.apply(d)

    def test_custom_function_forward_mode_view_checks(self):
        flag_to_error = {
            "ok": None,
            "not_a_view": "jvp is not returning a view",
            "not_a_view_of_inp": "jvp is not returning a view of the given",
            "not_a_view_of_inp_base": "jvp is not returning a view of the same base",
        }

        class ViewFn(Function):
            @staticmethod
            def forward(ctx, foo, flag):
                ctx.flag = flag
                ctx.size = foo.size()
                return foo.narrow(0, 0, 2)

            @staticmethod
            def vjp(ctx, gO):
                gI = gO.new_zeros(ctx.size)
                gI.narrow(0, 0, 2).copy_(gO)
                return gI, None

            @staticmethod
            def jvp(ctx, gI, _):
                res = gI.narrow(0, 0, 2)
                if ctx.flag != "ok":
                    # Break the view in the gradients!
                    res = res.clone()
                if ctx.flag in ["not_a_view_of_inp", "not_a_view_of_inp_base"]:
                    # Result should be a view, just of the wrong thing
                    res = res.view_as(res)
                return res

        inp = torch.rand(4, 4, dtype=torch.double, requires_grad=True)

        for flag, msg in flag_to_error.items():

            def test_fn(inp):
                if flag == "not_a_view_of_inp_base":
                    inp = inp.view_as(inp)
                return ViewFn.apply(inp, flag)

            if msg is None:
                gradcheck(test_fn, inp, check_forward_ad=True)
            else:
                with self.assertRaisesRegex(RuntimeError, msg):
                    gradcheck(test_fn, inp, check_forward_ad=True)

    def test_custom_function_forward_mode_inplace_checks(self):
        class InplaceFn(Function):
            @staticmethod
            def forward(ctx, foo, flag):
                ctx.mark_dirty(foo)
                ctx.flag = flag
                foo.mul_(2)
                return foo

            @staticmethod
            def vjp(ctx, gO):
                return 2 * gO, None

            @staticmethod
            def jvp(ctx, gI, _):
                if ctx.flag:
                    # Don't do the change inplace
                    return 2 * gI
                else:
                    gI.mul_(2)
                    return gI

        inp = torch.rand(4, 4, dtype=torch.double, requires_grad=True)

        def test_fn(inp, flag):
            inp = inp.clone()
            return InplaceFn.apply(inp, flag)

        gradcheck(test_fn, (inp, False), check_forward_ad=True)

        with self.assertRaisesRegex(
            RuntimeError,
            "inplace custom Function is not modifying the forward mode gradients inplace",
        ):
            gradcheck(test_fn, (inp, True), check_forward_ad=True)

    def test_custom_function_forward_mode_wrong_formula(self):
        class UserFn(Function):
            @staticmethod
            def forward(ctx, foo, should_fail):
                ctx.should_fail = should_fail
                return foo * 2

            @staticmethod
            def vjp(ctx, gO):
                return 2 * gO, None

            @staticmethod
            def jvp(ctx, gI, _):
                if ctx.should_fail:
                    # Wrong gradient formula
                    return 3 * gI
                else:
                    return 2 * gI

        inp = torch.rand(10, dtype=torch.double, requires_grad=True)
        gradcheck(UserFn.apply, (inp, False), check_forward_ad=True)

        with self.assertRaisesRegex(
            RuntimeError, "Jacobian computed with forward mode mismatch for output 0"
        ):
            gradcheck(UserFn.apply, (inp, True), check_forward_ad=True)

    def test_custom_function_forward_mode_non_tensor_before_tensor_args(self):
        class MyFn(torch.autograd.Function):
            @staticmethod
            def forward(ctx, nt, x, nt2, y):
                return x * 2 + y * 3

            @staticmethod
            def jvp(ctx, nt, x_t, nt2, y_t):
                self.assertIsNone(nt)
                self.assertIsNone(nt2)
                return x_t * 2 + y_t * 3

        x = torch.tensor(1.0, dtype=torch.double)
        t = torch.tensor(1.0, dtype=torch.double)
        y = torch.tensor(1.0, dtype=torch.double)

        with fwAD.dual_level():
            dual_x = fwAD.make_dual(x, t)
            MyFn.apply(1, dual_x, 1, y)

        gradcheck(
            MyFn.apply,
            (1, x.requires_grad_(True), 1, y.requires_grad_(True)),
            check_forward_ad=True,
            check_backward_ad=False,
            check_batched_grad=False,
        )

    def test_custom_function_forward_mode_forward_is_no_op(self):
        error_regex = (
            "A custom Function's forward is returning a view \\(or an input as-is\\)"
        )

        return_lambdas = {
            # If we return an input as-is in forward, that is treated
            # as if self.view_as(self) is performed. If jvp returns x.view_as(x),
            # this is OK.
            "view_as": lambda x: x.view_as(x),
            # Expect this to raise an error
            "self": lambda x: x,
            # Expect this to raise the same error
            "mul_by_2": lambda x: x * 2,
        }

        for k, fn in return_lambdas.items():

            class MyFn(torch.autograd.Function):
                @staticmethod
                def forward(ctx, x, y):
                    return x + y, x

                @staticmethod
                def vjp(ctx, gO1, gO2):
                    return gO1 + gO2, gO1

                @staticmethod
                def jvp(ctx, x_t, y_t):
                    return x_t + y_t, fn(x_t)

            a = torch.tensor(1.0, dtype=torch.double, requires_grad=True)
            t = torch.tensor(1.0, dtype=torch.double)
            b = torch.tensor(1.0, dtype=torch.double, requires_grad=True)

            c = torch.tensor(1.0, dtype=torch.double)
            t2 = torch.tensor(1.0, dtype=torch.double)
            d = torch.tensor(1.0, dtype=torch.double)

            with fwAD.dual_level():
                a_dual = fwAD.make_dual(a, t)
                c_dual = fwAD.make_dual(c, t2)

                if k == "view_as":
                    _, out2 = MyFn.apply(a_dual, b)
                    self.assertTrue(fwAD.unpack_dual(out2).tangent._base is t)

                    _, out2 = MyFn.apply(c_dual, d)
                    self.assertTrue(fwAD.unpack_dual(out2).tangent._base is t2)
                else:
                    with self.assertRaisesRegex(RuntimeError, error_regex):
                        MyFn.apply(a_dual, b)

                    with self.assertRaisesRegex(RuntimeError, error_regex):
                        MyFn.apply(c_dual, d)

            if k == "view_as":
                gradcheck(MyFn.apply, (a, c), check_forward_ad=True)
            else:
                with self.assertRaisesRegex(RuntimeError, error_regex):
                    gradcheck(MyFn.apply, (a, c), check_forward_ad=True)

    def test_custom_function_save_for_forward(self):
        class Func(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x: torch.Tensor, y: torch.Tensor, z: int):
                ctx.save_for_backward(x, y)
                ctx.save_for_forward(x, y)
                ctx.z = z
                ctx.prod = x * y
                return z * ctx.prod

            @staticmethod
            def jvp(ctx, x_t, y_t, _):
                x_p, y_p = ctx.saved_tensors
                z = ctx.z
                return z * (y_p * x_t + x_p * y_t)

            @staticmethod
            def vjp(ctx, grad_out):
                x, y = ctx.saved_tensors
                z = ctx.z
                return z * grad_out * y, z * grad_out * x, None

        a = torch.tensor(1.0, requires_grad=True, dtype=torch.double)
        t = torch.tensor(1.0, dtype=torch.double)
        b = torch.tensor(2.0, requires_grad=True, dtype=torch.double)
        c = 4

        with fwAD.dual_level():
            a_dual = fwAD.make_dual(a, t)
            out = Func.apply(a_dual, b, c)
            out.backward()

        gradcheck(Func.apply, (a, b, c), check_forward_ad=True)

        # When saved for backward, but not saved for forward
        class Func(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x: torch.Tensor):
                ctx.save_for_backward(x)
                return x.clone()

            @staticmethod
            def jvp(ctx, x_t):
                self.assertEqual(len(ctx.saved_tensors), 0)
                return x_t

            @staticmethod
            def vjp(ctx, grad_out):
                (x,) = ctx.saved_tensors
                self.assertEqual(len(ctx.saved_tensors), 1)
                return grad_out

        with fwAD.dual_level():
            a_dual = fwAD.make_dual(a, t)
            out = Func.apply(a_dual)
            out.backward()

        gradcheck(Func.apply, (a,), check_forward_ad=True)

    @skipIfTorchDynamo("compile tested in test/dynamo/test_autograd_function.py")
    def test_custom_function_forward_mode_non_differentiable(self):
        # returns differentiable type, marked non-differentiable
        class Func(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x, y):
                out = y.clone()
                ctx.mark_non_differentiable(out)
                return x.clone(), out

            @staticmethod
            def jvp(ctx, x_tangent, y_tangent):
                return x_tangent, None

        x = torch.tensor(2.0)
        x_tangent = torch.tensor(1.0)
        y = torch.tensor(3.0)

        with fwAD.dual_level():
            x_dual = fwAD.make_dual(x, x_tangent)
            _, out2_dual = Func.apply(x_dual, y)
            self.assertEqual(fwAD.unpack_dual(out2_dual).tangent, None)

        y = torch.tensor(3)

        # returns non-differentiable type, NOT marked non-differentiable
        class Func(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x, y):
                return x.clone(), y.clone()

            @staticmethod
            def jvp(ctx, x_tangent, y_tangent):
                self.assertIsNone(y_tangent)
                return x_tangent, None

        with fwAD.dual_level():
            x_dual = fwAD.make_dual(x, x_tangent)
            _, out2_dual = Func.apply(x_dual, y)
            self.assertEqual(fwAD.unpack_dual(out2_dual).tangent, None)

        class FuncWrong(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x, y):
                out = y.clone()
                ctx.mark_non_differentiable(out)
                return x.clone(), out

            @staticmethod
            def jvp(ctx, x_tangent, y_tangent):
                return x_tangent, x_tangent.clone()

        with fwAD.dual_level():
            x_dual = fwAD.make_dual(x, x_tangent)
            with self.assertRaisesRegex(
                RuntimeError, "You should return None at that position instead"
            ):
                FuncWrong.apply(x_dual, y)

        # returns non-tensor
        class Func(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                return x.clone(), object(), x.clone()

            @staticmethod
            def jvp(ctx, x_tangent):
                return x_tangent, None, x_tangent

        with fwAD.dual_level():
            x_dual = fwAD.make_dual(x, x_tangent)
            out_dual, _, out2_dual = Func.apply(x_dual)
            self.assertEqual(fwAD.unpack_dual(out_dual).tangent, x_tangent)
            self.assertEqual(fwAD.unpack_dual(out2_dual).tangent, x_tangent)

    def test_custom_function_local_inplace(self):
        class MyFn(torch.autograd.Function):
            @staticmethod
            def forward(ctx, inp, inplace):
                view = inp.clone()[:3]
                if inplace:
                    view += 2
                return view

            @staticmethod
            def backward(ctx, grad):
                return grad, None

        base = torch.rand(10, requires_grad=True)

        foo = MyFn.apply(base, False)
        self.assertEqual(foo.grad_fn.__class__.__name__, "MyFnBackward")

        foo = MyFn.apply(base, True)
        self.assertEqual(foo.grad_fn.__class__.__name__, "MyFnBackward")

    def test_integer_outputs(self):
        inp = torch.rand(4, requires_grad=True)

        out = inp.argmax()
        self.assertFalse(out.dtype.is_floating_point)
        self.assertFalse(out.requires_grad)

        out = inp.argmin()
        self.assertFalse(out.dtype.is_floating_point)
        self.assertFalse(out.requires_grad)

        out = inp.argsort()
        self.assertFalse(out.dtype.is_floating_point)
        self.assertFalse(out.requires_grad)

        val = torch.rand((), requires_grad=True)

        out = torch.searchsorted(inp, val)
        self.assertFalse(out.dtype.is_floating_point)
        self.assertFalse(out.requires_grad)

        bins = torch.linspace(0, 1.0, steps=100, requires_grad=True)
        vals = torch.rand(5, 5, requires_grad=True)
        out = torch.bucketize(vals, bins)
        self.assertFalse(out.dtype.is_floating_point)
        self.assertFalse(out.requires_grad)

        val = torch.empty(5).requires_grad_()
        out = val.count_nonzero()
        self.assertFalse(out.requires_grad)

        def assert_only_first_requires_grad(res):
            if not isinstance(res, tuple):
                res = (res,)
            self.assertTrue(res[0].requires_grad)
            for out in res[1:]:
                if out is not None:
                    self.assertFalse(out.requires_grad)

        for sort in [True, False]:
            for return_inverse in [True, False]:
                for return_counts in [True, False]:
                    res = torch.unique(
                        inp,
                        sorted=sort,
                        return_inverse=return_inverse,
                        return_counts=return_counts,
                    )
                    assert_only_first_requires_grad(res)

                    res = torch.unique(
                        inp,
                        sorted=sort,
                        return_inverse=return_inverse,
                        return_counts=return_counts,
                        dim=0,
                    )
                    assert_only_first_requires_grad(res)

                    res = torch.unique_consecutive(
                        inp, return_inverse=return_inverse, return_counts=return_counts
                    )
                    assert_only_first_requires_grad(res)

                    res = torch.unique_consecutive(
                        inp,
                        return_inverse=return_inverse,
                        return_counts=return_counts,
                        dim=0,
                    )
                    assert_only_first_requires_grad(res)

                    # Here we test the internal functions to make sure all of them are
                    # covered on top of the public API
                    res = torch._unique(inp, sorted=sort, return_inverse=return_inverse)
                    assert_only_first_requires_grad(res)

                    # This looks public but is actually manually deleted from the
                    # torch namespace in torch/functional.py
                    res = torch._VF.unique_dim(
                        inp,
                        dim=0,
                        sorted=sort,
                        return_inverse=return_inverse,
                        return_counts=return_counts,
                    )
                    assert_only_first_requires_grad(res)

                    # We don't test `unique_dim_consecutive` here.
                    # It looks public but the python binding is actually manually disabled in
                    # tools/autograd/gen_python_functions.py

                    res = torch._unique2(
                        inp,
                        sorted=sort,
                        return_inverse=return_inverse,
                        return_counts=return_counts,
                    )
                    assert_only_first_requires_grad(res)

    def test_custom_function_cycle(self):
        class MyFn(Function):
            @staticmethod
            def forward(ctx, x, metadata):
                x = x.clone()
                ctx.meta = metadata
                ctx.save_for_backward(x)
                return x

            @staticmethod
            def backward(ctx, gO):
                (x,) = ctx.saved_tensors
                self.assertEqual(x, 3.14)
                self.assertEqual(ctx.meta["foo"], 3.14)
                return gO * x, None

        def get_refs(with_backward):
            a = torch.tensor(3.14, requires_grad=True)

            metadata = {}
            out = MyFn.apply(a, metadata)

            metadata["foo"] = out

            if with_backward:
                out.sum().backward()
                self.assertEqual(a.grad, a)

            return torch._C._WeakTensorRef(out)

        with disable_gc():
            ref = get_refs(False)
            self.assertFalse(ref.expired())
        gc.collect()
        self.assertTrue(ref.expired())

        # The backward clears the saved_variables but not the __dict__
        with disable_gc():
            ref = get_refs(True)
            self.assertFalse(ref.expired())
        gc.collect()
        self.assertTrue(ref.expired())

    def test_create_graph_and_full_backward_hook_cycle(self):
        # If BackwardHook saves grad_output, it can create a cycle when we perform backward
        # with create_graph=True
        #
        #   grad_output -> grad_output.grad_fn -> graph -> hook -> grad_output
        #
        class TestCls:
            # Dummy class for the purpose of creating a weakref
            pass

        def get_ref(input_requires_grad, nb_hooks):
            t = torch.randn(10, requires_grad=input_requires_grad)
            a = torch.tensor(1.0, requires_grad=True)

            class Test(nn.Module):
                def forward(self, x):
                    return x**2 * a**2

            mod = Test()

            for _ in range(nb_hooks):
                mod.register_full_backward_hook(lambda a, b, c: None)

            tmp = mod(t)

            # Save dummy object to graph and get a weak ref to it
            test = TestCls()
            ref = weakref.ref(test)
            tmp.grad_fn.metadata["a"] = test

            with set_warn_always_context(True):
                with warnings.catch_warnings(record=True) as w:
                    tmp.exp().sum().backward(create_graph=True)
                    self.assertTrue(len(w) == 1)
                    self.assertTrue(
                        "Using backward() with create_graph=True" in str(w[0].message)
                    )

            # Remove the backward + create_graph=True cycle
            a.grad = None
            t.grad = None

            return ref

        for nb_hooks in (1, 2, 3):
            for input_requires_grad in (True, False):
                ref_ = get_ref(
                    input_requires_grad=input_requires_grad,
                    nb_hooks=nb_hooks,
                )
                gc.collect()
                self.assertIsNone(ref_())

    @parametrize("use_custom_function", [True, False])
    @parametrize("use_tensor_hook", [True, False])
    def test_hook_closure_cycle(self, use_custom_function, use_tensor_hook):
        # This creates a cycle between the hook and grad_fn_b
        # hook -> closure -> grad_fn_b (python) -> grad_fn (cpp) -> hook (cpp)
        # -> dict -> hook
        #
        # This test is testing that the grad_fn_b (python) only traverses the
        # dict if it is the only one holding a reference to the grad_fn_b (cpp)
        # shared_ptr
        #
        # See: https://github.com/pytorch/pytorch/issues/102174
        class Function(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                return x

            @staticmethod
            def backward(ctx, grad):
                return grad

        class Test:
            pass

        count = [0]

        def scope():
            a = torch.tensor(1.0, requires_grad=True)
            if use_custom_function:
                b = Function.apply(a)
            else:
                b = a.clone()
            grad_fn_b = b.grad_fn
            obj = Test()

            def hook(*args):
                # Make sure this hook's closure holds onto grad_fn_b
                # This forms a cycle between the hook and grad_fn_b
                # We also hold onto a sentinel object 'obj' to track
                # whether this cycle is still alive. See 'ref' below.
                grad_fn_b
                obj
                count[0] += 1

            if use_tensor_hook:
                b.register_hook(hook)
            else:
                b.grad_fn.register_hook(hook)
            c = b.clone()
            ref = weakref.ref(obj)
            return c, ref

        with disable_gc():
            out, ref = scope()
            out.backward(retain_graph=True)

            gc.collect()

            # Make sure gc does not clear the cycle noted above.
            # e.g. the hook is alive and gets fired even after gc runs
            out.backward(retain_graph=True)
            self.assertEqual(count[0], 2)

            # ref is still alive because the use_count of the cpp grad_fn
            # shared_ptr > 1 since (1) the python grad_fn is alive, and (2) the
            # rest of the graph holds onto the shared_ptr
            self.assertIsNotNone(ref())

            # Then delete the rest of the graph and check that ref is dead
            del out
            gc.collect()
            self.assertIsNone(ref())

    def test_full_backward_hook_double_backward(self):
        x = torch.rand(1, requires_grad=True)
        y = torch.rand_like(x)

        func = torch.nn.MSELoss()
        counter = [0]

        def hook(module, grad_input, grad_output):
            counter[0] += 1

        func.register_full_backward_hook(hook)

        f = func(x, y)

        (gradx_f,) = torch.autograd.grad(f, x, create_graph=True)
        self.assertEqual(counter[0], 1)
        _ = torch.autograd.grad(gradx_f, x)
        # We should not error, and counter should not be incremented
        self.assertEqual(counter[0], 1)

    def test_input_buffer_accum(self):
        leaf = torch.rand(2, 2, requires_grad=True)

        # An op that returns sparse gradients
        ind = torch.tensor([[0, 0]], dtype=torch.long)
        out2 = leaf.gather(0, ind, sparse_grad=True)

        # An op that returns the gradients as-is
        out1 = leaf.clone()

        grad_out1_original = torch.rand_like(out1)
        grad_out1 = grad_out1_original.clone()
        grad_out2 = torch.rand_like(out2)

        torch.autograd.backward((out1, out2), (grad_out1, grad_out2))

        # Given gradients should not be modified inplace
        self.assertEqual(grad_out1, grad_out1_original)

    def test_no_unnecessary_unwrapping(self):
        a = torch.randn(5, requires_grad=True)
        a_orig = a.detach().clone()
        b = a * a
        c = a * b
        d = torch.exp(a)

        # a is leaf
        self.assertIs(b.grad_fn._saved_self, a)
        self.assertIs(b.grad_fn._saved_other, a)
        self.assertIs(c.grad_fn._saved_self, a)

        # b is not an output
        self.assertIs(c.grad_fn._saved_other, b)

        # d is an output
        self.assertEqual(d.grad_fn._saved_result, d)
        self.assertIsNot(d.grad_fn._saved_result, d)

        c.sum().backward()

        with self.assertRaisesRegex(RuntimeError, "after they have already been freed"):
            c.grad_fn._saved_self

        # a is left untouched
        self.assertEqual(a, a_orig)

    def test_saved_variable_version_counter(self):
        a = torch.rand(2, requires_grad=True)

        b = torch.exp(a)

        b_unpacked = b.grad_fn._saved_result
        self.assertEqual(b, b_unpacked)
        self.assertEqual(b._version, b_unpacked._version)

        with torch.no_grad():
            b += 1

        self.assertEqual(b, b_unpacked)
        self.assertEqual(b._version, b_unpacked._version)

    def test_saved_variable_packing_unpacking_saved_original_with_hooks(self):
        # Tests that packing/unpacking a SavedVariable works correctly with user-defined hooks
        # The saved_original / did_not_save_original distinction corresponds to the `save_original`
        # attribute of `SavedVariable`.

        def test(get_input, is_leaf):
            a = get_input()
            grad_fn = a.grad_fn
            y = a * a
            y.grad_fn._raw_saved_self.register_hooks(lambda x: 2 * x, lambda x: x / 2)
            self.assertEqual(a, y.grad_fn._saved_self)
            if not is_leaf:
                self.assertIs(grad_fn, y.grad_fn._saved_self.grad_fn)
                y.sum().backward()
            else:
                y.sum().backward()
                self.assertEqual(2 * a, a.grad)

            a = get_input()
            grad_fn = a.grad_fn
            y = a * a
            y.grad_fn._raw_saved_self.register_hooks(lambda x: 2 * x, lambda x: x)
            self.assertEqual(2 * a, y.grad_fn._saved_self)
            if not is_leaf:
                self.assertIs(grad_fn, y.grad_fn._saved_self.grad_fn)
                y.sum().backward()
            else:
                y.sum().backward()
                self.assertEqual(3 * a, a.grad)

            # double backward
            a = get_input()
            grad_fn = a.grad_fn
            y = a**3
            y.grad_fn._raw_saved_self.register_hooks(lambda x: x, lambda x: x)
            s = torch.sum(y)
            (g,) = torch.autograd.grad(s, (a,), create_graph=True)
            if not is_leaf:
                self.assertIs(grad_fn, y.grad_fn._saved_self.grad_fn)
                g.sum().backward()
            else:
                g.sum().backward()
                self.assertEqual(6 * a, a.grad)

            a = get_input()
            y = a * a
            y.grad_fn._raw_saved_self.register_hooks(lambda x: x, lambda x: 1)
            with self.assertRaisesRegex(
                TypeError, "Output of saved tensor unpack_hook expected to be a Tensor"
            ):
                print(y.grad_fn._saved_self)

            a = get_input()
            y = a * a
            with self.assertRaisesRegex(
                TypeError, "missing 1 required positional argument"
            ):
                y.grad_fn._raw_saved_self.register_hooks(lambda x, b: x, lambda x: x)

            a = get_input()
            y = a * a
            with self.assertRaisesRegex(
                TypeError, "missing 1 required positional argument"
            ):
                y.grad_fn._raw_saved_self.register_hooks(
                    lambda x, b: (x, b), lambda x: x
                )

            def inplace_double(x):
                x *= 2
                return x

            a = get_input()
            t = a * a

            with self.assertRaisesRegex(
                RuntimeError,
                "A saved tensor pack hook is modifying its input in place.",
            ):
                t.grad_fn._raw_saved_self.register_hooks(
                    inplace_double, lambda x: x / 2
                )

        # leaf
        test(lambda: torch.randn(5, requires_grad=True), True)

        # not leaf, not output
        test(lambda: (1 + torch.randn(5, requires_grad=True)), False)

    def test_saved_variable_saved_original_inplace_detach(self):
        # Detaching a tensor that is saved input raises
        a = torch.tensor(1.0, requires_grad=True).clone()
        b = a.sin()
        a.detach_()
        with self.assertRaisesRegex(
            RuntimeError, "Trying to use a saved tensor that has been detached"
        ):
            b.backward()

        # Detaching a tensor that is saved as output is OK
        a = torch.tensor(1.0, requires_grad=True).clone()
        b = a.exp()
        a.detach_()
        b.backward()

    def test_saved_variable_packing_unpacking_did_not_save_original_with_hooks(self):
        # Tests that packing/unpacking a SavedVariable works correctly with user-defined hooks
        # The saved_original / did_not_save_original distinction corresponds to the `save_original`
        # attribute of `SavedVariable`.

        a = torch.randn(5, requires_grad=True)
        y = torch.exp(a)
        y.grad_fn._raw_saved_result.register_hooks(lambda x: x, lambda x: x)
        self.assertEqual(y, y.grad_fn._saved_result)
        self.assertIs(y.grad_fn, y.grad_fn._saved_result.grad_fn)
        y.sum().backward()
        self.assertEqual(a.grad, y)

    def test_saved_variable_packing_unpacking_saved_original_with_default_hooks(self):
        # Tests that default hooks are properly registered, used and reset
        # The saved_original / did_not_save_original distinction corresponds to the `save_original`
        # attribute of `SavedVariable`.
        # See also:
        #  - test_saved_variable_packing_unpacking_saved_original_with_hooks

        def pack(x):
            warnings.warn("pack")
            return x

        with torch.autograd.graph.saved_tensors_hooks(pack, lambda x: x):
            a = torch.ones(5, requires_grad=True)

            with warnings.catch_warnings(record=True) as w:
                warnings.simplefilter("always")
                y = a * a
                # should raise two warnings from a being saved twice
                self.assertEqual(len(w), 2)

        with torch.autograd.graph.saved_tensors_hooks(lambda x: x, lambda x: x):
            a = torch.randn(5, requires_grad=True)
            y = a * a
            self.assertEqual(a, y.grad_fn._saved_self)
            self.assertEqual(a, y.grad_fn._saved_other)
            y.sum().backward()
            self.assertEqual(2 * a, a.grad)

        with torch.autograd.graph.saved_tensors_hooks(lambda x: 2 * x, lambda x: x / 2):
            a = torch.randn(5, requires_grad=True)
            y = a * a
            self.assertEqual(a, y.grad_fn._saved_self)
            self.assertEqual(a, y.grad_fn._saved_other)
            y.sum().backward()
            self.assertEqual(2 * a, a.grad)

        with torch.autograd.graph.saved_tensors_hooks(lambda x: 2 * x, lambda x: x):
            a = torch.randn(5, requires_grad=True)
            y = a * a
            self.assertEqual(2 * a, y.grad_fn._saved_self)
            self.assertEqual(2 * a, y.grad_fn._saved_other)
            y.sum().backward()
            self.assertEqual(4 * a, a.grad)

        # Exited hooks correctly
        a = torch.randn(5, requires_grad=True)
        y = a * a
        self.assertEqual(a, y.grad_fn._saved_self)
        self.assertEqual(a, y.grad_fn._saved_other)
        y.sum().backward()
        self.assertEqual(2 * a, a.grad)

    def test_saved_variable_packing_unpacking_did_not_save_original_with_default_hooks(
        self,
    ):
        # See also test_saved_variable_packing_unpacking_did_not_save_original_with_hooks

        with torch.autograd.graph.saved_tensors_hooks(lambda x: x, lambda x: x):
            a = torch.randn(5, requires_grad=True)
            y = torch.exp(a)
            self.assertEqual(y, y.grad_fn._saved_result)
            y.sum().backward()
            self.assertEqual(a.grad, y)

    def test_setting_default_saved_variable_hooks_twice_should_not_fail(self):
        with torch.autograd.graph.saved_tensors_hooks(lambda x: x, lambda x: x):
            with torch.autograd.graph.saved_tensors_hooks(lambda x: x, lambda x: x):
                pass

    def test_setting_default_saved_variable_hooks_twice_should_use_inner(self):
        with torch.autograd.graph.saved_tensors_hooks(lambda x: 3 * x, lambda x: 3 * x):
            b = torch.randn(5, requires_grad=True)
            with torch.autograd.graph.saved_tensors_hooks(
                lambda x: 5 * x, lambda x: 5 * x
            ):
                a = torch.randn(5, requires_grad=True)
                y = a * a
            z = b * b
        y.sum().backward()
        z.sum().backward()
        self.assertEqual(2 * 5 * 5 * a, a.grad)
        self.assertEqual(2 * 3 * 3 * b, b.grad)

    def test_disabling_saved_tensor_hooks(self):
        with torch.autograd.graph.disable_saved_tensors_hooks("error message"):
            with self.assertRaisesRegex(RuntimeError, "error message"):
                with torch.autograd.graph.saved_tensors_hooks(lambda x: x, lambda x: x):
                    pass

        self.assertTrue(torch._C._autograd._saved_tensors_hooks_is_enabled())

        with torch.autograd.graph.saved_tensors_hooks(lambda x: x, lambda x: x):
            with self.assertRaisesRegex(RuntimeError, "error message"):
                with torch.autograd.graph.disable_saved_tensors_hooks("error message"):
                    pass

        self.assertTrue(torch._C._autograd._saved_tensors_hooks_is_enabled())

    def test_disabling_saved_tensor_hooks_nested(self):
        with torch.autograd.graph.disable_saved_tensors_hooks("outer"):
            with torch.autograd.graph.disable_saved_tensors_hooks("inner"):
                with self.assertRaisesRegex(RuntimeError, "inner"):
                    with torch.autograd.graph.saved_tensors_hooks(
                        lambda x: x, lambda x: x
                    ):
                        pass

            self.assertFalse(torch._C._autograd._saved_tensors_hooks_is_enabled())

        self.assertTrue(torch._C._autograd._saved_tensors_hooks_is_enabled())

    def test_saved_tensor_hooks_custom_error_propagation(self):
        class CustomError(Exception):
            pass

        class error_on_pack_hook(torch.autograd.graph.saved_tensors_hooks):
            def __init__(self) -> None:
                def pack_hook(x):
                    raise CustomError("pack")

                super().__init__(pack_hook, lambda x: x)

        class error_on_unpack_hook(torch.autograd.graph.saved_tensors_hooks):
            def __init__(self) -> None:
                def unpack_hook(x):
                    raise CustomError("unpack")

                super().__init__(lambda x: x, unpack_hook)

        a = torch.tensor(1.0, requires_grad=True)

        with error_on_pack_hook():
            with self.assertRaisesRegex(CustomError, "pack"):
                out = torch.sin(a)

        with error_on_unpack_hook():
            out = torch.sin(a)
            with self.assertRaisesRegex(CustomError, "unpack"):
                out.backward()

    def test_saved_tensor_hooks_custom_function_intermediates(self):
        class Func(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                intermediate = x.exp()
                ctx.save_for_backward(
                    intermediate.clone().detach_().requires_grad_(True)
                )
                return x.exp()

            @staticmethod
            def backward(ctx, grad_out):
                (intermediate,) = ctx.saved_tensors
                return grad_out * intermediate

        a = torch.tensor(1.0, requires_grad=True)

        with torch.autograd.graph.saved_tensors_hooks(lambda x: x, lambda x: x):
            out = Func.apply(a)
        out.backward()

    def test_unpack_hooks_exec_count(self):
        def f(x, y):
            return x * y

        pack_count = 0
        unpack_count = 0

        def pack_hook(x):
            nonlocal pack_count
            pack_count += 1
            return x

        # unpack hook shouldn't run during compilation, while we trace the forward
        def unpack_hook(x):
            nonlocal unpack_count
            unpack_count += 1
            return x

        x = torch.ones(4, requires_grad=True)
        y = torch.ones(4, requires_grad=False)
        with torch.autograd.graph.saved_tensors_hooks(pack_hook, unpack_hook):
            out_test = f(x, y)
            self.assertEqual(pack_count, 1)
            self.assertEqual(unpack_count, 0)
            out_test.sum().backward()
            self.assertEqual(pack_count, 1)
            self.assertEqual(unpack_count, 1)

    def test_saved_tensors_hook_version_counter_not_shared(self):
        class Test(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                ctx.save_for_backward(x)
                return x.sin()

            @staticmethod
            def backward(ctx, grad_output):
                (x,) = ctx.saved_tensors
                before = a._version
                x.add_(1)
                self.assertEqual(a._version, before)
                return grad_output

        a = torch.tensor(1.0, requires_grad=True)
        a_replacement = a.clone()

        def pack_hook(x):
            return a_replacement

        def unpack_hook(x):
            return x

        with torch.autograd.graph.saved_tensors_hooks(pack_hook, unpack_hook):
            b = Test.apply(a)

        b.backward()

    def test_save_on_cpu_and_checkpoint(self):
        a = torch.randn(2, 2, requires_grad=True)

        b = a.pow(2).pow(2).pow(2).pow(2)
        b.sum().backward()
        b_grad = a.grad.clone()
        a.grad.zero_()

        with torch.autograd.graph.save_on_cpu():
            h = a.pow(2)
            h = checkpoint(lambda x: x.pow(2).pow(2), h, use_reentrant=False)
            c = h.pow(2)
        c.sum().backward()
        c_grad = a.grad.clone()
        a.grad.zero_()

        def f(a):
            h = a.pow(2)
            with torch.autograd.graph.save_on_cpu():
                h = h.pow(2).pow(2)
            return h.pow(2)

        d = checkpoint(f, a, use_reentrant=False)
        d.sum().backward()
        d_grad = a.grad.clone()

        self.assertEqual(b_grad, c_grad)
        self.assertEqual(b_grad, d_grad)

    def test_pack_hook_with_inplace_modification_should_fail(self):
        a = torch.randn(5, requires_grad=True)

        def inc(x):
            x += 1
            return x

        with torch.autograd.graph.saved_tensors_hooks(inc, lambda x: x):
            with self.assertRaisesRegex(
                RuntimeError,
                "A saved tensor pack hook is modifying its input in place.",
            ):
                y = torch.exp(a)

        y = torch.exp(a)
        with self.assertRaisesRegex(
            RuntimeError, "A saved tensor pack hook is modifying its input in place."
        ):
            y.grad_fn._raw_saved_result.register_hooks(inc, lambda x: x)

    def test_saving_variable_to_disk(self):
        with tempfile.TemporaryDirectory() as tmp_dir:

            def pack(x):
                name = os.path.join(tmp_dir, str(uuid.uuid4()))
                torch.save(x, name)
                return name

            def unpack(name):
                return torch.load(name)

            with torch.autograd.graph.saved_tensors_hooks(pack, unpack):
                a = torch.ones(5, requires_grad=True)
                y = a * a
                self.assertEqual(a, y.grad_fn._saved_self)

                y.sum().backward()
                self.assertEqual(2 * a, a.grad)

    def test_default_saved_tensors_hooks_double_backward(self):
        with torch.autograd.graph.saved_tensors_hooks(lambda x: x, lambda x: x):
            a = torch.randn(5, requires_grad=True)
            y = a**3
            s = torch.sum(y)
            (g,) = torch.autograd.grad(s, (a,), create_graph=True)
            g.sum().backward()
            self.assertEqual(6 * a, a.grad)

        with torch.autograd.graph.saved_tensors_hooks(lambda x: 2 * x, lambda x: x):
            a = torch.randn(5, requires_grad=True)
            y = a**3
            s = torch.sum(y)
        (g,) = torch.autograd.grad(s, (a,), create_graph=True)
        g.sum().backward()
        # factor 2 because only a is saved once
        self.assertEqual(6 * 2 * a, a.grad)

        a = torch.randn(5, requires_grad=True)
        y = a**3
        s = torch.sum(y)
        with torch.autograd.graph.saved_tensors_hooks(lambda x: 2 * x, lambda x: x):
            (g,) = torch.autograd.grad(s, (a,), create_graph=True)
            g.sum().backward()
            # factor 4 because pow_backward is grad * (exp * self.pow(exp - 1))
            # so grad is saved and self (i.e. a) is saved
            self.assertEqual(6 * 4 * a, a.grad)

        with torch.autograd.graph.saved_tensors_hooks(lambda x: 2 * x, lambda x: x):
            a = torch.randn(5, requires_grad=True)
            y = a**3
            s = torch.sum(y)
            (g,) = torch.autograd.grad(s, (a,), create_graph=True)
            g.sum().backward()
            # combining the two above blocks: 2 * 4 = 8
            # note that in that sense, a is saved twice
            self.assertEqual(6 * 8 * a, a.grad)

    def test_wrapped_number_saved_tensors_hooks(self):
        def err_hook(x):
            raise RuntimeError("this hook should not be called")

        with torch.autograd.graph.saved_tensors_hooks(err_hook, err_hook):
            a = torch.randn(5, requires_grad=True)
            out = (a * 3).sum()
            # 3 is saved as a saved tensor because it is a wrapped number, but
            # wrapped numbers should be special cased to not trigger saved variable hooks
            torch.autograd.grad(out, (a,))

    def test_graph_save_on_cpu(self):
        def test(get_input, cuda, pin_memory):
            with torch.autograd.graph.save_on_cpu(pin_memory):
                a = get_input()
                if cuda:
                    a.cuda()
                y = a * a
                self.assertEqual(a, y.grad_fn._saved_self)
                self.assertEqual(a, y.grad_fn._saved_other)
                self.assertEqual(a.dtype, y.grad_fn._saved_self.dtype)
                self.assertEqual(a.layout, y.grad_fn._saved_self.layout)
                if y.is_sparse:
                    y = y.to_dense()
                y.sum().backward()

                actual = 2 * a
                expected = a.grad
                if a.is_sparse:
                    actual = actual.coalesce()
                    expected = expected.coalesce()

                self.assertEqual(actual, expected)

        for cuda in [False] + ([True] if torch.cuda.is_available() else []):
            for pin_memory in [True, False]:
                # FloatTensor
                test(lambda: torch.randn(5, requires_grad=True), cuda, pin_memory)
                # DoubleTensor
                test(
                    lambda: torch.randn(5, requires_grad=True, dtype=torch.double),
                    cuda,
                    pin_memory,
                )
                # Sparse tensor
                x = torch.sparse_coo_tensor(
                    torch.tensor([[1, 1]]).long(),
                    torch.tensor([1.0, 1.0]),
                    requires_grad=True,
                )
                test(lambda: x, cuda, pin_memory)

    @unittest.skipIf(not TEST_CUDA, "test requires CUDA")
    def test_graph_save_on_cpu_cuda(self):
        def f(x):
            a = x + 1
            return a * a

        # with grad
        a = torch.ones(1, requires_grad=True, device="cuda")
        y = f(a)
        memory_with_grad = torch.cuda.memory_allocated()

        del a
        del y

        # without grad
        a = torch.ones(1, requires_grad=True, device="cuda")
        with torch.no_grad():
            y = f(a)
        memory_without_grad = torch.cuda.memory_allocated()

        self.assertGreater(memory_with_grad, memory_without_grad)

        del a
        del y

        # with hooks
        with torch.autograd.graph.save_on_cpu():
            a = torch.ones(1, requires_grad=True, device="cuda")
            y = f(a)
            memory_with_hooks = torch.cuda.memory_allocated()
            self.assertEqual(memory_with_hooks, memory_without_grad)

    @unittest.skipIf(not TEST_CUDA, "test requires CUDA")
    def test_scalar_grad_mixed_device(self):
        x = torch.tensor(1.0, requires_grad=True)
        y = torch.randn(2, 2, device="cuda")
        out = x * y
        out.sum().backward()

    @scoped_load_inline
    def test_multi_grad_all_hooks(self, load_inline):
        t1 = torch.rand(2, requires_grad=True)
        t2 = torch.rand(2, requires_grad=True)
        t3 = torch.rand(2, requires_grad=True)
        t4 = torch.rand(2, requires_grad=True)

        # Ensure we properly detect all types of Nodes here
        # C++ Node
        t1 = t1.mul(2)

        # Python custom Function
        class Foo(Function):
            @staticmethod
            def forward(ctx, a):
                return a.clone()

            @staticmethod
            def backward(ctx, gO):
                return gO

        t2 = Foo.apply(t2)

        # C++ Node
        t3 = torch._C._functions.UndefinedGrad()(t3)

        # C++ Custom Op
        cpp_source = """
struct CustomOpAutogradFunction : public torch::autograd::Function<CustomOpAutogradFunction> {
  static torch::Tensor forward(
      torch::autograd::AutogradContext* ctx,
      const torch::Tensor& x) {
    return x.clone();
  }

  static torch::autograd::variable_list backward(
      torch::autograd::AutogradContext *ctx,
      torch::autograd::variable_list grad_output) {
    return grad_output;
  }
};

torch::Tensor custom_op_backed_by_autograd_fn(torch::Tensor x) {
  return CustomOpAutogradFunction::apply(x);
}

TORCH_LIBRARY(test_multigrad_all_hooks, m) {
    m.def("custom_op_backed_by_autograd_fn", custom_op_backed_by_autograd_fn);
}
        """

        module = load_inline(
            name="test_multigrad_all_hooks",
            cpp_sources=cpp_source,
            functions="custom_op_backed_by_autograd_fn",
            verbose=True,
        )

        t4 = torch.ops.test_multigrad_all_hooks.custom_op_backed_by_autograd_fn(t4)

        res = [None] * 4
        count = [0]

        def hook(grads):
            nonlocal res
            count[0] += 1
            res = [g is not None for g in grads]

        handle = torch.autograd.graph.register_multi_grad_hook((t1, t2, t3, t4), hook)

        out = t2 * t3

        out.sum().backward(inputs=(t2, t3), retain_graph=True)
        self.assertEqual(count[0], 1)
        self.assertEqual(res, [False, True, True, False])

        out.sum().backward(inputs=(t1, t4), retain_graph=True)
        self.assertEqual(count[0], 1)

        out.sum().backward(inputs=(t1, t3), retain_graph=True)
        self.assertEqual(count[0], 2)
        self.assertEqual(res, [False, False, True, False])

        class Func(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                return x

            @staticmethod
            def backward(ctx, gO):
                raise RuntimeError("error message")

        out = Func.apply(t2) * t3
        with self.assertRaisesRegex(RuntimeError, "error message"):
            out.sum().backward(inputs=(t2, t3), retain_graph=True)
        self.assertEqual(count[0], 2)

        handle.remove()
        out.sum().backward(inputs=(t1, t3), retain_graph=True)
        self.assertEqual(count[0], 2)

    def test_multi_grad_any_hooks(self):
        hook_id = 0
        any_hook_handles: List[RemovableHandle] = []

        class MultiOutputModule(nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.lin = nn.Linear(3, 3)

            def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
                z = self.lin(x)
                out = torch.sin(z), torch.cos(z)
                nonlocal hook_id
                z.register_hook(partial(hook, hook_id))
                hook_id += 1
                any_hook_handles.append(
                    torch.autograd.graph.register_multi_grad_hook(
                        out, partial(hook, hook_id), mode="any"
                    )
                )
                hook_id += 1
                return out

        class Model(nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.mod1 = MultiOutputModule()
                self.mod2 = MultiOutputModule()

            def forward(self, x: torch.Tensor) -> torch.Tensor:
                y = self.mod1(x)
                z = y[0] + y[1]
                return self.mod2(z)

        hook_order: List[int] = []
        hook_count = 0

        def hook(hook_id: int, *unused):
            nonlocal hook_count
            nonlocal hook_order
            hook_count += 1
            hook_order.append(hook_id)

        # Any hooks: IDs 1 and 3; regular hooks: IDs 0 and 2
        model = Model()
        inp = torch.randn((2, 3))
        out = model(inp)
        (out[0] + out[1]).sum().backward()
        # Check that the any-hook runs only once and before the regular hook
        # for each module
        self.assertEqual(len(any_hook_handles), 2)
        self.assertEqual(hook_order, [3, 2, 1, 0])

        hook_id = 0
        hook_order.clear()
        any_hook_handles.clear()
        out = model(inp)
        for handle in any_hook_handles:
            handle.remove()
        (out[0] + out[1]).sum().backward()
        # Check that the any-hook does not run if removed
        self.assertEqual(hook_order, [2, 0])

    def test_multi_grad_hooks_invalid_mode(self):
        t1 = torch.rand(2, requires_grad=True)
        t2 = torch.rand(2, requires_grad=True)
        regex = r"Expects mode to be one of \('all', 'any'\) but got foo"
        with self.assertRaisesRegex(ValueError, regex):
            torch.autograd.graph.register_multi_grad_hook(
                (t1, t2), lambda _: None, mode="foo"
            )

    def test_pynode_destruction_deadlock(self):
        script = """
import torch

class Foo(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x):
        return x.clone()

    @staticmethod
    def forward(ctx, gO):
        return gO.clone()

def get_out():
    inp = torch.rand(2, requires_grad=True)

    # The python function is first so that it runs
    # last in the backward pass
    right = Foo.apply(inp)

    # An op that creates new memory
    left1 = inp.clone()
    # An op that saves its input
    left2 = left1 ** 2

    # Inplace modify so that the backward for
    # left2 always raises an error
    left1 += 1

    # An op that takes both side as input.
    # After running, both side's last op will be in
    # the ready queue
    # And the op for left will run first as it was
    # executed last during the forward
    out = left2 + right

    return out

# Nothing should be global variables here as, from what
# I can see, python leaks all the global objects
get_out().sum().backward()

# This used to deadlock when the PyNode is being destroyed after
# the error is raised.
"""
        try:
            subprocess.check_output(
                [sys.executable, "-c", script],
                stderr=subprocess.STDOUT,
                # On Windows, opening the subprocess with the default CWD makes `import torch`
                # fail, so just set CWD to this script's directory
                cwd=os.path.dirname(os.path.realpath(__file__)),
                # It is ok to have an extra long timeout here as a timeout means the test failed
                timeout=20,
            )
        except subprocess.TimeoutExpired as e:
            self.fail(
                msg="Example code timed out! See the code sample in the test for details."
            )
        except subprocess.CalledProcessError as e:
            if e.returncode < 0:
                # Sometimes we segfault instead of deadlocking
                self.fail("Subprocess exited with a fatal signal")
            else:
                err_msg = (
                    "RuntimeError: one of the variables needed for gradient computation"
                )
                self.assertTrue(err_msg in e.output.decode("utf-8"))

    def test_view_func_replay(self):
        with torch.autograd._force_original_view_tracking(True):

            def _assert_match_metadata(a, b):
                self.assertEqual(a.size(), b.size())
                self.assertEqual(a.stride(), b.stride())
                self.assertEqual(a.storage_offset(), b.storage_offset())
                self.assertEqual(a.device, b.device)
                self.assertEqual(a.dtype, b.dtype)

            def _test_fn(fn, inp, *args, use_unsafe_view_func=False):
                outs = fn(inp, *args)
                # handle functions that return multiple views (e.g. split)
                if isinstance(outs, torch.Tensor):
                    outs = [outs]

                for out in outs:
                    self.assertTrue(out._is_view())
                    self.assertTrue(out._base is inp)

                    # forward view_func
                    new_inp = inp.clone()
                    _assert_match_metadata(new_inp, inp)
                    if use_unsafe_view_func:
                        new_out = out._view_func_unsafe(new_inp)
                    else:
                        new_out = out._view_func(new_inp)
                    _assert_match_metadata(new_out, out)
                    self.assertEqual(new_out, out)

                    # reverse view_func
                    new_out = out.detach()
                    new_inp = out._rev_view_func_unsafe(new_out)
                    _assert_match_metadata(new_inp, inp)
                    self.assertTrue(new_inp._is_view())
                    self.assertTrue(new_inp._base is new_out)

            # test individual view ops
            _test_fn(torch.ops.aten.alias.default, torch.rand(2, 2))
            _test_fn(torch.as_strided, torch.rand(2, 2), (4,), (1,))
            _test_fn(torch.chunk, torch.rand(2, 4), 2, -1)
            _test_fn(torch.diagonal, torch.rand(4, 4))
            _test_fn(torch.ops.aten.expand.default, torch.rand(4, 1), (-1, 3))
            _test_fn(torch.narrow, torch.rand(2, 2), 0, 1, 1)
            _test_fn(torch.permute, torch.rand(2, 3, 4), (1, 0, 2))
            _test_fn(torch.select, torch.rand(2, 2), 0, 0)
            _test_fn(torch.ops.aten.slice.Tensor, torch.rand(2, 2), 1, 1, 2)
            _test_fn(torch.split, torch.rand(2, 2), 1)
            _test_fn(torch.split_with_sizes, torch.rand(2, 4), [1, 3], -1)
            _test_fn(torch.squeeze, torch.rand(2, 1, 4))
            _test_fn(torch.squeeze, torch.rand(2, 1, 4), 1)
            _test_fn(torch.squeeze, torch.rand(2, 1, 1, 4), [1, 2])
            _test_fn(torch.t, torch.rand(2, 4))
            _test_fn(torch.transpose, torch.rand(2, 4), 0, 1)
            _test_fn(torch.unbind, torch.rand(1, 5))
            _test_fn(torch.ops.aten.unfold.default, torch.rand(1, 5), 1, 3, 2)
            _test_fn(torch.unsqueeze, torch.rand(2, 4), -2)
            _test_fn(torch.ops.aten.view.default, torch.rand(2, 10), (-1, 5, 2))
            _test_fn(torch.view_as_complex, torch.rand(2, 2))
            _test_fn(torch.view_as_real, torch.rand(2, 2, dtype=torch.cfloat))

            # test view chains
            _test_fn(
                lambda x: x.unsqueeze(-1).transpose(-1, -2).squeeze(1),
                torch.randn(2, 4),
            )
            _test_fn(
                lambda x: x.chunk(2, -1)[0].transpose(0, 1).unsqueeze(-1),
                torch.randn(2, 3, 4),
            )
            _test_fn(
                lambda x: x.split_with_sizes([1, 3], -1)[0].chunk(2, 0),
                torch.randn(2, 3, 4),
            )

            # chains with missing view_func()s use as_strided() to cover the gaps
            def chain_with_only_parent_view_func(x):
                with torch.autograd._force_original_view_tracking(True):
                    x = x.split_with_sizes([1, 3], -1)[0]

                with torch.autograd._force_original_view_tracking(False):
                    x = x.chunk(2, 0)

                return x

            _test_fn(chain_with_only_parent_view_func, torch.randn(2, 3, 4))

            def chain_with_only_current_view_func(x):
                with torch.autograd._force_original_view_tracking(False):
                    x = x.split_with_sizes([1, 3], -1)[0]

                with torch.autograd._force_original_view_tracking(True):
                    x = x.chunk(2, 0)

                return x

            _test_fn(chain_with_only_current_view_func, torch.randn(2, 3, 4))

            # TODO: Move this somewhere else
            # test NT views
            from torch.nested._internal.nested_tensor import (
                nested_view_from_values_offsets,
            )

            values = torch.randn(10, 5)
            offsets = torch.tensor([0, 3, 6, 10])
            _test_fn(nested_view_from_values_offsets, values, offsets)

            nt = nested_view_from_values_offsets(values, offsets).detach().clone()
            _test_fn(
                torch.ops.aten._nested_get_values.default, nt, use_unsafe_view_func=True
            )

            def chain_nt_to_dense_back_and_forth(nt):
                # NJT1 -> dense -> NJT2 -> dense
                offsets2 = nt.offsets().detach().clone()
                return nested_view_from_values_offsets(nt.values(), offsets2).values()

            _test_fn(chain_nt_to_dense_back_and_forth, nt, use_unsafe_view_func=True)

            def chain_dense_to_nt_back_and_forth(values, offsets):
                offsets2 = offsets.detach().clone()
                # dense -> NJT1 -> dense -> NJT2
                return nested_view_from_values_offsets(
                    nested_view_from_values_offsets(values, offsets).values(), offsets2
                )

            _test_fn(
                chain_dense_to_nt_back_and_forth,
                values,
                offsets,
                use_unsafe_view_func=True,
            )

    def test_view_func_replay_with_modified_state(self):
        with torch.autograd._force_original_view_tracking(True):
            base = torch.randn(3, 4, 5)
            view = base.select(1, 2)

            def symint_visitor_fn(x):
                # modify saved index
                return x + 1

            # ensure modifying state changes view replay
            new_base = torch.randn_like(base)
            new_view = view._view_func(new_base, symint_visitor_fn=symint_visitor_fn)
            self.assertEqual(new_view, new_base.select(1, 3))

            # ensure saved state reverts back afterwards
            self.assertEqual(view._view_func(new_base), new_base.select(1, 2))

            # check modifying tensor state. currently, slice_inverse() is the only
            # view that saves a tensor
            base = torch.randn(3, 4, 5)
            sliced = base[:, 2:3, :].detach()
            view = torch.ops.aten.slice_inverse(sliced, base, 1, 2, 3, 1)

            replacement_shape = (1, 2, 3)

            def tensor_visitor_fn(x):
                # return tensor with a smaller shape than the saved one
                return torch.randn(*replacement_shape)

            # ensure modifying state changes view replay
            new_sliced = torch.ones_like(base)[:, 2:3, :].detach()
            new_view = view._view_func(new_sliced, tensor_visitor_fn=tensor_visitor_fn)
            self.assertEqual(new_view.shape, replacement_shape)
            self.assertEqual(
                new_view, new_sliced.as_strided(replacement_shape, (6, 3, 1))
            )

            # ensure saved state reverts back afterwards
            self.assertEqual(view._view_func(sliced), base)

    def test_setup_context_when_forward_has_default_args(self):
        class PowFunction(Function):
            @staticmethod
            def forward(x, y=3):
                return torch.pow(x, y)

            @staticmethod
            def setup_context(ctx, inputs, output):
                x, y = inputs
                ctx.save_for_backward(x)
                ctx.y = y

            @staticmethod
            def backward(ctx, gO):
                (x,) = ctx.saved_tensors
                y = ctx.y
                return gO * y * torch.pow(x, y - 1), None

        class PowFunctionWithClassmethod(Function):
            @classmethod
            def forward(cls, x, y=3):
                return torch.pow(x, y)

            @classmethod
            def setup_context(cls, ctx, inputs, output):
                x, y = inputs
                ctx.save_for_backward(x)
                ctx.y = y

            @classmethod
            def backward(cls, ctx, gO):
                (x,) = ctx.saved_tensors
                y = ctx.y
                return gO * y * torch.pow(x, y - 1), None

        x = torch.tensor(2.0, requires_grad=True)

        y = torch.tensor(8.0)
        y_expected = torch.tensor(12.0)

        y1 = PowFunction.apply(x)
        (y1_expected,) = torch.autograd.grad(y1, x)

        y2 = PowFunctionWithClassmethod.apply(x)
        (y2_expected,) = torch.autograd.grad(y2, x)

        self.assertEqual(y, y1)
        self.assertEqual(y_expected, y1_expected)
        self.assertEqual(y, y2)
        self.assertEqual(y_expected, y2_expected)

    @unittest.skipIf(not TEST_CUDA, "test requires CUDA")
    def test_gradcheck_default_device_placement_context(self):
        # During gradcheck with fast_mode=True, we create a random vector on the CPU device using a CPU generator.
        # This test ensures that this still works when the default device is set to something else by the user.
        with torch.device("cuda"):
            x = torch.randn(3, dtype=torch.double, requires_grad=True)

            def func(inp):
                return inp**2.0

            self.assertTrue(gradcheck(func, x, fast_mode=True))


def index_perm_variable(shape, max_indices):
    if not isinstance(shape, tuple):
        shape = (shape,)

    index = torch.randperm(max_indices).narrow(0, 0, reduce(mul, shape)).view(shape)
    return index


def bernoulli_scalar():
    return torch.tensor(0, dtype=torch.uint8).bernoulli_()


class TestAutogradForwardModeBatchedGrad(TestCase):
    def test_out_of_place_basic(self):
        a = torch.rand(4, 4, dtype=torch.double, requires_grad=True)
        b = torch.rand(4, 4, dtype=torch.double, requires_grad=True)
        self.assertTrue(
            gradcheck(
                torch.sin,
                a,
                check_forward_ad=True,
                check_batched_grad=True,
                check_batched_forward_grad=True,
            )
        )
        self.assertTrue(
            gradcheck(
                torch.add,
                (a, b),
                check_forward_ad=True,
                check_batched_grad=True,
                check_batched_forward_grad=True,
            )
        )

    def test_out_of_place_not_same_layout(self):
        input = torch.zeros([2, 2]).transpose(0, 1)
        tangent = torch.zeros([2, 2, 2])

        def jvp(tangent):
            with fwAD.dual_level():
                x = fwAD.make_dual(input, tangent)
                return fwAD.unpack_dual(x)[1]

        x_tangent = torch._vmap_internals._vmap(jvp, 0, 0)(tangent)

        self.assertIsNot(x_tangent, tangent)

    def test_inplace_on_view_same_layout(self):
        input = torch.zeros([2, 2])
        tangent = torch.zeros([2, 2, 2])
        base = torch.zeros([2, 2])
        view = base.view_as(base)

        def jvp(tangent):
            with fwAD.dual_level():
                x = fwAD.make_dual(input, tangent)
                view.copy_(x)
                return (
                    fwAD.unpack_dual(x)[1],
                    fwAD.unpack_dual(view)[1],
                    fwAD.unpack_dual(view._base)[1],
                )

        x_tangent, view_tangent, base_tangent = torch._vmap_internals._vmap(jvp, 0, 0)(
            tangent
        )

        self.assertFalse(
            view_tangent._is_view()
        )  # Optimization to share the same tensor!
        self.assertIs(view_tangent, base_tangent)
        self.assertIs(x_tangent, tangent)

    def test_inplace_on_view_not_same_layout(self):
        input = torch.zeros([2, 2])
        tangent = torch.zeros([2, 2, 2])
        view = torch.zeros([2, 2]).transpose(0, 1)

        def jvp(tangent):
            with fwAD.dual_level():
                x = fwAD.make_dual(input, tangent)
                view.copy_(x)
                return (
                    fwAD.unpack_dual(x)[1],
                    fwAD.unpack_dual(view)[1],
                    fwAD.unpack_dual(view._base)[1],
                )

        x_tangent, view_tangent, base_tangent = torch._vmap_internals._vmap(jvp, 0, 0)(
            tangent
        )

        self.assertIs(view_tangent._base, base_tangent)
        self.assertIs(x_tangent, tangent)
        self.assertIsNot(view_tangent, tangent)

    def test_metadata_check_for_storage_numel_skipped(self):
        # See: test_metadata_check_checks_storage_numel for the reverse of this test
        primal = torch.randn(5)[:4].detach()
        self.assertEqual(len(primal.storage()), 5)
        tangent = torch.randn(10, 4)

        def jvp(tangent):
            with fwAD.dual_level():
                dual = fwAD.make_dual(primal, tangent)
                _, unpacked_tangent = fwAD.unpack_dual(dual)

                # No copy is made
                self.assertIs(tangent, unpacked_tangent)

                # as_strided raises
                with self.assertRaisesRegex(
                    RuntimeError, "can access memory outside of `tensor`"
                ):
                    dual.as_strided((5,), (1,), 0)
            return unpacked_tangent

        torch._vmap_internals._vmap(jvp, 0, 0)(tangent)


class TestAutogradForwardMode(TestCase):
    def tearDown(self):
        # Ensure that a failing test won't make others fail
        while fwAD._current_level >= 0:
            fwAD.exit_dual_level()

        super().tearDown()

    def test_forward_level_cleanup(self):
        def get_tensor_and_weak_ref():
            # Create a new Tensor and weak reference
            t = torch.rand(2, requires_grad=True)
            return t, torch._C._WeakTensorRef(t)

        # Sanity check that the helper function works as expected
        t, t_ref = get_tensor_and_weak_ref()
        self.assertFalse(t_ref.expired())

        del t
        self.assertTrue(t_ref.expired())

        # Main test code
        foo = torch.rand(2)

        with fwAD.dual_level():
            tangent, tangent_ref = get_tensor_and_weak_ref()
            self.assertFalse(tangent_ref.expired())

            dual = fwAD.make_dual(foo, tangent)
            self.assertFalse(tangent_ref.expired())

            # Make sure that the tangent we provided has been re-used as is
            self.assertTrue(fwAD.unpack_dual(dual)[1] is tangent)

            # Make sure that dual is keeping the tangent alive
            del tangent
            self.assertFalse(tangent_ref.expired())

            # Make sure that the dual level does not keep the c++
            # version of the tangent alive
            del dual
            self.assertTrue(tangent_ref.expired())

    def test_size_check(self):
        foo = torch.rand(2)
        tangent = torch.rand(3)

        with fwAD.dual_level():
            with self.assertRaisesRegex(
                RuntimeError,
                "Trying to set a forward gradient that has a different size",
            ):
                dual = fwAD.make_dual(foo, tangent)

            dual = fwAD.make_dual(foo, tangent[1:])

    def test_metadata_check_checks_storage_numel(self):
        primal = torch.randn(5)[:4].detach()
        self.assertEqual(len(primal.storage()), 5)
        tangent = torch.randn(4)

        with fwAD.dual_level():
            dual = fwAD.make_dual(primal, tangent)
            _, unpacked_tangent = fwAD.unpack_dual(dual)

            # # Verify that mutating unpacked tangent does not affect the original tangent
            tangent_clone = tangent.clone()
            unpacked_tangent *= 2
            self.assertTrue(torch.allclose(tangent_clone, tangent))

            # as_strided runs without error
            dual.as_strided((5,), (1,), 0)

    def test_metadata_check_checks_ignores_size_zero(self):
        a = torch.ones(0).as_strided((0, 1), (1, 1), 0)
        b = torch.ones(0).as_strided((0, 1), (1, 0), 0)

        with fwAD.dual_level():
            dual = fwAD.make_dual(a, b)
            torch.diagonal(dual, offset=0)

        input = torch.rand([0, 1], dtype=torch.complex128, requires_grad=True)
        func = partial(torch.diagonal, offset=0)
        torch.autograd.gradcheck(func, (input,), check_forward_ad=True)

    def test_metadata_check_when_primal_has_conj_bit(self):
        # Make sure the _has_same_storage_numel is a fallthrough, so that
        # conj bit does not materialize. If it materializes it would
        # cause the layout check to fail for views that do not index the
        # the entire storage.
        a = torch.randn(2, 2, dtype=torch.cdouble).conj()
        b = torch.rand_like(a)

        self.assertTrue(torch.is_conj(a))
        self.assertEqual(len(a.storage()), len(b.storage()))

        with fwAD.dual_level():
            dual = fwAD.make_dual(a, b)
            dual[1:]

    def test_metadata_check_when_primal_has_neg_bit(self):
        # Make sure the _has_same_storage_numel is a fallthrough, so that
        # conj bit does not materialize. If it materializes it would
        # cause the layout check to fail for views that do not index the
        # the entire storage.
        a = torch.randn(2, 2, dtype=torch.cdouble).conj().imag
        b = torch.randn(2, 2, dtype=torch.cdouble).imag

        self.assertTrue(torch.is_neg(a))
        self.assertEqual(len(a.storage()), len(b.storage()))

        with fwAD.dual_level():
            dual = fwAD.make_dual(a, b)
            dual[1:]

    def test_metadata_check_check_conj(self):
        keys = {
            "NEITHER": lambda x: x,
            "CONJ": lambda x: x.conj(),
            "NEG": lambda x: x._neg_view(),
        }

        for primal_key, tangent_key in product(keys, keys):
            x = keys[primal_key](torch.randn(2, 3, 4, dtype=torch.cdouble))
            t = keys[tangent_key](torch.randn(2, 3, 4, dtype=torch.cdouble))

            if primal_key == tangent_key:
                with fwAD.dual_level():
                    dual = fwAD.make_dual(x, t)
                    self.assertTrue(fwAD.unpack_dual(dual).tangent is t)
                    torch.real(dual)
                    torch.imag(dual)
            else:
                with fwAD.dual_level():
                    dual = fwAD.make_dual(x, t)
                    self.assertTrue(fwAD.unpack_dual(dual).tangent is not t)
                    torch.real(dual)
                    torch.imag(dual)

    def test_metadata_check_ignore_storage_offset_for_zero_numel_tensor(self):
        # See https://github.com/pytorch/pytorch/issues/80507
        a = torch.tensor([1.0]).as_strided((0,), (1,), 1)
        b = torch.tensor([1.0]).as_strided((0,), (1,), 2)

        with fwAD.dual_level():
            dual_input = fwAD.make_dual(a, b)
            # Check that no copy is made
            self.assertIs(fwAD.unpack_dual(dual_input).tangent, b)

        a = torch.tensor([1.0]).as_strided((1,), (2,), 0)
        b = torch.tensor([1.0]).as_strided((1,), (1,), 0)

        with fwAD.dual_level():
            dual_input = fwAD.make_dual(a, b)
            dual_input[1:]

    # The following test functions want to ensure all the following behaviors:
    #   - Ensure that default level system in the python binding works
    #   - Ensure that only level 0 exists and nesting is properly disabled
    #   - Ensure that printing works fine
    #   - Ensure that basic packing/unpacking works
    #   - Ensure that advanced packing/unpacking works
    #     - For memory / version counter share
    #     - For backward AD (regular ops)
    #   - Ensure that view + inplace for both modes work fine
    #   - Ensure we do proper cleanup on exit of a level

    def test_default_level(self):
        foo = torch.rand(2)
        bar = torch.rand(2)

        with fwAD.dual_level():
            baz = fwAD.make_dual(foo, bar)
            baz_primal, baz_tangent = fwAD.unpack_dual(baz)
        self.assertEqual(baz_primal, foo)
        # We don't actually need to enforce that these two are the exact same python
        # object, feel free to relax in the future
        self.assertIs(baz_tangent, bar)

        baz_primal, baz_tangent = fwAD.unpack_dual(baz)
        self.assertEqual(baz_primal, foo)
        self.assertEqual(baz_tangent, None)

    def test_fwd_grad_enabled(self):
        # Tests some private helper functions to enable/disable fwd grad mode
        enabled = fwAD._is_fwd_grad_enabled()
        self.assertTrue(enabled)

        try:
            torch._C._set_fwd_grad_enabled(False)
            enabled = fwAD._is_fwd_grad_enabled()
            self.assertFalse(enabled)
        finally:
            torch._C._set_fwd_grad_enabled(True)

        enabled = fwAD._is_fwd_grad_enabled()
        self.assertTrue(enabled)

    def test_set_fwd_grad_enabled(self):
        # Tests a private helper function
        try:
            torch._C._set_fwd_grad_enabled(False)
            enabled = fwAD._is_fwd_grad_enabled()
            self.assertFalse(enabled)

            with fwAD._set_fwd_grad_enabled(True):
                enabled = fwAD._is_fwd_grad_enabled()
                self.assertTrue(enabled)

            enabled = fwAD._is_fwd_grad_enabled()
            self.assertFalse(enabled)
        finally:
            torch._C._set_fwd_grad_enabled(True)

    def test_nested_level(self):
        with fwAD.dual_level() as level:
            # For now only level 0 exists
            self.assertEqual(level, 0)

        with fwAD.dual_level():
            with self.assertRaisesRegex(
                RuntimeError, "Nested forward mode AD is not supported at the moment"
            ):
                nest_level = fwAD.enter_dual_level()

    def test_set_fw_grad_having_own_fw_grad_at_same_level(self):
        foo = torch.rand(2)
        bar = torch.rand(2)
        baz = torch.rand(2)

        with fwAD.dual_level():
            dual = fwAD.make_dual(foo, bar)
            with self.assertRaisesRegex(
                RuntimeError, "has a forward gradient at the same level"
            ):
                fwAD.make_dual(baz, dual)

    def test_codegen_ignores_undefined_outputs(self):
        # This test checks that codegen silently ignores undefined outputs
        # Below, grad_input is specified as False in grad_output_mask, so
        # convolution backward will return a undefined tensor in that position.
        # Note that for this test to work we need to make sure either grad_output
        # or weight to be a dual tensor, so grad_input requires forward grad
        weight = torch.randn(6, 1, 30, 30)
        inp = torch.rand((1, 1, 32, 32))
        out = torch.nn.functional.conv2d(inp, weight)
        grad_out = torch.ones_like(out)

        with fwAD.dual_level():
            dual_weight = fwAD.make_dual(weight, torch.ones_like(weight))
            grad_input, _, _ = torch.ops.aten.convolution_backward(
                grad_out,
                inp,
                dual_weight,
                (0,),
                (1, 1),
                (0, 0),
                (1, 1),
                False,
                (0, 0),
                1,
                (False, True, False),
            )
        self.assertIsNone(grad_input)

    def test_make_dual_inference_tensor_in_inference_mode(self):
        with torch.inference_mode():
            foo = torch.rand(2)
            bar = torch.rand(2)
            foo_copy = foo.clone()

            with fwAD.dual_level():
                dual = fwAD.make_dual(foo, bar)
                self.assertFalse(dual._is_view())

                dual += 1
                self.assertFalse(torch.allclose(foo, foo_copy))

    def test_make_dual_torch_dispatch(self):
        counter = [0]

        class MySubclass(torch.Tensor):
            def __new__(cls, data=None):
                return torch.Tensor._make_subclass(cls, data)

            @classmethod
            def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
                if func.overloadpacket == torch.ops.aten.alias:
                    counter[0] += 1

                    # Make sure we can re-enable autograd here
                    with torch.overrides.enable_reentrant_dispatch():
                        foo = torch.rand(1, requires_grad=True)
                        self.assertIsNotNone(foo.exp().grad_fn)

                with no_dispatch():
                    return func(*args, **kwargs)

        a = torch.tensor(1.0)
        s = MySubclass(a)

        with fwAD.dual_level():
            # Only the primal has "alias" called on it
            fwAD.make_dual(s, torch.rand_like(s))
            self.assertEqual(counter[0], 1)
            fwAD.make_dual(torch.rand_like(s), s)
            self.assertEqual(counter[0], 1)

    def test_make_dual_forbid_integral_dtype(self):
        primal_f = torch.ones(2, 2, dtype=torch.float)
        primal_l = torch.ones(2, 2, dtype=torch.long)

        tangent_f = torch.ones(2, 2, dtype=torch.float)
        tangent_l = torch.ones(2, 2, dtype=torch.long)

        with fwAD.dual_level():
            # Float Primal and Long Tangent
            with self.assertRaisesRegex(
                ValueError, "Expected tangent to be floating point or complex"
            ):
                fwAD.make_dual(primal_f, tangent_l)

            # Long Primal and Long Tangent
            with self.assertRaisesRegex(
                ValueError, "Expected primal to be floating point or complex"
            ):
                fwAD.make_dual(primal_l, tangent_l)

            # Long Primal and Float Tangent
            with self.assertRaisesRegex(
                ValueError, "Expected primal to be floating point or complex"
            ):
                fwAD.make_dual(primal_l, tangent_f)

    def test_print(self):
        with fwAD.dual_level() as level:
            a = torch.rand(3)
            self.assertFalse("tangent=" in str(a))

            b = fwAD.make_dual(a, torch.rand(3))
            self.assertFalse("tangent=" in str(a))
            self.assertTrue("tangent=" in str(b))

            b_primal, b_tangent = fwAD.unpack_dual(b)
            self.assertFalse("tangent=" in str(b_primal))
            self.assertFalse("tangent=" in str(b_tangent))

    def test_basic_packing_unpacking(self):
        foo = torch.rand(2)
        bar = torch.rand(2)

        with fwAD.dual_level():
            baz = fwAD.make_dual(foo, bar)
            baz_primal, baz_tangent = fwAD.unpack_dual(baz)
            self.assertEqual(baz_primal, foo)
            self.assertIs(baz_tangent, bar)

            # Check unpacked dual is returned as a named tuple
            # NB: Every invocation of unpack_dual returns a new tensor view
            self.assertIsNot(baz_primal, fwAD.unpack_dual(baz).primal)
            self.assertEqual(baz_primal, fwAD.unpack_dual(baz).primal)
            self.assertIs(baz_tangent, fwAD.unpack_dual(baz).tangent)

            # Check that packing/unpacking did not change the input
            foo_primal, foo_tangent = fwAD.unpack_dual(foo)
            self.assertEqual(foo_primal, foo)
            self.assertIsNone(foo_tangent)

    def test_advanced_packing_unpacking(self):
        foo = torch.rand(2)
        bar = torch.ones(2)

        # Memory and version counter check
        with fwAD.dual_level():
            dual = fwAD.make_dual(foo, bar)

            # Ensure that they are sharing memory and version counter
            self.assertEqual(dual.storage().data_ptr(), foo.storage().data_ptr())

            # Ensure we properly share the version counter
            self.assertEqual(foo._version, dual._version)
            foo.add_(1)
            self.assertEqual(foo._version, dual._version)

            # Unpacking should only create aliases as well
            dual_primal, dual_tangent = fwAD.unpack_dual(dual)
            self.assertEqual(dual_primal.storage().data_ptr(), foo.storage().data_ptr())
            self.assertEqual(
                dual_tangent.storage().data_ptr(), bar.storage().data_ptr()
            )
            # And the tangent is actually re-used as-is so it is still the same Tensor
            self.assertIs(dual_tangent, bar)

            # Ensure we properly share the version counter
            self.assertEqual(foo._version, dual_primal._version)
            foo.add_(1)
            self.assertEqual(foo._version, dual_primal._version)
            self.assertEqual(bar._version, dual_tangent._version)
            bar.add_(1)
            self.assertEqual(bar._version, dual_tangent._version)

        # backward mode check
        with fwAD.dual_level():
            foo.requires_grad_()
            bar.requires_grad_()

            # Check that backward gradients properly propagates through packing/unpacking
            dual = fwAD.make_dual(foo, bar)
            p, t = fwAD.unpack_dual(dual)

            gfoo, gbar = torch.autograd.grad(
                p.sum(), (foo, bar), retain_graph=True, allow_unused=True
            )
            self.assertEqual(gfoo, torch.ones_like(foo))
            self.assertIsNone(gbar)

            gfoo, gbar = torch.autograd.grad(
                t.sum(), (foo, bar), retain_graph=True, allow_unused=True
            )
            self.assertIsNone(gfoo)
            self.assertEqual(gbar, torch.ones_like(bar))

            # Check that forward gradients are impacted by detach()
            detached_dual = dual.detach()
            out = detached_dual * 2
            p, t = fwAD.unpack_dual(out)
            self.assertFalse(p.requires_grad)
            self.assertEqual(p, foo * 2)
            self.assertIsNone(t)

            # Check that forward gradients are not impacted by no_grad
            with torch.no_grad():
                out = dual * 3
            p, t = fwAD.unpack_dual(out)
            self.assertFalse(p.requires_grad)
            self.assertFalse(t.requires_grad)
            self.assertEqual(p, foo * 3)
            self.assertEqual(t, bar * 3)

            # Check that forward gradients are not impacted by inplace detach
            dual = dual.clone()
            dual.detach_()
            out = dual * 2
            p, t = fwAD.unpack_dual(out)
            self.assertFalse(p.requires_grad)
            self.assertEqual(p, foo * 2)
            self.assertIsNone(t)

    def test_view_inplace_non_differentiable_views(self):
        original_foo = torch.rand(2, dtype=torch.double)
        original_bar = torch.ones(2, dtype=torch.double)

        # Do clones to be able to compare the values updated inplace
        # with the original content of these Tensors
        foo = original_foo.clone()
        bar = original_bar.clone()

        with fwAD.dual_level():
            # Note that in this test, we use "update" to mean computing the right tangent for the dual
            # All the inplace operations here are expected to update the primal value of the Tensors but
            # not always their tangents.
            # Also all mentions of "non differentiable view" here means non forward differentiable view
            # unless specified otherwise.
            # See note [Forward Grad View/inplace] for more details on how these views work.

            # Check that inplace ops do not update non-differentiable views
            # Non differentiable view
            dual = fwAD.make_dual(foo, bar)
            dual *= 2
            # Check that non differentiable view's tangent was not updated
            self.assertIsNone(fwAD.unpack_dual(foo)[1])
            # Check that the computed result is correct
            self.assertEqual(bar, original_bar * 2)
            self.assertEqual(fwAD.unpack_dual(dual)[1], original_bar * 2)
            self.assertEqual(foo, original_foo * 2)
            self.assertEqual(fwAD.unpack_dual(dual)[0], original_foo * 2)
            # Other non differentiable view
            dual_primal, dual_tangent = fwAD.unpack_dual(dual)
            self.assertIsNone(fwAD.unpack_dual(dual_primal)[1])
            self.assertIsNone(fwAD.unpack_dual(dual_tangent)[1])
            dual_primal *= 2
            # Ensure dual's tangent did not change
            self.assertEqual(fwAD.unpack_dual(dual)[0], original_foo * 4)
            self.assertEqual(fwAD.unpack_dual(dual)[1], original_bar * 2)
            dual_tangent *= 2
            # Ensure dual's primal did not change
            self.assertEqual(fwAD.unpack_dual(dual)[0], original_foo * 4)
            self.assertEqual(fwAD.unpack_dual(dual)[1], original_bar * 4)

    def test_view_inplace_differentiable_views(self):
        original_foo = torch.rand(2)
        original_bar = torch.ones(2)

        # Do clones to be able to compare the values updated inplace
        # with the original content of these Tensors
        foo = original_foo.clone()
        bar = original_bar.clone()

        with fwAD.dual_level():
            # Check that inplace ops do update differentiable view but stop at non differentiable ones
            # A non differentiable view
            dual = fwAD.make_dual(foo, bar)
            # A differentiable view
            view = dual.narrow(0, 0, 1)
            view *= 2
            # Check that non differentiable view was not updated
            self.assertIsNone(fwAD.unpack_dual(foo)[1])
            # Check that differentiable view was updated
            self.assertEqual(fwAD.unpack_dual(dual)[1], torch.tensor([2.0, 1.0]))
            self.assertEqual(fwAD.unpack_dual(view)[1], torch.tensor([2.0]))

            # Check that we track differentiable view even for Tensors that are not dual
            baz = torch.rand(2)
            baz += dual
            self.assertEqual(fwAD.unpack_dual(baz)[1], fwAD.unpack_dual(dual)[1])
            # Updates on view should as well
            baz = torch.rand(2)
            baz[0] = dual[0]
            self.assertEqual(fwAD.unpack_dual(baz)[1][0], fwAD.unpack_dual(dual)[1][0])
            # Unused values get a gradient of 0
            self.assertEqual(fwAD.unpack_dual(baz)[1][1], 0.0)

            # Check that forward non-differentiable views do prevent gradient update
            baz = torch.rand(2)
            view = baz.detach()
            view += dual
            self.assertIsNone(fwAD.unpack_dual(baz)[1])

    def test_view_inplace_always_creates_a_view(self):
        # See https://github.com/pytorch/pytorch/issues/67800
        # The codepath may depend on the op. At the time writing, when self is not a dual tensor
        # the resulting forward grad for self for...
        # - add_ has the same layout as self
        # - mul_ has the same layout as other
        # This is kind of fragile because the above depends on how the forward grad expression
        # is written. For add and mul at least, the output inherits the layout of LHS.
        # We want to handle at least these two cases.
        inplace_binary_ops = (  # Add more to this list?
            lambda x, y: x.add_(y),
            lambda x, y: x.mul_(y),
            lambda x, y: x.copy_(y),
        )

        for inplace_binary_op in inplace_binary_ops:
            base = torch.randn(2, 2)
            view = base.transpose(0, 1)

            primal = torch.randn(2, 2)
            tangent = torch.randn(2, 2)

            with fwAD.dual_level():
                dual = fwAD.make_dual(primal, tangent)
                inplace_binary_op(view, dual)

                # Verify that a view relationship is created for both the primal and tangent
                p, t = fwAD.unpack_dual(base)
                p_clone = p.clone()
                t_clone = t.clone()
                view *= 2
                p, t = fwAD.unpack_dual(base)

                self.assertTrue(torch.allclose(p_clone * 2, p))
                self.assertTrue(torch.allclose(t_clone * 2, t))

    def test_grad_cleanup(self):
        foo = torch.rand(2)
        bar = torch.rand(2)
        baz = torch.rand(2)

        with fwAD.dual_level():
            dual = fwAD.make_dual(foo, bar)
            self.assertIsNone(fwAD.unpack_dual(foo)[1])
            self.assertIs(fwAD.unpack_dual(dual)[1], bar)

        self.assertIsNone(fwAD.unpack_dual(dual)[1])

        with fwAD.dual_level():
            self.assertIsNone(fwAD.unpack_dual(foo)[1])
            new_dual = fwAD.make_dual(foo, baz)

            dual_primal, dual_tangent = fwAD.unpack_dual(dual)
            new_dual_primal, new_dual_tangent = fwAD.unpack_dual(new_dual)
            self.assertEqual(dual_primal, new_dual_primal)
            self.assertIsNone(dual_tangent)
            self.assertEqual(new_dual_tangent, baz)

    def test_detach_view_tracking(self):
        # Default detach is both forward and backward non-differentiable
        foo = torch.rand(2)
        foo_weak = torch._C._WeakTensorRef(foo)

        out = foo.detach()

        del foo
        self.assertTrue(foo_weak.expired())

    def test_out_variant(self):
        with fwAD.dual_level():
            foo = fwAD.make_dual(torch.rand(2), torch.rand(2))
            bar = torch.rand(2)

            with self.assertRaisesRegex(RuntimeError, "out= function"):
                torch.add(bar, bar, out=foo)

            with self.assertRaisesRegex(RuntimeError, "out= function"):
                torch.add(foo, bar, out=bar)

    def test_non_differentiable(self):
        with fwAD.dual_level():
            foo = fwAD.make_dual(torch.rand(2), torch.rand(2))
            bar = torch.rand(2)

            # No differentiable outputs, shouldn't error
            eq = foo == bar

            # Inplace
            foo.eq_(bar)

    def test_create_new_zeros_with_same_meta(self):
        new_zeroes_fn = torch.ops.aten._new_zeros_with_same_feature_meta

        def check(a, b):
            def assert_same_meta(t, target):
                for num_bdim in range(t.dim()):
                    result = new_zeroes_fn(t, target, self_num_batch_dims=num_bdim)

                    self.assertEqual(result.dim(), target.dim() + num_bdim)

                    # Check size/strides match for feature dims only
                    for i in range(num_bdim, result.dim()):
                        self.assertEqual(result.size()[i], target.size()[i - num_bdim])
                        self.assertEqual(
                            result.stride()[i], target.stride()[i - num_bdim]
                        )

                    # Check that we generate strides reasonably
                    if target.is_contiguous():
                        self.assertTrue(result.is_contiguous())

                    self.assertEqual(result.storage_offset(), target.storage_offset())

                    prod_of_t_bdims = reduce(operator.mul, t.size()[:num_bdim], 1)
                    self.assertEqual(
                        len(result.storage()), len(target.storage()) * prod_of_t_bdims
                    )

                    # TensorOptions is same
                    self.assertEqual(result.dtype, target.dtype)

            assert_same_meta(a, b)
            assert_same_meta(b, a)

        a = torch.randn(5, dtype=torch.float)
        b = torch.randn(2, 3, 4, dtype=torch.double)
        check(a, b)

        # non-contiguous case
        a = torch.randn(2, 3, 4).transpose(0, 1).contiguous().transpose(0, 1)
        b = torch.randn(2, 3, 4)
        check(a, b)

        a = torch.randn(5).narrow(0, 1, 2)
        b = torch.randn(2)
        check(a, b)

        # tensor is not a view, but still does not index entirety of storage
        a = torch.randn(5).resize_(4)
        b = torch.randn(4)
        check(a, b)

        # Zero-numel tensors
        a = torch.randn(1, 0, 2)
        b = torch.randn(1, 2)
        check(a, b)

        # Scalar tensor
        a = torch.tensor(1.0)
        b = torch.randn(1, 2)
        check(a, b)

    def test_backward_graph_destruction(self):
        def fn():
            a = torch.rand(10, requires_grad=True)

            da = fwAD.make_dual(torch.rand_like(a), a)

            # Create an object with a c++ cycle as:
            # db -> AutogradMeta -> ForwardGrad -> db's grad
            # db's grad -> AutogradMeta -> MulBackward
            # MulBackward -> SavedVariable -> db
            db = da.exp()

        with fwAD.dual_level():
            fn()
        # This test make sure that we don't deadlock on exit of this
        # context manager. If you do, there is something wrong with the
        # locking of the forward ad level most likely


# Generic device type autograd tests.
class TestAutogradDeviceType(TestCase):
    def test_min_max_median_backprops_to_all_values(self, device):
        for f in [torch.min, torch.max, torch.median, torch.nanmedian]:
            x1 = torch.tensor(
                [1.0, 0.0, 1.0, 0.0, 1.0, 0.0], device=device, requires_grad=True
            )
            x2 = torch.tensor(
                [float("nan"), float("nan"), float("nan")], requires_grad=True
            )
            for x in [x1, x2]:
                y = f(x)
                y.backward()
                self.assertEqual(x.grad.sum(), 1.0)
                self.assertEqual((x.grad == 1 / 3).sum(), 3)

    def test_scatter_index_reduce_amin_amax_backprops_to_all_values(self, device):
        # tests that gradients are evenly distributed when there are multiple max/min values
        # tested here instead of adding a SampleInput as the backward for this case is non-differentiable for gradgrad
        # as is the case for test_min_max_median_backprops_to_all_values above
        fns = (torch.scatter_reduce, torch.index_reduce)
        reduces = ("amin", "amax")
        for fn, reduction in product(fns, reduces):
            input = torch.randn(
                (2, 3), device=device, dtype=torch.float64, requires_grad=True
            )
            src = input.clone().detach_().requires_grad_(True)
            idx = torch.arange(2).to(dtype=torch.long, device=device)
            if fn == torch.scatter_reduce:
                idx = idx.unsqueeze(-1).expand((2, 3))

            gradcheck(fn, (input, 0, idx, src, reduction), check_batched_grad=False)

    def test_scatter_index_reduce_prod_gradgrad_error(self, device):
        # test that double backward raises an error for the case where 2 zeros in src
        # are scattered to the same position in self
        input = torch.tensor(
            [1.0], device=device, dtype=torch.float64, requires_grad=True
        )
        src = torch.tensor(
            [0.0, 0.0], device=device, dtype=torch.float64, requires_grad=True
        )
        idx = torch.tensor([0, 0], device=device, dtype=torch.long)

        for fn in (torch.scatter_reduce, torch.index_reduce):
            # check that this case passes on gradcheck
            gradcheck(fn, (input, 0, idx, src, "prod"), check_batched_grad=False)
            with self.assertRaisesRegex(
                RuntimeError, "Double backward is unsupported for"
            ):
                gradgradcheck(fn, (input, 0, idx, src, "prod"))

    @skipIfMPS  # the test doesn't work on MPS as double types are not supported
    def test_parameter_resize(self, device):
        asd = torch.nn.Parameter(torch.ones(16, dtype=torch.double, device=device))

        for i in range(2):
            with torch.no_grad():
                asd.set_(asd[1:])
                asd.grad = None

            m = torch.cat((asd, asd))
            m.sum().backward()

    @skipIfMPS  # the test doesn't work on MPS as double types are not supported
    @dtypes(torch.double, torch.cdouble)
    def test_sparse_ctor_getter_backward(self, device, dtype):
        # See NOTE [ Sparse: autograd and API ] on the expected behavior of this test
        def _test(size, sparse_dim, nnz, device):
            v_size = [nnz] + list(size[sparse_dim:])
            i = torch.rand(sparse_dim, nnz)
            i.mul_(torch.tensor(size[:sparse_dim]).unsqueeze(1).to(i))
            i = i.to(torch.long)

            inp = torch.randn(
                v_size, dtype=torch.double, device=device, requires_grad=True
            )
            other = self.genSparseTensor(
                size, sparse_dim, nnz, is_uncoalesced=True, device=device, dtype=dtype
            )[0]

            def fn(v):
                x = torch.sparse_coo_tensor(i, v, size, dtype=dtype, device=device)
                y = (x + other).coalesce()
                yv = y.values()
                new_v = yv.tanh()
                z = torch.sparse_coo_tensor(y.indices(), new_v, y.size())
                return z.coalesce().values()

            gradcheck(fn, (inp,), check_batched_grad=False)
            # FIXME: make gradgradcheck work.
            # gradgradcheck(fn, (inp,), check_batched_grad=False)

            # assert that _values is non-differentiable
            with self.assertRaisesRegex(RuntimeError, "does not have a grad_fn"):
                other.detach().requires_grad_()._values().backward(
                    torch.ones_like(other._values())
                )

        for empty_i, empty_v, empty_nnz in product([True, False], repeat=3):
            sparse_size = [] if empty_i else [2, 1]
            dense_size = [1, 0, 2] if empty_v else [1, 2]
            nnz = 0 if empty_nnz else 5
            _test(sparse_size + dense_size, len(sparse_size), nnz, device)

    @skipMeta
    @skipIfMPS
    @dtypes(torch.double, torch.cdouble)
    def test_sparse_backward(self, device, dtype):
        class FixedGradientFunction(Function):
            @staticmethod
            def forward(ctx, x, grad_x):
                ctx.save_for_backward(grad_x)
                return x

            @staticmethod
            def backward(ctx, grad_x):
                (saved_grad_x,) = ctx.saved_tensors
                return saved_grad_x, None

        size = torch.Size([6, 3, 2])
        i1 = torch.tensor([[0, 3, 4], [0, 2, 2]], dtype=torch.long)
        v1 = make_tensor([3, 2], dtype=dtype, device=device)
        sparse_grad1 = torch.sparse_coo_tensor(i1, v1, size, dtype=dtype, device=device)
        i2 = torch.tensor([[0, 1, 3, 4], [0, 1, 2, 2]], dtype=torch.long)
        v2 = make_tensor([4, 2], dtype=dtype, device=device)
        sparse_grad2 = torch.sparse_coo_tensor(i2, v2, size, dtype=dtype, device=device)
        dense_grad = torch.rand(size, device=device, dtype=dtype)
        fn = FixedGradientFunction

        # sparse first
        x = torch.randn(size, dtype=dtype, device=device, requires_grad=True)
        (
            fn.apply(x, sparse_grad1)
            + fn.apply(x, dense_grad)
            + fn.apply(x, sparse_grad2)
        ).sum().abs().backward()
        self.assertEqual(x.grad, dense_grad + sparse_grad1 + sparse_grad2)
        # dense first
        x = torch.randn(size, dtype=dtype, device=device, requires_grad=True)
        (
            fn.apply(x, dense_grad)
            + fn.apply(x, sparse_grad1)
            + fn.apply(x, sparse_grad2)
        ).sum().abs().backward()
        self.assertEqual(x.grad, dense_grad + sparse_grad1 + sparse_grad2)
        # sparse only
        x = torch.randn(size, dtype=dtype, device=device, requires_grad=True)
        (fn.apply(x, sparse_grad1) + fn.apply(x, sparse_grad2)).sum().abs().backward()
        self.assertEqual(x.grad, sparse_grad1 + sparse_grad2)

    @skipIfMPS
    def test_sparse_mask_autograd(self, device):
        tensor = torch.randn(3, requires_grad=True, device=device)
        mask = torch.ones(3, device=device)
        mask[1] = 0
        mask = mask.to_sparse()
        converted = tensor.sparse_mask(mask).to_dense()
        converted.sum().backward()
        self.assertEqual(tensor.grad, mask.to_dense())

    @skipIfMPS  # the test doesn't work on MPS as double types are not supported
    def test_pyscalar_conversions(self, device):
        def _test_pyscalar_conversions(t, integral_conv):
            # integral -> integral
            l = t(torch.zeros(1, 1, 1, dtype=torch.long))
            pyscalar = -12345
            l[0] = pyscalar
            self.assertEqual(integral_conv(l), pyscalar)

            # floating point -> floating point
            f = Variable(t(torch.randn(1, 1, dtype=torch.double)))
            pyscalar = -12345.1
            f[0] = pyscalar
            self.assertEqual(float(f), pyscalar)
            f[0] = nan
            self.assertTrue(math.isnan(float(f)))
            f[0] = inf
            self.assertEqual(float(f), inf)
            f[0] = -inf
            self.assertEqual(float(f), -inf)

            # integral -> floating point
            # check we can convert something that loses precision
            pyscalar = 1234567890123456789
            self.assertNotEqual(pyscalar, integral_conv(float(pyscalar)))
            l[0] = pyscalar
            self.assertEqual(float(l), float(pyscalar))

            # floating point -> integral
            f[0] = nan
            self.assertRaises(ValueError, lambda: integral_conv(f[0]))
            f[0] = inf
            self.assertRaises(OverflowError, lambda: integral_conv(f[0]))
            f[0] = -inf
            self.assertRaises(OverflowError, lambda: integral_conv(f[0]))
            f[0] = sys.float_info.max
            self.assertEqual(integral_conv(f), sys.float_info.max)

            # bool, nonzero
            def test_nonzero(tensor, value, expected):
                tensor[0] = value
                self.assertEqual(expected, bool(tensor))
                self.assertEqual(expected, True if tensor else False)

            test_nonzero(l, 0, False)
            test_nonzero(l, -2, True)
            test_nonzero(f, 0.0, False)
            test_nonzero(f, sys.float_info.min, True)
            test_nonzero(f, nan, bool(nan))
            test_nonzero(f, inf, bool(inf))
            test_nonzero(f, -inf, bool(-inf))

        _test_pyscalar_conversions(lambda x: x.to(device), lambda x: int(x))

    @dtypesIfMPS(torch.float32)
    @dtypesIfCUDA(
        torch.half,
        torch.float,
        torch.double,
        torch.int8,
        torch.int16,
        torch.int32,
        torch.int64,
    )
    @dtypes(
        torch.float, torch.double, torch.int8, torch.int16, torch.int32, torch.int64
    )
    def test_set_requires_grad_only_for_floats(self, device, dtype):
        def f1():
            a = torch.ones(1, dtype=dtype, device=device)
            a.requires_grad_()

        def f2():
            a = torch.ones(1, dtype=dtype, device=device)
            a.requires_grad = True

        def f3():
            torch.ones(1, dtype=dtype, device=device, requires_grad=True)

        a = torch.ones(1, dtype=dtype, device=device)
        a.requires_grad = False  # should always work
        a.requires_grad_(False)

        for f in [f1, f2, f3]:
            if dtype.is_floating_point:
                f()
            else:
                with self.assertRaisesRegex(
                    RuntimeError,
                    "floating point",
                    msg=f"dt: {a.dtype} device: {a.device}",
                ):
                    f()

    @onlyCUDA
    def test_advanced_indexing_backwards_large(self, device):
        # See https://github.com/pytorch/pytorch/issues/22843
        n = 1 << 16
        x = torch.rand(n, 1, device=device, requires_grad=True)
        a = x[:, [0]]
        a.sum().backward()
        self.assertEqual(x.grad, torch.ones(n, 1, device=device))

    def test_advanced_indexing_backwards_memory_format(self, device):
        # See https://github.com/pytorch/pytorch/issues/36956
        shape = (2, 8, 1, 2)
        i = torch.randint(1, shape, device=device).contiguous(
            memory_format=torch.channels_last
        )
        x = torch.randn(shape, requires_grad=True, device=device)
        x[i].sum().backward()

    def _test_reentrant_parent_error_on_cpu(self, device):
        t1 = torch.rand([3, 3], requires_grad=True)
        t2 = torch.rand([3, 3], device=device, requires_grad=True)
        t3 = torch.rand([3, 3], device=device, requires_grad=True)

        # Parent graph cpu graph.
        t4 = t1 * t1
        t5 = TestAutograd.SimulateBackwardError.apply(t4)

        # Child gpu graph (much longer than parent graph).
        prev = t2 * t2
        for i in range(10):
            prev = prev * t2
        reentrant_root = prev

        class ReentrantFunc(Function):
            @staticmethod
            def forward(ctx, inp):
                return inp.clone()

            @staticmethod
            def backward(ctx, grad):
                # Reentrant backward in child will take much longer.
                reentrant_root.backward()
                return grad

        # Parent gpu graph.
        t6 = ReentrantFunc.apply(t3)
        t7 = t6 * t6

        # Parent graph will error out first, while child graph will continue executing.
        with self.assertRaisesRegex(Exception, "Simulate error"):
            torch.autograd.backward([t5.sum(), t7.sum()])

        # No grads should be accumulated since child graph will stop execution
        # after parent receives error.
        self.assertIsNone(t2.grad)
        self.assertIsNone(t1.grad)
        self.assertIsNone(t3.grad)

    @onlyCUDA
    def test_reentrant_parent_error_on_cpu(self, device):
        def _get_cuda_memory_usage():
            # we don't need CUDA synchronize because the statistics are not tracked at
            # actual freeing, but at when marking the block as free.
            num_devices = torch.cuda.device_count()
            gc.collect()
            return tuple(torch.cuda.memory_allocated(i) for i in range(num_devices))

        before = _get_cuda_memory_usage()

        # Run as separate function so that gc can clean up everything when we
        # check for memory usage.
        self._test_reentrant_parent_error_on_cpu(device)

        # Wait for autograd thread to cleanup failed tasks.
        after = _get_cuda_memory_usage()
        start = time.time()
        while before != after and time.time() - start < 30:
            time.sleep(0.1)
            after = _get_cuda_memory_usage()

        self.assertEqual(before, after)

    @skipIfMPS  # the test doesn't work on MPS
    # TODO: see if these tests can be ported to OpInfos or moved to where's test suite
    def test_where_functional(self, device):
        x = torch.randn(5, 5, dtype=torch.double, device=device, requires_grad=True)
        y = torch.randn(5, 5, dtype=torch.double, device=device, requires_grad=True)
        cond = mask_not_all_zeros((5, 5)).to(device=device)

        def where(cond, x, y):
            return torch.where(cond, x, y)

        gradcheck(where, [cond, x, y], raise_exception=True)
        gradgradcheck(where, [cond, x, y], [torch.randn(5, 5, device=device)])

        x = torch.randn(5, 1, 5, dtype=torch.double, device=device, requires_grad=True)
        y = torch.randn(5, 5, 1, dtype=torch.double, device=device, requires_grad=True)
        gradcheck(where, [cond, x, y], raise_exception=True)
        gradgradcheck(where, [cond, x, y], [torch.randn(5, 5, 5, device=device)])

    @skipIfMPS  # the test doesn't work on MPS
    def test_where_scalar(self, device):
        x = torch.randn(5, 5, dtype=torch.double, device=device, requires_grad=True)
        scalar = 4.0
        cond = mask_not_all_zeros((5, 5)).to(device=device)

        def where_scalar_first(cond, x):
            return torch.where(cond, scalar, x)

        def where_scalar_second(cond, x):
            return torch.where(cond, x, scalar)

        gradcheck(where_scalar_first, (cond, x))
        gradgradcheck(where_scalar_first, (cond, x))

        gradcheck(where_scalar_second, (cond, x))
        gradgradcheck(where_scalar_second, (cond, x))

    @onlyCUDA
    def test_free_unneeded_tensor(self, device):
        x = torch.randn(2, 3, 10, 10, device=device, requires_grad=True)
        m = torch.randn(1, 3, 1, 1, device=device)

        z = x.sum()
        base_mem = torch.cuda.memory_allocated()
        z = ((x + 2) * m).sum()
        end_mem = torch.cuda.memory_allocated()

        # In the end the memory usage should remain equal, because neither of
        # (x + 2) and ((x + 2) * m) should be kept alive for backward, while the
        # previous allocation of z had the same size as the current one.
        self.assertEqual(base_mem, end_mem)

    @onlyCUDA
    def test_pin_memory(self, device):
        x = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
        self.assertEqual(x, x.pin_memory())
        self.assertIsNot(x, x.pin_memory())
        self.assertTrue(x.pin_memory().requires_grad)
        gradcheck(lambda x: x.pin_memory(), [x])
        gradgradcheck(lambda x: x.pin_memory(), [x])

    @onlyCUDA
    def test_profiler_emit_nvtx(self, device):
        # This test is not intended to ensure correctness of nvtx ranges.
        # That would require something a great deal more complex (you'd have to create a
        # profile in a subprocess, open it, and parse the sql somehow).
        # This test is merely intended to catch if emit_nvtx breaks on construction.
        a = torch.tensor([1, 2, 3], dtype=torch.float32, device=device)
        with torch.cuda.profiler.profile():
            with emit_nvtx():
                a.add(1.0)

    @onlyCUDA
    def test_rnn_backward_to_input_but_not_parameters(self, device):
        # this checks whether it is possible to not require
        # weight parameters, but require inputs, see #7722
        l = torch.nn.LSTM(2, 3).to(device)
        for p in l.parameters():
            p.requires_grad = False
        s = torch.randn(1, 1, 2, requires_grad=True, device=device)
        out, _ = l(s)
        out.sum().backward()
        self.assertFalse(s.grad is None or s.grad.abs().sum().item() == 0)

    @unittest.skipIf(not torch.profiler.itt.is_available(), "ITT is required")
    def test_profiler_emit_itt(self, device):
        # This test is not intended to ensure correctness of itt ranges.
        # That would require something a great deal more complex (you'd have to create a
        # profile in a subprocess, open it, and parse the sql somehow).
        # This test is merely intended to catch if emit_itt breaks on construction.
        a = torch.tensor([1, 2, 3], dtype=torch.float32, device=device)
        with emit_itt():
            a.add(1.0)

    @skipIfMPS  # the test doesn't work as randn is not supported with type long
    @deviceCountAtLeast(1)
    def test_grad_assignment(self, devices):
        x = torch.randn(5, 5, device=devices[0])

        # Tests that the wrong type raises
        with self.assertRaisesRegex(TypeError, "expected to be a Tensor or None"):
            x.grad = 0

        # Tests that the wrong shape raises
        with self.assertRaises(RuntimeError):
            x.grad = torch.randn(2, 2, device=devices[0])

        # Tests that the wrong dtype raises
        with self.assertRaises(RuntimeError):
            x.grad = torch.randn(5, 5, dtype=torch.long, device=devices[0])

        # Tests that self-assignment raises
        with self.assertRaises(RuntimeError):
            x.grad = x

        # Tests device -> cpu grad assignment raises
        if self.device_type != "cpu":
            with self.assertRaises(RuntimeError):
                t_cpu = torch.rand(5, 5)
                t_cpu.grad = torch.randn(5, 5, device=devices[0])

        # Tests half type on CUDA
        if self.device_type == "cuda":
            x = x.to(dtype=torch.half, device=devices[0])
            x.grad = torch.zeros_like(x)

        # Tests cross-device assignment raises
        if len(devices) > 1:
            x = torch.randn(5, 5, device=devices[0])
            with self.assertRaises(RuntimeError):
                x.grad = torch.randn(5, 5, device=devices[1])

    @dtypesIfMPS(torch.float32)
    @deviceCountAtLeast(1)
    @dtypes(torch.float, torch.double)
    def test_requires_grad_factory(self, devices, dtype):
        fns = [torch.ones_like, torch.randn_like]
        x = torch.randn(2, 3, dtype=dtype, device=devices[0])

        for fn in fns:
            for requires_grad in [True, False]:
                output = fn(
                    x, dtype=dtype, device=devices[0], requires_grad=requires_grad
                )
                self.assertEqual(requires_grad, output.requires_grad)
                self.assertIs(dtype, output.dtype)
                self.assertEqual(devices[0], str(x.device))

    @deviceCountAtLeast(2)
    def test_unused_output_device(self, devices):
        from torch.nn.parallel._functions import Broadcast

        x = torch.randn(5, 5, dtype=torch.float, device=devices[0], requires_grad=True)
        outputs = Broadcast.apply(list(range(len(devices))), x)
        y = outputs[-1] * 2
        y.sum().backward()
        self.assertEqual(x.grad, torch.ones(5, 5) * 2)

    @deviceCountAtLeast(2)
    def test_backward_device(self, devices):
        # check that current device matches the variable's device
        device = [None]

        class Identity(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                return x.clone()

            @staticmethod
            def backward(ctx, grad_output):
                device[0] = grad_output.device
                return grad_output.clone()

        v = torch.randn(1, device=devices[1], requires_grad=True)
        Identity.apply(v).backward()
        self.assertEqual(str(device[0]), devices[1])

    @deviceCountAtLeast(2)
    def test_inputbuffer_add_multidevice(self, devices):
        input = torch.randn(1, device=devices[0], requires_grad=True)
        output = input.to(device=devices[1]) + input.to(device=devices[1])
        output.backward()

    @onlyCPU
    def test_copy_(self, device):
        # At the time of writing this test, copy_ is not generated from native_functions.yaml
        # there was a bug that bfloat16 was not recognized as floating.
        x = torch.randn(10, device=device, requires_grad=True)
        floating_dt = floating_types_and(torch.half, torch.bfloat16)
        for dt in floating_dt:
            y = torch.empty(10, device=device, dtype=dt)
            y.copy_(x)
            self.assertTrue(y.requires_grad)
            z = x.to(torch.bfloat16)
            self.assertTrue(z.requires_grad)

    def test_copy_forward_ad_broadcasting(self, device):
        # copy_ allows the src to have a different shape from self as long as src is
        # broadcastable to self. Make sure forward AD handles this case.
        primal = torch.rand(3, 3, device=device)
        tangent = torch.rand(3, 3, device=device)
        non_dual = torch.rand(1, 3, 3, device=device)

        with fwAD.dual_level():
            dual = fwAD.make_dual(primal, tangent)
            non_dual.copy_(dual)

    def test_copy_forward_ad_same_layout_copies_grad(self, device):
        primal = torch.tensor([[3.0], [4.0]], device=device)
        tangent = torch.tensor([[5.0], [6.0]], device=device)

        with fwAD.dual_level():
            x_dual = fwAD.make_dual(primal, tangent)
            non_dual = torch.tensor([[1.0], [2.0]])
            non_dual.copy_(x_dual)
            self.assertTrue(fwAD.unpack_dual(non_dual).tangent is not tangent)

    @onlyCUDA
    def test_simple_reentrant_cross_device(self, device):
        class ReentrantFunc(Function):
            _cpu_mode = True

            @staticmethod
            def forward(ctx, x):
                return x * (x + 2)

            @staticmethod
            def backward(ctx, grad_output):
                with torch.enable_grad():
                    if ReentrantFunc._cpu_mode:
                        new_param = torch.randn(2, 2, requires_grad=True)
                        (new_param**2).sum().backward()
                    else:
                        new_param = torch.randn(2, 2, device=device, requires_grad=True)
                        (new_param**2).sum().backward()
                return grad_output

        # Reentrant starts on GPU thread, finishs on GPU thread
        x = torch.randn(2, 2, device=device, requires_grad=True)
        out = ReentrantFunc.apply(x)
        out.sum().backward()

        # Reentrant starts on CPU thread, finishs on GPU thread
        x = torch.randn(2, 2, requires_grad=True)
        # set ReentrantFunc node to GPU to emit tasks to GPU queue
        ReentrantFunc._cpu_mode = False
        out = ReentrantFunc.apply(x)
        out.sum().backward()

        # Reentrant starts on GPU thread, finishs on CPU thread
        x = torch.randn(2, 2, device=device, requires_grad=True)
        # set ReentrantFunc node to CPU to emit tasks to CPU queue
        ReentrantFunc._cpu_mode = True
        out = ReentrantFunc.apply(x)
        out.sum().backward()

    @onlyCUDA
    def test_cross_device_reentrant_autograd(self, device):
        # Output on gpu so that this task will be associated with the gpu thread
        def fn_on_gpu(inp):
            # Artificially increase the priority of the next op to make sure it runs
            # as soon as we reach it before the ops of branch1.
            dummy = inp * 2 * 2 * 2 * 2
            return inp.to(device=device)

        def parent_on_cpu(inp):
            # Slow branch of ops on gpu so that the work queue for the gpu thread
            # won't empty too quickly. They also have smaller priorities than the
            # ones created by fn_on_gpu
            branch1 = inp.to(device=device)
            branch1 = branch1 / branch1
            branch1 = branch1 / branch1
            branch1 = branch1 / branch1
            # Perform checkpoint on cpu tensors. So the last op performed in the reentrant
            # autograd is an AccumulateGrad that runs on the cpu thread for the gpu thread.
            # So the cpu thread will notify the gpu thread with an empty NodeTask.
            branch2 = checkpoint(fn_on_gpu, inp, use_reentrant=True)
            out = branch2 + branch1
            return out

        inp = torch.rand(2, requires_grad=True)
        out = parent_on_cpu(inp)
        # This will segfault if the empty NodeTask is not handled properly in the
        # gpu thread ReadyQueue
        out.sum().backward()

    def test_inplace_on_view_backprop_base(self, device):
        # modify view and back-prop through base
        root = torch.randn(2, 2, device=device, requires_grad=True)
        x = root.clone()
        v1 = x.narrow(0, 0, 1)
        v1.mul_(2)
        x.sum().backward()
        self.assertEqual(root.grad.tolist(), [[2, 2], [1, 1]])

    def test_inplace_on_view_backprop_view_of_view(self, device):
        # modify view and backprop through view-of-view
        root = torch.randn(2, 2, device=device, requires_grad=True)
        x = root.clone()
        v1 = x.narrow(0, 0, 1)
        v2 = x.narrow(0, 0, 1)
        v1.mul_(2)
        v2.sum().backward()
        self.assertEqual(root.grad.tolist(), [[2, 2], [0, 0]])

    def test_inplace_on_view_of_view(self, device):
        # modify view-of-view and backprop through base
        root = torch.randn(2, 2, device=device, requires_grad=True)
        x = root.clone()

        v1 = x.narrow(0, 0, 1)
        v2 = v1.narrow(1, 1, 1)
        v2.mul_(2)
        x.sum().backward()
        self.assertEqual(root.grad.tolist(), [[1, 2], [1, 1]])

    @skipIfMPS  # the test doesn't work on MPS as double types are not supported
    def test_inplace_on_view_then_no_grad(self, device):
        # Perform an in-place operation on a view of a non-leaf variable.
        a = torch.ones(3, 1, dtype=torch.double, device=device, requires_grad=True)
        b = a * 2
        c = b.view_as(b)
        c[0][0] = 3

        # Force a graph update with grad disabled.
        with torch.no_grad():
            c.grad_fn

        c.sum().backward()

    @skipIfMPS  # the test doesn't work on MPS as double types are not supported
    def test_inplace_on_view_gradcheck(self, device):
        # gradcheck modifications to views
        a = torch.randn(4, 4, dtype=torch.double, device=device, requires_grad=True)
        b = torch.randn(2, 2, dtype=torch.double, device=device, requires_grad=True)

        def func(root, b):
            x = root.clone()
            x.narrow(1, 2, 2).narrow(0, 1, 2).mul_(b)
            x.narrow(1, 0, 2).narrow(0, 1, 2).mul_(b)
            return x

        gradcheck(func, [a, b], raise_exception=True)
        go = torch.randn(
            a.size(), dtype=torch.double, device=device, requires_grad=True
        )
        gradgradcheck(func, (a, b), (go,))

    def test_inplace_on_view_multiple_outputs(self, device):
        root = torch.arange(9.0, dtype=torch.double).reshape(3, 3).requires_grad_()
        x = root.clone()
        v1 = x.unbind()
        with self.assertRaises(RuntimeError):
            v1[0].mul_(2)

    @skipIfMPS  # the test doesn't work on MPS as double types are not supported
    def test_inplace_on_view_of_multiple_output_view(self, device):
        a = torch.rand(
            10, dtype=torch.double, device=device, requires_grad=True
        ).clone()
        b = a.unbind(0)
        c = b[0].view_as(b[0])
        with self.assertRaises(RuntimeError):
            c.mul_(2)

    @skipIfMPS  # MPS backend doesn't support double types
    def test_inplace_multiple_output_view_of_view(self, device):
        a = torch.rand(
            10, dtype=torch.double, device=device, requires_grad=True
        ).clone()
        b = a.view_as(a)
        c = b.unbind(0)
        with self.assertRaises(RuntimeError):
            c[0].mul_(2)

    @skipIfMPS  # MPS backend doesn't support double types
    def test_inplace_on_view_makes_base_require_grad(self, device):
        # in-place modification to view makes base require grad
        a = torch.randn(4, 4, dtype=torch.double, device=device, requires_grad=False)
        b = torch.randn(4, 2, dtype=torch.double, device=device, requires_grad=True)

        def func(root, b):
            x = root.clone()
            self.assertFalse(x.requires_grad)
            x.narrow(1, 2, 2).mul_(b)
            self.assertTrue(x.requires_grad)
            return x

        gradcheck(func, [a, b], raise_exception=True)
        go = torch.randn(
            a.size(), dtype=torch.double, device=device, requires_grad=True
        )
        gradgradcheck(func, (a, b), (go,))

    def test_inplace_on_view_backprop_view(self, device):
        # modify view and backprop through view
        a = torch.tensor([2.0, 5.0], device=device, requires_grad=False)
        b = torch.tensor([3.0], device=device, requires_grad=True)
        res = a.narrow(0, 1, 1).mul_(b)
        res.sum().backward()
        self.assertEqual(b.grad.tolist(), [5])
        self.assertIsNone(a.grad)

    @skipIfMPS  # the test doesn't work on MPS as double types are not supported
    def test_inplace_on_view_modify_base(self, device):
        # Test that an in-place operation on a base that forced it to require
        # grad also forces any previous views to require grad and backprop
        # correctly
        r = torch.ones(1, dtype=torch.double, device=device, requires_grad=True)

        def fn(r):
            x = torch.ones(5, dtype=torch.double, device=device)
            v = x.select(0, 1)
            self.assertFalse(v.requires_grad)
            self.assertIsNone(v.grad_fn)
            x.add_(r)  # v is now dependent on r due to the in-place op on x
            self.assertTrue(v.requires_grad)
            return v

        gradcheck(fn, [r])
        gradgradcheck(fn, [r])

    @skipIfMPS  # the test doesn't work on MPS as double types are not supported
    def test_inplace_on_view_python(self, device):
        # in-place modifications of Python-autograd created view
        a = torch.randn(4, 4, dtype=torch.double, device=device, requires_grad=True)
        b = torch.randn(2, 2, dtype=torch.double, device=device, requires_grad=True)

        class PyAdd(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x, y):
                ctx.mark_dirty(x)
                x.add_(y)
                return x

            @staticmethod
            def backward(ctx, grad):
                return grad, grad

        def func(root, b):
            x = root.clone()
            PyAdd.apply(x.narrow(1, 2, 2).narrow(0, 1, 2), b)
            PyAdd.apply(x.narrow(1, 0, 2).narrow(0, 1, 2), b)
            return x

        gradcheck(func, [a, b], raise_exception=True)
        go = torch.randn(
            a.size(), dtype=torch.double, device=device, requires_grad=True
        )
        gradgradcheck(func, (a, b), (go,))

    def test_inplace_on_view_non_contig(self, device):
        root = torch.ones(2, 3, 2, device=device).select(2, 1).t().requires_grad_(True)
        x = root.clone()
        v1 = x.narrow(0, 0, 1)
        v2 = v1.narrow(1, 1, 1)
        v2.mul_(2)
        x.sum().backward()
        self.assertEqual(root.grad.tolist(), [[1, 2], [1, 1], [1, 1]])

    def test_inplace_on_view_multi_output_unsafe(self, device):
        for f in [
            lambda t: t.unsafe_split(1),
            lambda t: t.unsafe_split_with_sizes((1, 1, 1)),
            lambda t: t.unsafe_chunk(3),
        ]:
            a = torch.randn(3, 3, device=device, requires_grad=True)
            b = a + a
            s1, s2, s3 = f(b)
            s1.mul_(s2)
            s1.sum().backward()

    def test_inplace_on_view_multi_output_safe(self, device):
        for f in [
            lambda t: t.split(1),
            lambda t: t.split_with_sizes((1, 1, 1)),
            lambda t: t.chunk(3),
        ]:
            a = torch.randn(3, 3, device=device, requires_grad=True)
            b = a + a
            s1, s2, s3 = f(b)
            error_msg = (
                "This view is the output of a function that returns multiple views."
            )
            with self.assertRaisesRegex(RuntimeError, error_msg):
                s1.mul_(s2)

    def test_inplace_on_view_undefined_grad_output(self, device):
        a = torch.tensor([1.0], requires_grad=True)
        c = a.clone()
        v = c[:]
        b = torch.tensor(1.0, requires_grad=True)

        class InplaceFunc(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x, other):
                ctx.mark_dirty(x)
                return x.mul_(2)

            @staticmethod
            def backward(ctx, grad):
                return grad * 2, None

        out = InplaceFunc.apply(v, b)
        out.backward()
        self.assertIsNone(b.grad)
        self.assertEqual(a.grad.item(), 2)

    @skipIfMPS  # the test doesn't work on MPS as double types are not supported
    def test_mv_grad_stride_0(self, device):
        # Reference: https://github.com/pytorch/pytorch/issues/38315
        mat = torch.randn(2, 2, dtype=torch.double, device=device)
        vec = torch.randn(1, dtype=torch.double, device=device).requires_grad_(True)

        def fn(vec):
            # Expand inside the function to make sure the input to
            # gradcheck does not have overlapping memory
            vec = vec.expand(2)
            return (mat @ vec).sum()

        gradcheck(fn, (vec))
        gradgradcheck(fn, (vec))

    @onlyCUDA
    def test_gradcheck_input_output_different_device(self, device):
        x = torch.ones((1,), dtype=torch.double, device="cuda", requires_grad=True)
        gradcheck(lambda x: x.to("cpu"), (x,))

        x = torch.ones((1,), dtype=torch.double, device="cpu", requires_grad=True)
        gradcheck(lambda x: x.to("cuda"), (x,))

    def test_strided_leaf_grad_layout(self, device):
        # (1) If leaf is non-overlapping and dense, grad's layout should match its leaf.
        for fmt_a in (torch.contiguous_format, torch.channels_last):
            for fmt_b in (torch.contiguous_format, torch.channels_last):
                a = torch.rand((2, 3, 4, 5), device=device).to(memory_format=fmt_a)
                b = torch.rand((2, 3, 4, 5), device=device).to(memory_format=fmt_b)
                a.requires_grad_()
                b.requires_grad_()
                # checks (1) for broadcasted gradients
                a.sum().backward()
                self.assertEqual(a.grad.stride(), a.stride())
                b.sum().backward()
                self.assertEqual(b.grad.stride(), b.stride())
                # checks (1) for non-broadcasted gradients
                a.grad = None
                b.grad = None
                (a * b).sum().backward()
                self.assertEqual(a.grad.stride(), a.stride())
                self.assertEqual(b.grad.stride(), b.stride())

        # (2) If leaf isn't dense, checks that grads are rowmajor contiguous.
        c = torch.empty_strided((2, 2), (4, 2), device=device).copy_(
            torch.rand((2, 2), device=device)
        )
        c.requires_grad_()
        d = torch.rand((2, 2), device=device)
        # checks (2) for broadcasted gradients
        c.sum().backward()
        self.assertEqual(c.grad.stride(), (2, 1))
        # checks (2) for non-broadcasted gradients
        c.grad = None
        (c * d).sum().backward()
        self.assertEqual(c.grad.stride(), (2, 1))

    @skipIfMPS
    def test_copy_r_to_c(self, device):
        out_c = torch.empty(3, 2, dtype=torch.cdouble, device=device)
        inp_r = torch.randn(3, 2, dtype=torch.double, device=device, requires_grad=True)

        def do_test():
            out_c.copy_(inp_r)
            out_c_inter = out_c.sum()
            out_c_inter.abs().backward()
            with torch.no_grad():
                self.assertEqual(
                    inp_r.grad, torch.ones_like(inp_r) * torch.sgn(out_c_inter).real
                )

        self.assertNotWarn(do_test)

    def test_to_r_to_c(self, device):
        def do_test():
            inp_r = torch.randn(
                3, 2, dtype=torch.double, device=device, requires_grad=True
            )
            out = inp_r.to(torch.complex128)
            out_inter = out.sum()
            out_inter.abs().backward()
            with torch.no_grad():
                self.assertEqual(
                    inp_r.grad, torch.ones_like(inp_r) * torch.sgn(out_inter).real
                )

        self.assertNotWarn(do_test)

    def test_non_differentiable_ops(self, device):
        # Just make sure the op doesn't raise an error
        # and resulting tensor has requires_grad=False.
        x = torch.tensor([[1, 2], [3, 4.0]], requires_grad=True, device=device)
        out = torch.isin(x, torch.tensor([2, 3], device=device))
        self.assertFalse(out.requires_grad)

        x = torch.randn(3, 3, requires_grad=True)
        out = torch.signbit(x)
        self.assertFalse(out.requires_grad)

    def test_warning_in_backward(self, device):
        # Test warning during backward are always propagated as python warnings (gh-50209)
        # NOTE: For device=cuda, warning gets propagated from a worker thread
        a = torch.zeros((), device=device, requires_grad=True)
        b = torch._C._nn._test_warn_in_autograd(a)

        with self.assertWarnsRegex(UserWarning, "Warn from backward"):
            b.backward()

    def test_complex_scalar_backward(self, device):
        a = torch.zeros(1, device=device, requires_grad=True)
        b = a * 0.5j

        msg = "grad can be implicitly created only for real scalar outputs"
        with self.assertRaisesRegex(RuntimeError, msg):
            b.backward()

        with self.assertRaisesRegex(RuntimeError, msg):
            torch.autograd.grad(b, a)

    def test_pow_real_negative_base_complex_exponent(self, device):
        # OpInfo doesn't naturally support input of mixed types, hence this test here.
        base = -torch.ones(2, device=device, dtype=torch.double)
        exponent = torch.randn(
            2, device=device, dtype=torch.cdouble, requires_grad=True
        )

        def fn(exponent):
            return torch.pow(base, exponent)

        torch.autograd.gradcheck(fn, (exponent,))

        def fn(exponent):
            return torch.pow(-1, exponent)

        torch.autograd.gradcheck(fn, (exponent,))

    def test_resize_version_bump(self, device):
        x = torch.rand((1,), device=device)
        y = torch.randn((3,), device=device)
        x.resize_((1, 2))
        self.assertEqual(x._version, 1)
        x.resize_as_(y)
        self.assertEqual(x._version, 2)

        # In the following cases, `resize` is no-op,
        # so no version bumps.
        x.resize_((3,))
        self.assertEqual(x._version, 2)

        x.resize_as_(y)
        self.assertEqual(x._version, 2)


class TestAllowMutationOnSaved(TestCase):
    def assertClonedLenEqual(self, ctx, n):
        self.assertEqual(len(list(ctx.cloned.items())), n)

    def assertTIDMapLenEqual(self, ctx, n):
        self.assertEqual(len(list(ctx.tid_to_weakhandle.items())), n)

    def test_basic(self):
        a = torch.rand(2, 3, requires_grad=True)

        def fn(a):
            b = a.clone()
            out = (b**2).sum()
            b.sin_()
            out.sum().backward()
            return a.grad

        msg = (
            "variables needed for gradient computation has been modified by an inplace"
        )
        with self.assertRaisesRegex(RuntimeError, msg):
            fn(a)

        with torch.autograd.graph.allow_mutation_on_saved_tensors() as ctx:
            da = fn(a)

        self.assertTrue(torch.allclose(a * 2, da))
        self.assertClonedLenEqual(ctx, 0)

    def test_views(self):
        a = torch.rand(2, 3, requires_grad=True)

        def fn(a):
            b = a.clone()
            c = b.view_as(b)
            out = (b**2).sum()  # How does this work?
            c.sin_()
            out.sum().backward()
            return a.grad

        msg = (
            "variables needed for gradient computation has been modified by an inplace"
        )
        with self.assertRaisesRegex(RuntimeError, msg):
            fn(a)

        with torch.autograd.graph.allow_mutation_on_saved_tensors() as ctx:
            da = fn(a)

        self.assertClonedLenEqual(ctx, 0)
        self.assertTrue(torch.allclose(a * 2, da))

    def test_save_base_and_modify_view(self):
        with torch.autograd.graph.allow_mutation_on_saved_tensors() as ctx:
            a = torch.rand(2, 3, requires_grad=True)
            b = a.clone()
            c = b[:1]
            out = b**2
            # modify the view
            c *= 10
            # self.assertClonedLenEqual(ctx, 1)
            out.sum().backward()
            self.assertClonedLenEqual(ctx, 0)

        self.assertClonedLenEqual(ctx, 0)
        self.assertTrue(torch.allclose(a * 2, a.grad))

    def test_save_view_modify_base(self):
        with torch.autograd.graph.allow_mutation_on_saved_tensors() as ctx:
            a = torch.rand(2, 3, requires_grad=True)
            b = a.clone()
            c = b[:]
            out = (c**2).sum()
            b *= 2
            out.backward()
            self.assertTrue(torch.allclose(a * 2, a.grad))

    def test_double_backward(self):
        with torch.autograd.graph.allow_mutation_on_saved_tensors() as ctx:
            a = torch.rand(2, 3, requires_grad=True)
            b = a.clone()
            out = (b**2).sum()
            b.sin_()
            torch.autograd.grad(out, a, create_graph=True)
            (da,) = torch.autograd.grad(out, a, create_graph=True)
            (d2a,) = torch.autograd.grad(da.sum(), a)

        self.assertTrue(torch.allclose(torch.ones_like(a) * 2, d2a))
        self.assertClonedLenEqual(ctx, 0)

    def test_saved_but_not_anymore(self):
        # Make sure we don't clone if the tensor was once saved, but
        # by the time we do in-place, it is no longer saved
        with torch.autograd.graph.allow_mutation_on_saved_tensors() as ctx:
            a = torch.randn(2, 3, requires_grad=True).clone()
            out = (a**2).sum()
            self.assertTIDMapLenEqual(ctx, 1)
            self.assertClonedLenEqual(ctx, 0)
            out.backward()
            a.sin_()
            self.assertClonedLenEqual(ctx, 0)
            out = (a**2).sum()
            a.sin_()
            self.assertClonedLenEqual(ctx, 1)
            del out
            self.assertClonedLenEqual(ctx, 0)

    def test_saved_same_tensor_many_times(self):
        # We should only clone once
        with torch.autograd.graph.allow_mutation_on_saved_tensors() as ctx:
            a = torch.randn(2, 3, requires_grad=True).clone()
            b = a**2
            c = a**2
            a.sin_()
            self.assertClonedLenEqual(ctx, 1)
            del b, c
            self.assertClonedLenEqual(ctx, 0)

    def test_saved_same_tensor_different_versions(self):
        with torch.autograd.graph.allow_mutation_on_saved_tensors() as ctx:
            a = torch.randn(2, 3, requires_grad=True).clone()
            b = a**2
            a.sin_()
            c = a**2
            a.sin_()
            self.assertClonedLenEqual(ctx, 2)
            del b
            self.assertClonedLenEqual(ctx, 1)
            del c
            self.assertClonedLenEqual(ctx, 0)

    def test_with_math_views(self):
        with torch.autograd.graph.allow_mutation_on_saved_tensors() as ctx:
            a = torch.tensor([1 + 1j], requires_grad=True).clone()
            b = a.conj()
            out = (b**2).sum()
            a.sin_()
            out.abs().backward()

            a = torch.tensor([1 + 1j], requires_grad=True).clone()
            b = a.conj()
            out = (b**2).sum()
            # in this case, it is no longer a view it seems
            b.sin_()
            out.abs().backward()

    def test_with_out_variant(self):
        with torch.autograd.graph.allow_mutation_on_saved_tensors() as ctx:
            a = torch.tensor([1.0], requires_grad=True)
            b = torch.tensor([1.0])
            c = torch.tensor([2.0])
            out = a * b
            self.assertTIDMapLenEqual(ctx, 1)
            torch.sin(c, out=b)
            self.assertClonedLenEqual(ctx, 1)
            out.backward()
            self.assertClonedLenEqual(ctx, 0)

    def test_backward_out_of_context(self):
        # Out of context
        with torch.autograd.graph.allow_mutation_on_saved_tensors() as ctx:
            a = torch.rand(2, 3, requires_grad=True)
            out = (a**2).sum()

        msg = "Trying to backward outside of the 'allow_mutation_on_saved_tensors' context"
        with self.assertRaisesRegex(AssertionError, msg):
            out.backward()

        # Different context
        with torch.autograd.graph.allow_mutation_on_saved_tensors() as ctx:
            a = torch.rand(2, 3, requires_grad=True)
            out = (a**2).sum()

        with torch.autograd.graph.allow_mutation_on_saved_tensors() as ctx:
            with self.assertRaisesRegex(AssertionError, msg):
                out.backward()

    def test_disallow_nesting(self):
        with torch.autograd.graph.allow_mutation_on_saved_tensors() as ctx:
            msg = "allow_mutation_on_saved_tensors contexts cannot be nested"
            with self.assertRaisesRegex(RuntimeError, msg):
                with torch.autograd.graph.allow_mutation_on_saved_tensors() as ctx:
                    pass


class TestAutogradInferenceMode(TestCase):
    def _is_inference_tensor(self, tensor):
        try:
            err_msg = "Inference tensors do not track version counter"
            with self.assertRaisesRegex(RuntimeError, err_msg):
                tensor._version
            return True
        except AssertionError as e:
            return False

    def test_inference_mode_context_manager(self):
        self.assertFalse(torch.is_inference_mode_enabled())
        with torch.inference_mode():
            self.assertTrue(torch.is_inference_mode_enabled())
            with torch.inference_mode(False):
                self.assertFalse(torch.is_inference_mode_enabled())
            self.assertTrue(torch.is_inference_mode_enabled())
        self.assertFalse(torch.is_inference_mode_enabled())

    def test_inference_mode_decorator(self):
        def func(x):
            self.assertEqual(torch.is_inference_mode_enabled(), mode)
            return x * x

        for mode, use_kwarg in product((True, False, None), (True, False)):
            if mode is None:
                if use_kwarg:
                    decorated = torch.inference_mode(mode=func)
                else:
                    decorated = torch.inference_mode(func)
                mode = True
            else:
                if use_kwarg:
                    decorated = torch.inference_mode(mode=mode)(func)
                else:
                    decorated = torch.inference_mode(mode)(func)

            for requires_grad in (True, False):
                c = torch.ones(1, 2, 3, requires_grad=requires_grad)
                d = decorated(c)
                self.assertTrue(not mode or torch.is_inference(d))
                self.assertEqual(d.requires_grad, requires_grad and not mode)

    def test_inference_mode_tensor_creation(self):
        with torch.inference_mode():
            # new tensors created through constructors are inference tensors
            c = torch.ones(1, 2, 3)
            self.assertFalse(c.requires_grad)
            self.assertTrue(torch.is_inference(c))

            # requires_grad doesn't change inference tensor behavior in InferenceMode
            tmp = torch.ones(1, 2, 3, requires_grad=True)
            self.assertTrue(tmp.requires_grad)
            self.assertTrue(torch.is_inference(tmp))

            tmp = torch.ones(1, 2, 3).requires_grad_(False)
            self.assertFalse(tmp.requires_grad)
            self.assertTrue(torch.is_inference(tmp))

    def test_inference_mode_existing_autograd_session(self):
        s = torch.ones(1, 2, 3, requires_grad=True)
        a = s.clone()

        # `a` gets saved outside of inference mode
        out = a * a
        with torch.inference_mode():
            a.add_(2)

        self.assertFalse(torch.is_inference(a))
        # tensors created outside of inference mode aren't
        # inference tensors, so they will still have their
        # version counters tracked
        err_msg = (
            "one of the variables needed for gradient computation has been "
            "modified by an inplace operation"
        )
        with self.assertRaisesRegex(RuntimeError, err_msg):
            out.backward(torch.ones_like(out))

    def test_inference_mode_inf_tensor_in_inf_mode_functional_op(self):
        def functional_op(x):
            return x * x

        with torch.inference_mode():
            for requires_grad in (True, False):
                c = torch.ones(1, 2, 3, requires_grad=requires_grad)

                # performing a non-view operation produces a inference tensor
                # that does not require grad
                func_out = functional_op(c)
                self.assertTrue(torch.is_inference(func_out))
                self.assertFalse(func_out.requires_grad)

    def test_inference_mode_inf_tensor_in_inf_mode_inplace_op(self):
        @torch.inference_mode()
        def run_test(fn):
            for requires_grad in (True, False):
                c = torch.ones(1, 2, 3, requires_grad=requires_grad)

                # after performing inplace operation, tensor is still
                # an inference tensor
                fn(c)
                self.assertTrue(torch.is_inference(c))
                self.assertEqual(c.requires_grad, requires_grad)

        run_test(lambda x: x.add_(2))
        run_test(lambda x: x.transpose_(0, 1))

        # inplace ops with manual kernel for ADInplaceOrView key in VariableTypeManual.cpp
        run_test(lambda x: x.resize_(1, 2))
        run_test(lambda x: x.resize_as_(torch.ones(1, 2)))
        run_test(lambda x: x.copy_(torch.ones(1, 2, 3)))

    def test_inference_mode_inf_tensor_in_inf_mode_view_op(self):
        with torch.inference_mode():
            for requires_grad in (True, False):
                c = torch.ones(1, 2, 3, requires_grad=requires_grad)

                # perform view operation produces inference tensor
                # that does not require grad
                view_out = c.view(-1)
                self.assertTrue(torch.is_inference(view_out))
                self.assertFalse(view_out.requires_grad)

    def test_inference_mode_inf_tensor_in_normal_mode_functional_op(self):
        def functional_op(x):
            return x * x

        for requires_grad in (True, False):
            with torch.inference_mode():
                c = torch.ones(1, 2, 3, requires_grad=requires_grad)

        func_out = functional_op(c)
        self.assertFalse(torch.is_inference(func_out))
        self.assertFalse(func_out.requires_grad)
        self.assertTrue(func_out.is_leaf)

    def test_inference_mode_inf_tensor_in_normal_mode_inplace_op(self):
        def run_test(fn):
            for requires_grad in (False, True):
                with torch.inference_mode():
                    c = torch.ones(1, 2, 3, requires_grad=requires_grad)

                if requires_grad:
                    # leaf variable that requires grad is being used in an inplace
                    # operation when requires_grad=True
                    pass
                else:
                    err_msg = "Inplace update to inference tensor outside InferenceMode"
                    with self.assertRaisesRegex(RuntimeError, err_msg):
                        fn(c)

        run_test(lambda x: x.add_(2))
        run_test(lambda x: x.transpose_(0, 1))

    def test_inference_mode_inf_tensor_in_normal_mode_view_op(self):
        for requires_grad in (True, False):
            with torch.inference_mode():
                c = torch.ones(1, 2, 3, requires_grad=requires_grad)

            out = c.view(-1)
            self.assertTrue(torch.is_inference(out))
            self.assertFalse(out.requires_grad)
            self.assertFalse(out._is_view())
            self.assertTrue(out.is_leaf)

    def test_normal_tensor_inplace_output_in_inference_mode(self):
        def run_test(fn):
            for requires_grad in (True, False):
                s = torch.ones(1, 2, 3, requires_grad=requires_grad)
                a = s.clone()

                with torch.inference_mode():
                    fn(a)
                    self.assertFalse(torch.is_inference(a))
                    self.assertEqual(a.requires_grad, requires_grad)

                    # inplace -> inplace
                    fn(a)
                    self.assertFalse(torch.is_inference(a))
                    self.assertEqual(a.requires_grad, requires_grad)

                    # inplace -> inplace -> view
                    view_out = a.view(-1)
                    self.assertFalse(torch.is_inference(view_out))
                    self.assertEqual(view_out.requires_grad, requires_grad)

        run_test(lambda x: x.add_(2))
        run_test(lambda x: x.transpose_(0, 1))

    def test_normal_tensor_inplace_output_in_normal_mode(self):
        def run_test(fn):
            for requires_grad in (True, False):
                s = torch.ones(1, 2, 3, requires_grad=requires_grad)
                a = s.clone()

                with torch.inference_mode():
                    fn(a)
                    self.assertFalse(torch.is_inference(a))
                    self.assertEqual(a.requires_grad, requires_grad)

                fn(a)
                self.assertFalse(torch.is_inference(a))
                self.assertEqual(a.requires_grad, requires_grad)

                # inplace -> inplace
                fn(a)
                self.assertFalse(torch.is_inference(a))
                self.assertEqual(a.requires_grad, requires_grad)

                # inplace -> inplace -> view
                view_out = a.view(-1)
                self.assertFalse(torch.is_inference(view_out))
                self.assertEqual(view_out.requires_grad, requires_grad)
            run_test(lambda x: x.add_(2))
            run_test(lambda x: x.transpose_(0, 1))

    def test_normal_tensor_view_output_in_inference_mode(self):
        for requires_grad in (True, False):
            s = torch.ones(1, 2, 3, requires_grad=requires_grad)
            a = s.clone()

            with torch.inference_mode():
                out = a.view(-1)
                self.assertFalse(torch.is_inference(out))
                self.assertEqual(out.requires_grad, requires_grad)
                self.assertTrue(out._is_view())

                # view -> view
                tmp = out.view(-1)
                self.assertFalse(torch.is_inference(tmp))
                self.assertEqual(tmp.requires_grad, requires_grad)
                self.assertTrue(tmp._is_view())
                self.assertTrue(tmp.is_leaf)

                # view -> view -> inplace
                self.assertTrue(torch.is_inference_mode_enabled())
                tmp.add_(2)
                self.assertFalse(torch.is_inference(tmp))
                self.assertEqual(tmp.requires_grad, requires_grad)
                # Accessing is_leaf in python tries to update grad_fn and raises:
                # A view was created in inference mode and its base or
                # another view of its base has been modified inplace in normal mode
                # tmp.is_leaf
                self.assertEqual(a._version, tmp._version)

    def test_normal_tensor_view_output_in_normal_mode(self):
        def functional_op(x):
            return x * x

        for requires_grad in (True, False):
            s = torch.ones(1, 2, 3, requires_grad=requires_grad)
            a = s.clone()

            with torch.inference_mode():
                out = a.view(-1)
                self.assertFalse(torch.is_inference(out))
                self.assertEqual(out.requires_grad, requires_grad)
                self.assertTrue(out._is_view())
                self.assertTrue(out.is_leaf)

            tmp = functional_op(out)
            self.assertFalse(torch.is_inference(tmp))
            self.assertEqual(tmp.requires_grad, requires_grad)

            if requires_grad:
                err_msg = (
                    "A view was created in inference mode and is being modified inplace"
                )
                with self.assertRaisesRegex(RuntimeError, err_msg):
                    out.add_(2)
            else:
                out.add_(2)

            tmp = out.view(2, 3)
            self.assertFalse(torch.is_inference(tmp))
            self.assertEqual(tmp.requires_grad, requires_grad)

    def test_mix_inference_and_normal_tensor_functional_op(self):
        for requires_grad in (True, False):
            s = torch.ones(1, 2, 3, requires_grad=requires_grad)

            with torch.inference_mode():
                c = torch.ones(1, 2, 3, requires_grad=requires_grad)

            # add is safe since it doesn't save any variable for backward
            out = c.add(s)
            self.assertFalse(torch.is_inference(out))
            self.assertEqual(out.requires_grad, requires_grad)
            if requires_grad:
                # leaf inference tensor with requires_grad=True can still have gradient
                out.backward(torch.ones_like(out))
                self.assertEqual(c.grad, torch.ones_like(c))

            if requires_grad:
                err_msg = "Inference tensors cannot be saved for backward"
                with self.assertRaisesRegex(RuntimeError, err_msg):
                    c * s

                # TODO: Test this with an autograd.Function when it works
                #       stack stopped capturing a TensorList input
                # # inference tensor in TensorList input
                # inputs = [s, c]
                # with self.assertRaisesRegex(RuntimeError, err_msg):
                #     torch.stack(inputs)

    def test_mix_inference_and_normal_tensor_inplace_op(self):
        for requires_grad in (True, False):
            s = torch.ones(1, 2, 3, requires_grad=requires_grad)
            a = s.clone()

            with torch.inference_mode():
                c = torch.ones(1, 2, 3)

            self.assertTrue(torch.is_inference(c))
            if requires_grad:
                err_msg = "Inference tensors cannot be saved for backward"
                with self.assertRaisesRegex(RuntimeError, err_msg):
                    a.mul_(c)

                # inference tensor in TensorList input
                err_msg = (
                    "out=... arguments don't support automatic differentiation, "
                    "but one of the arguments requires grad"
                )
                with self.assertRaisesRegex(RuntimeError, err_msg):
                    torch.mul(s, s, out=c)
            else:
                a.mul_(c)
                err_msg = "Inplace update to inference tensor outside InferenceMode is not allowed"
                with self.assertRaisesRegex(RuntimeError, err_msg):
                    torch.mul(s, s, out=c)

    def test_mix_inference_and_normal_tensor_view_op(self):
        for requires_grad in (True, False):
            s = torch.ones(1, 2, 3, requires_grad=requires_grad)

            with torch.inference_mode():
                c = torch.ones(1, 2, 3)

            # view_as is a composite op which calls view with only one
            # tensor argument. So there isn't a mixed inference and normal
            # tensor inputs for view ops
            tmp1 = c.view_as(s)
            self.assertTrue(torch.is_inference(tmp1))
            self.assertFalse(tmp1.requires_grad)

            # this is fine since its equivalent as s.view(c.sizes()) which
            # isn't a mixed input scenario
            tmp2 = s.view_as(c)
            self.assertFalse(torch.is_inference(tmp2))
            self.assertEqual(tmp2.requires_grad, requires_grad)

    def test_inference_mode_handle_direct_view_on_rebase(self):
        def run_test(fn):
            for requires_grad in (True, False):
                s = torch.ones(1, 2, 3, requires_grad=requires_grad)
                a = s.clone()

                with torch.inference_mode():
                    view_out = a.view_as(a)

                if requires_grad:
                    err_msg = "A view was created in inference mode and is being modified inplace"
                    with self.assertRaisesRegex(RuntimeError, err_msg):
                        fn(view_out)
                else:
                    fn(view_out)

        run_test(lambda x: x.add_(2))
        run_test(lambda x: x.transpose_(0, 1))

    def test_inference_mode_handle_indirect_view_on_rebase(self):
        def run_test(fn):
            for requires_grad in (True, False):
                s = torch.ones(1, 2, 3, requires_grad=requires_grad)
                a = s.clone()

                with torch.inference_mode():
                    view_out = a.view(-1)

                fn(a)
                if requires_grad:
                    err_msg = "A view was created in inference mode and its base or another view "
                    with self.assertRaisesRegex(RuntimeError, err_msg):
                        view_out.grad_fn
                else:
                    view_out.grad_fn

        run_test(lambda x: x.add_(2))
        run_test(lambda x: x.transpose_(0, 1))


class TestMultithreadAutograd(TestCase):
    def _run_py_multithread_fn(
        self, fn, args=(), num_threads=10, kwargs=None, pass_idx=False
    ):
        class PropagatingThread(threading.Thread):
            """Helper class to propagate exception from child
            thread to main thread on join.

            Reference: https://stackoverflow.com/a/31614591/5602957
            """

            def run(self):
                self.exception = None
                try:
                    self.ret = super().run()
                except Exception as e:
                    self.exception = e

            def join(self, timeout=None):
                super().join(timeout)
                if self.exception:
                    raise self.exception from self.exception
                return self.ret

        threads = []
        for idx in range(num_threads):
            p = PropagatingThread(target=fn, args=((idx, *args) if pass_idx else args))
            p.start()
            threads.append(p)

        for p in threads:
            p.join()

    def test_multithreaded_exception_propagation(self):
        # Test whether exception in child thread
        # are propagated to main thread.
        def fn():
            self.assertTrue(False)

        with self.assertRaises(AssertionError):
            self._run_py_multithread_fn(fn)

    def test_simple_backward(self):
        # simple multithreaded backward that create threads in the beginning of training
        # and everything else is training separately, i.e. inputs, operations, etc.
        def train_fn():
            x = torch.ones(5, 5, requires_grad=True)
            y = (x + 3) * (x + 4) * 0.5
            y.sum().backward()
            self.assertEqual(x.grad, x + 3.5)

        self._run_py_multithread_fn(train_fn)

    def test_simple_backward_same_input(self):
        # simple multithreaded backward with only shared inputs (i.e. This is common
        # for things like Hogwild multithreaded training with multiple CPU threads)
        def train_fn_backward(x):
            y = (x + 3) * (x + 4) * 0.5
            y.sum().backward()

        x = torch.ones(5, 5, requires_grad=True)
        self._run_py_multithread_fn(train_fn_backward, (x,))
        # Since we are calling backward from multiple threads
        # and all threads share the same input, when we do backward
        # concurrently, different backwards will all accumulate to
        # the same .grad for each input, and the gradients should
        # be equal to num_threads * gradient
        self.assertEqual(x.grad, 10 * (x + 3.5))

        def train_fn_grad(x):
            y = (x + 3) * (x + 4) * 0.5
            grads = torch.autograd.grad(y.sum(), x)
            self.assertEqual(len(grads), 1)
            self.assertEqual(grads[0], x + 3.5)

        # since we use functional grad() api, gradients will not
        # be accumulate to the same place and should be the same
        self._run_py_multithread_fn(train_fn_grad, (x,))

    def test_multi_grad_all_hooks(self):
        # Multihooks should behave independently per execution of backward
        # Test that the hook fired the number of times we ran backward
        # even if those executions occur concurrently on different threads
        t1 = torch.rand(2, requires_grad=True)
        t2 = torch.rand(2, requires_grad=True)
        t3 = torch.rand(2, requires_grad=True)
        t4 = torch.rand(2, requires_grad=True)

        res = None
        count = [0]
        hook_lock = threading.Lock()

        def hook(grads):
            nonlocal res
            with hook_lock:
                count[0] += 1
                grad_is_none = [g is not None for g in grads]
                if res is None:
                    res = grad_is_none
                else:
                    self.assertEqual(res, grad_is_none)

        torch.autograd.graph.register_multi_grad_hook((t1, t2, t3, t4), hook)

        out = (t2 * t3).sum()

        def backward_retain_graph(out, t2, t3):
            out.backward(inputs=(t2, t3), retain_graph=True)

        self._run_py_multithread_fn(backward_retain_graph, (out, t2, t3), num_threads=5)

        self.assertEqual(count[0], 5)
        self.assertEqual(res, [False, True, True, False])

        # Leave one hook partially applied
        res = None
        count = [0]
        err_count = [0]
        bw_count = [0]
        bw_count_lock = threading.Lock()
        err_count_lock = threading.Lock()

        class Func(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                return x

            @staticmethod
            def backward(ctx, gO):
                with bw_count_lock:
                    bw_count[0] += 1
                    if bw_count[0] == 1:
                        raise RuntimeError("error message")
                    else:
                        return gO

        out = (Func.apply(t2) * t3).sum()

        def backward_retain_graph(out, t2, t3):
            try:
                out.backward(inputs=(t2, t3), retain_graph=True)
            except RuntimeError:
                with err_count_lock:
                    err_count[0] += 1

        self._run_py_multithread_fn(backward_retain_graph, (out, t2, t3), num_threads=5)

        self.assertEqual(count[0], 4)
        self.assertEqual(err_count[0], 1)
        self.assertEqual(res, [False, True, True, False])

    def test_multi_grad_any_hooks(self):
        # Multihooks should behave independently per execution of backward
        # Test that the hook fired the number of times we ran backward
        # even if those executions occur concurrently on different threads
        t1 = torch.rand(2, requires_grad=True)
        t2 = torch.rand(2, requires_grad=True)
        t3 = torch.rand(2, requires_grad=True)
        t4 = torch.rand(2, requires_grad=True)

        res = None
        count = [0]
        hook_lock = threading.Lock()

        def hook(grad):
            nonlocal res
            with hook_lock:
                count[0] += 1
                if res is None:
                    res = "foo"
                else:
                    self.assertEqual(res, "foo")

        torch.autograd.graph.register_multi_grad_hook(
            (t1, t2, t3, t4), hook, mode="any"
        )

        out = (t2 * t3).sum()

        def backward_retain_graph(out, t2, t3):
            out.backward(inputs=(t2, t3), retain_graph=True)

        self._run_py_multithread_fn(backward_retain_graph, (out, t2, t3), num_threads=5)
        self.assertEqual(count[0], 5)
        self.assertEqual(res, "foo")

        # Raise an error in one thread's backward
        res = None
        count = [0]
        err_count = [0]
        bw_count = [0]
        bw_count_lock = threading.Lock()
        err_count_lock = threading.Lock()

        class Func(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                return x

            @staticmethod
            def backward(ctx, gO):
                with bw_count_lock:
                    bw_count[0] += 1
                    if bw_count[0] == 1:
                        raise RuntimeError("error message")
                    else:
                        return gO

        out = (Func.apply(t2) * t3).sum()

        def backward_retain_graph(out, t2, t3):
            try:
                out.backward(inputs=(t2, t3), retain_graph=True)
            except RuntimeError:
                with err_count_lock:
                    err_count[0] += 1

        self._run_py_multithread_fn(backward_retain_graph, (out, t2, t3), num_threads=5)

        # Expect all 5 threads to increment count since the hook runs before
        # the custom backward
        self.assertEqual(count[0], 5)
        self.assertEqual(err_count[0], 1)
        self.assertEqual(res, "foo")

    def test_dataparallel_saved_tensors_hooks(self):
        def pack(x):
            warnings.warn("pack")
            return x

        _self = self

        class Model(torch.nn.Module):
            def forward(self, x):
                with warnings.catch_warnings(record=True) as w:
                    y = x * x
                    if torch.cuda.device_count() >= 2:
                        # DataParallel is calling the forward in different threads
                        # without progating TLS, so hooks should not be called here
                        _self.assertEqual(len(w), 0)
                    else:
                        # DataParallel only uses one thread
                        # so hooks should be called here
                        _self.assertGreater(len(w), 0)

        x = torch.ones(5, 5, requires_grad=True)
        model = torch.nn.DataParallel(Model())

        with torch.autograd.graph.saved_tensors_hooks(pack, lambda x: x):
            model(x)
            with warnings.catch_warnings(record=True) as w:
                y = x * x
                # hooks should be called here
                _self.assertGreater(len(w), 0)

    def test_python_thread_in_middle(self):
        # User might write a network that starts on one CPU thread, then runs its second half
        # concurrently with other threads (either via python threading or fork/join calls),
        # then calls backward()/grad() on BOTH threads, like a Y pattern from input at the
        # bottom to output at the top. This way part of the GraphTask is being shared across
        # different threads and we need to ensure user specify retain_graph=True, otherwise
        # error out with the correct error message

        # Case 1: multiple backward with python threads, retain_graph=False
        # should throw error in some threads with no retain_graph.
        success_vs_raises = [0, 0]

        def train_fn_no_retain_graph(x):
            y = x + x**2
            try:
                y.sum().backward()
                success_vs_raises[0] += 1
            except RuntimeError as error:
                success_vs_raises[1] += 1
                self.assertRegex(str(error), "Specify retain_graph=True")

        x_no_retain = torch.ones(5, 5, requires_grad=True)
        y_no_retain = x_no_retain + x_no_retain**2
        self._run_py_multithread_fn(
            train_fn_no_retain_graph, (y_no_retain,), num_threads=5
        )
        # at least one thread will be success in this case, all other threads should raise
        # with the error that throw to user to recommend them specify retain_graph=True
        self.assertTrue(success_vs_raises[0] >= 1)

        # multiple backward with python threads, no error with retain_graph=True
        def train_fn_retain_graph(x):
            y = x + x**2
            y.sum().backward(retain_graph=True)

        x_retain = torch.ones(5, 5, requires_grad=True)
        y_retain = x_retain + x_retain**2
        self._run_py_multithread_fn(train_fn_retain_graph, (y_retain,), num_threads=5)
        # result should equal to num_thread * gradients
        self.assertEqual(
            x_retain.grad,
            5 * (4 * x_retain**3 + 6 * (x_retain**2) + 4 * x_retain + 1),
        )

    def test_fork_join_in_middle(self):
        # multiple backward with jit threads (fork/join primitive)
        # similar to test_python_thread_in_middle, we test with retain_graph=False/True

        # Case 1: multiple grad() calls with jit threads, retain_graph=False
        # should throw error in some threads with no retain_graph.
        @torch.jit.script
        def train_fn_jit_no_retain(middle, orig_x):
            y = middle + middle**2
            return torch.autograd.grad([y.sum()], [orig_x])

        @torch.jit.script
        def train_fn_fork_join_calls_no_retain(x):
            y_no_retain = (x + 3) * (x + 4) * 0.5

            fut = torch.jit._fork(train_fn_jit_no_retain, y_no_retain, x)
            grad_hat = train_fn_jit_no_retain(y_no_retain, x)
            grad = torch.jit._wait(fut)
            return grad, grad_hat

        try:
            train_fn_fork_join_calls_no_retain(torch.randn(5, 5, requires_grad=True))
        except RuntimeError as error:
            self.assertRegex(str(error), "Specify retain_graph=True")

        # Case 2: no error with retain_graph=True
        @torch.jit.script
        def train_fn_jit_retain(middle, orig_x):
            y = middle + middle**2
            return torch.autograd.grad([y.sum()], [orig_x], retain_graph=True)

        @torch.jit.script
        def train_fn_fork_join_calls_retain(x):
            y_retain = (x + 3) * (x + 4) * 0.5
            fut1 = torch.jit._fork(train_fn_jit_retain, y_retain, x)
            fut2 = torch.jit._fork(train_fn_jit_retain, y_retain, x)
            grad = train_fn_jit_retain(y_retain, x)
            grad1 = torch.jit._wait(fut1)
            grad2 = torch.jit._wait(fut2)
            return grad, grad1, grad2

        grad, grad1, grad2 = train_fn_fork_join_calls_retain(
            torch.randn(5, 5, requires_grad=True)
        )
        self.assertEqual(grad, grad1)
        self.assertEqual(grad, grad2)

    def test_preserve_backtrace(self):
        class Foo(torch.autograd.Function):
            @staticmethod
            def forward(ctx, input):
                return input

            @staticmethod
            def backward(ctx, *grad):
                raise ValueError("something")

        t = torch.rand(10, requires_grad=True)
        try:
            Foo.apply(t).sum().backward()
        except Exception:
            import traceback

            tb = sys.exc_info()[2]
            tb_str = "\n".join(traceback.format_tb(tb))
            self.assertTrue('raise ValueError("something")' in tb_str)

    # TODO(@anjali411): add an OpInfo based test for torch.cat
    # Issue: https://github.com/pytorch/pytorch/issues/51627
    #        https://github.com/pytorch/pytorch/issues/75852
    def test_cat_stack_r_to_c(self):
        inp_c = torch.rand(3, 2, dtype=torch.cdouble, requires_grad=True)
        inp_r = torch.randn(3, 2, dtype=torch.double, requires_grad=True)

        def fn(x1, x2):
            return torch.cat((x1, x2), dim=-1)

        def fn2(x1, x2):
            return torch.stack((x1, x2), dim=-1)

        torch.autograd.gradcheck(fn, [inp_r, inp_c], check_forward_ad=True)
        torch.autograd.gradcheck(fn, [inp_c, inp_r], check_forward_ad=True)

        torch.autograd.gradcheck(fn2, [inp_r, inp_c], check_forward_ad=True)
        torch.autograd.gradcheck(fn2, [inp_c, inp_r], check_forward_ad=True)

    def test_set_multithreading_enabled_as_context_manager_and_function(self):
        # Test as a context manager
        with torch.autograd.set_multithreading_enabled(False):
            self.assertFalse(torch.autograd.is_multithreading_enabled())
        self.assertTrue(torch.autograd.is_multithreading_enabled())

        with torch.autograd.set_multithreading_enabled(True):
            self.assertTrue(torch.autograd.is_multithreading_enabled())
        self.assertTrue(torch.autograd.is_multithreading_enabled())

        with torch.autograd.set_multithreading_enabled(False):
            torch.autograd.set_multithreading_enabled(True)
            self.assertTrue(torch.autograd.is_multithreading_enabled())
        self.assertTrue(torch.autograd.is_multithreading_enabled())

        torch.autograd.set_multithreading_enabled(False)
        self.assertFalse(torch.autograd.is_multithreading_enabled())

        torch.autograd.set_multithreading_enabled(True)
        self.assertTrue(torch.autograd.is_multithreading_enabled())

    @unittest.skipIf(not TEST_CUDA, "test requires CUDA")
    def test_custom_function_propagates_errors_from_device_thread(self):
        class MyFunc(Function):
            @staticmethod
            def forward(ctx, x):
                return x

            @staticmethod
            def backward(ctx, gO):
                raise RuntimeError("blah")
                return gO

        t = torch.tensor([1.0, 2.0], requires_grad=True, device=torch.device("cuda"))
        out = MyFunc.apply(t).sum()

        with self.assertRaisesRegex(RuntimeError, "blah"):
            out.backward()


class TestNestedCheckpoint(TestCase):
    @staticmethod
    def grad(fn):
        def wrapper(x):
            with torch.enable_grad():
                out = fn(x)
                (grad_input,) = torch.autograd.grad(out, inputs=(x,), create_graph=True)
            return grad_input

        return wrapper

    @staticmethod
    def sum(fn):
        def wrapped(x):
            return fn(x).sum()

        return wrapped

    @staticmethod
    def checkpoint(fn):
        def wrapped(*args, **kwargs):
            return torch.utils.checkpoint.checkpoint(
                fn, *args, use_reentrant=False, **kwargs
            )

        return wrapped

    def get_tests(self, fn):
        grad, c = self.grad, self.checkpoint

        tests = (
            # function <> tuple of function arbitrarily wrapped in checkpoint in various ways
            (fn, (c(fn), c(c(fn)))),
            (grad(fn), (grad(c(fn)), grad(c(c(fn))))),
            (
                grad(grad(fn)),
                (grad(c(grad(fn))), c(grad(grad(c(fn)))), grad(c(grad(c(fn))))),
            ),
            (
                grad(grad(grad(fn))),
                (grad(c(grad(grad(c(fn))))), grad(c(grad(c(grad(c(fn))))))),
            ),
        )
        return tests

    def check_graph_dies(self, fn):
        def iter_graph(roots):
            if not roots:
                return
            seen = set()
            q = collections.deque()
            for node in roots:
                if node is not None:
                    seen.add(node)
                    q.append(node)

            while q:
                node = q.popleft()
                for fn, _idx in node.next_functions:
                    if fn in seen or fn is None:
                        continue
                    seen.add(fn)
                    q.append(fn)

                yield node

        class Handle:
            __slot__ = ["node_name"]

            def __init__(self, node_name):
                self.node_name = node_name

        def scope():
            a = torch.randn((), requires_grad=True)
            out = fn(a)
            refs = []
            for node in iter_graph([out.grad_fn]):
                handle = Handle(node.name())
                refs.append(weakref.ref(handle))
                node.metadata["blah"] = handle
            return refs

        refs = scope()
        node_names = [ref().node_name for ref in refs if ref() is not None]
        if len(node_names) > 0:
            print("Nodes still alive:", node_names)

        self.assertEqual(len(node_names), 0)

    @parametrize("early_stop", [True, False])
    def test_nested_checkpoint(self, early_stop):
        with torch.utils.checkpoint.set_checkpoint_early_stop(early_stop):
            x = torch.randn((), requires_grad=True)

            def f(x):
                out = x.sin().exp().sin()
                return out

            def g(x):
                a = x.sin().exp().sin()
                b = x.sin().exp().sin()
                (ga,) = torch.autograd.grad(a, x)
                (gb,) = torch.autograd.grad(b, x)
                return x.sin()

            for fn in (f, g):
                for expected_fn, actual_fns in self.get_tests(fn):
                    expected = expected_fn(x)

                    for actual_fn in actual_fns:
                        actual = actual_fn(x)
                        self.assertTrue(torch.allclose(expected, actual))
                        self.check_graph_dies(actual_fn)

    @parametrize("early_stop", [True, False])
    def test_nested_checkpoint_two_children(self, early_stop):
        with torch.utils.checkpoint.set_checkpoint_early_stop(early_stop):
            grad, sum, c = self.grad, self.sum, self.checkpoint

            def f(x):
                return x.sin().exp().sin()

            def g(x):
                return x.cos().sin().exp()

            def hc(x):
                return c(g)(c(f)(x))

            def h(x):
                return g(f(x))

            a = torch.randn(3, 3, requires_grad=True)
            expected = grad(sum(grad(sum(h))))(a)
            actual = grad(sum(grad(sum(c(hc)))))(a)
            self.assertTrue(torch.allclose(expected, actual))

            actual = grad(sum(c(grad(sum(c(hc))))))(a)
            self.assertTrue(torch.allclose(expected, actual))

            self.check_graph_dies(grad(c(hc)))
            self.check_graph_dies(grad(sum(grad(sum(c(hc))))))
            self.check_graph_dies(grad(sum(c(grad(sum(c(hc)))))))

    @parametrize("early_stop", [True, False])
    def test_nested_checkpoint_non_tensor_inputs_and_outputs(self, early_stop):
        def fn(k, a, b, f):
            return f(k * a * b.exp()), 1, "abcd"

        k = 3
        a = torch.tensor(2.0, requires_grad=True)
        b = torch.tensor(3.0, requires_grad=True)

        def f(x):
            return x.sin()

        with torch.utils.checkpoint.set_checkpoint_early_stop(early_stop):
            out, _unused1, _unused2 = checkpoint(fn, k, a, b, f, use_reentrant=False)
        actual_grads = torch.autograd.grad(out, (a, b))

        out, _unused1, _unused2 = fn(k, a, b, f)
        expected_grads = torch.autograd.grad(out, (a, b))
        for actual, expected in zip(actual_grads, expected_grads):
            self.assertTrue(torch.allclose(actual, expected))

    @parametrize("early_stop", [True, False])
    def test_nested_checkpoint_kwargs(self, early_stop):
        def fn(a, blah=None):
            out = a.sin().exp()
            if blah is not None:
                out = out * blah
            return out.sin().exp()

        a = torch.tensor(2.0, requires_grad=True)
        b = torch.tensor(3.0, requires_grad=True)

        with torch.utils.checkpoint.set_checkpoint_early_stop(early_stop):
            out = checkpoint(fn, a, blah=b, use_reentrant=False)
            actual_grads = torch.autograd.grad(out, (a, b))

            out = fn(a, blah=b)
            expected_grads = torch.autograd.grad(out, (a, b))
            for actual, expected in zip(actual_grads, expected_grads):
                self.assertTrue(torch.allclose(actual, expected))

    @parametrize("early_stop", [True, False])
    def test_nested_checkpoint_same_graph(self, early_stop):
        counter = [0]

        def hook(*_unused_args):
            counter[0] += 1

        def fn(a):
            return a.sin().cos().sin()

        a = torch.tensor(1.0, requires_grad=True)

        with torch.utils.checkpoint.set_checkpoint_early_stop(early_stop):
            out = checkpoint(fn, a, use_reentrant=False)
        # The hook is registered on the original graph
        out.grad_fn.next_functions[0][0].register_hook(hook)
        # And backward is performed on the original graph
        out.backward()

        self.assertEqual(counter[0], 1)

    @parametrize("early_stop", [True, False])
    def test_nested_checkpoint_reentrant_backwards(self, early_stop):
        def fn(a):
            x = a.sin().cos()
            out = x.sin()
            return x, out

        def hook(*_unused_args):
            # do backward again, but skip over the part of the graph where
            # the hook was registered
            x.backward(retain_graph=True)

        a = torch.tensor(1.0, requires_grad=True)
        with torch.utils.checkpoint.set_checkpoint_early_stop(early_stop):
            x, out = checkpoint(fn, a, use_reentrant=False)
        out.grad_fn.register_hook(hook)
        out.backward(retain_graph=True)

    def test_nested_checkpoint_set_early_stop(self):
        counter = [0]

        def clone(x):
            counter[0] += 1
            return x.clone()

        def fn(x):
            # Since clone does not save anything, it is not recomputed iff
            # early stop is enabled.
            return clone(x.sin().cos())

        # Early stopping is enabled by default
        a = torch.tensor(1.0, requires_grad=True)
        out = checkpoint(fn, a, use_reentrant=False)
        out.backward()
        self.assertEqual(counter[0], 1)

        # Try using the context manager to set early stopping to False.
        # Expect early stopping to be disabled for all checkpoints ran under
        # the context manager, even though context manager is no longer active
        # when backward/recomputation is performed.
        counter = [0]
        a = torch.tensor(1.0, requires_grad=True)
        with torch.utils.checkpoint.set_checkpoint_early_stop(False):
            out = checkpoint(fn, a, use_reentrant=False)

        out.backward()
        self.assertEqual(counter[0], 2)

    def test_nested_checkpoint_set_early_stop_no_recompution_needed(self):
        # Case 1: We have one tensor saved and its the input

        # We have two different counters here because in this case we actually
        # do call into x.sin() at the python level during recomputation whether
        # or not early stop is enabled. This is because the early stopping
        # only happens at the autograd level (preventing us from reaching the
        # backend).
        python_dispatch_counter = [0]
        counter = [0]

        class SinCounterMode(TorchDispatchMode):
            def __init__(self) -> None:
                self.count = 0

            def __torch_dispatch__(self, func, types, args=(), kwargs=None):
                kwargs = {} if kwargs is None else kwargs
                if func is torch.ops.aten.sin.default:
                    self.count += 1
                return func(*args, **kwargs)

        def fn(x):
            counter[0] += 1
            return x.sin()

        # With early stopping (enabled by default)
        a = torch.tensor(1.0, requires_grad=True)
        with SinCounterMode() as python_dispatch_counter:  # noqa: F811
            out = checkpoint(fn, a, use_reentrant=False)
            out.backward()
        self.assertEqual(counter[0], 2)
        self.assertEqual(python_dispatch_counter.count, 1)

        # Without early stopping
        counter = [0]
        a = torch.tensor(1.0, requires_grad=True)
        with SinCounterMode() as python_dispatch_counter:
            with torch.utils.checkpoint.set_checkpoint_early_stop(False):
                out = checkpoint(fn, a, use_reentrant=False)
            out.backward()
        self.assertEqual(counter[0], 2)
        self.assertEqual(python_dispatch_counter.count, 2)

        # Case 2: Forward saves no tensors

        # Since unpack isn't even called, counter is 1 whether or not early stop
        # is enabled!
        counter = [0]

        def fn2(x):
            counter[0] += 1
            return x.clone()

        # With early stopping (enabled by default)
        a = torch.tensor(1.0, requires_grad=True)
        out = checkpoint(fn2, a, use_reentrant=False)
        out.backward()
        self.assertEqual(counter[0], 1)

        # Without early stopping
        counter = [0]
        a = torch.tensor(1.0, requires_grad=True)
        with torch.utils.checkpoint.set_checkpoint_early_stop(False):
            out = checkpoint(fn2, a, use_reentrant=False)
        out.backward()
        self.assertEqual(counter[0], 1)


class TestSelectiveActivationCheckpoint(TestCase):
    @unittest.skipIf(not TEST_CUDA, "requires CUDA")
    def test_flops_and_mem(self):
        # From https://github.com/pytorch/pytorch/pull/126320
        def get_act_mem(f):
            out = f()
            out.backward()
            # Why do one forward and backward?
            start_mem = torch.cuda.memory_stats()["requested_bytes.all.current"]
            out = f()
            cur_mem = torch.cuda.memory_stats()["requested_bytes.all.current"]
            act_mem = (cur_mem - start_mem) / (1024 * 1024)
            out.backward()
            return act_mem

        def get_bw_flops(f):
            # Normalized so that a 512 square matmul returns 1
            f().backward()
            out = f()
            # NB: FlopCounterMode is pushed onto the mode stack before CachedMode, so
            # it will be able to observe whether an op is cached or not.
            with FlopCounterMode(display=False) as mode:
                out.backward()
            return mode.get_total_flops() / (512**3 * 2)

        x = torch.randn(512, 512, requires_grad=True, device="cuda")
        y = torch.randn(512, 512, requires_grad=True, device="cuda")

        def fn(x, y):
            return torch.mm(x.cos(), y).sin().sum()

        def fn_ac(x, y):
            return checkpoint(fn, x, y, use_reentrant=False)

        def fn_sac(x, y):
            context_fn = functools.partial(
                create_selective_checkpoint_contexts,
                [torch.ops.aten.mm.default],
            )
            out = checkpoint(fn, x, y, use_reentrant=False, context_fn=context_fn)
            return out

        def policy_fn(ctx, op, *args, **kwargs):
            if op == torch.ops.aten.mm.default:
                return CheckpointPolicy.MUST_SAVE
            else:
                return CheckpointPolicy.PREFER_RECOMPUTE

        def fn_sac2(x, y):
            context_fn = functools.partial(
                create_selective_checkpoint_contexts,
                policy_fn,
            )
            out = checkpoint(fn, x, y, use_reentrant=False, context_fn=context_fn)
            return out

        def policy_fn_bool(ctx, op, *args, **kwargs):
            return op == torch.ops.aten.mm.default

        def fn_sac3(x, y):
            context_fn = functools.partial(
                create_selective_checkpoint_contexts,
                policy_fn_bool,
            )
            out = checkpoint(fn, x, y, use_reentrant=False, context_fn=context_fn)
            return out

        act_mem_noac = get_act_mem(lambda: fn(x, y))
        bw_flops_noac = get_bw_flops(lambda: fn(x, y))

        self.assertEqual(act_mem_noac, 2.0)
        self.assertEqual(bw_flops_noac, 2.0)

        act_mem_ac = get_act_mem(lambda: fn_ac(x, y))
        bw_flops_ac = get_bw_flops(lambda: fn_ac(x, y))

        self.assertEqual(act_mem_ac, 0.0)
        self.assertEqual(bw_flops_ac, 3.0)

        act_mem_sac = get_act_mem(lambda: fn_sac(x, y))
        bw_flops_sac = get_bw_flops(lambda: fn_sac(x, y))

        self.assertEqual(act_mem_sac, 1.0)
        self.assertEqual(bw_flops_sac, 2.0)

        act_mem_sac2 = get_act_mem(lambda: fn_sac2(x, y))
        bw_flops_sac2 = get_bw_flops(lambda: fn_sac2(x, y))

        self.assertEqual(act_mem_sac2, 1.0)
        self.assertEqual(bw_flops_sac2, 2.0)

        act_mem_sac3 = get_act_mem(lambda: fn_sac3(x, y))
        bw_flops_sac3 = get_bw_flops(lambda: fn_sac3(x, y))

        self.assertEqual(act_mem_sac3, 1.0)
        self.assertEqual(bw_flops_sac3, 2.0)

    @skipIfTorchDynamo("compile tested in test/dynamo/test_activation_checkpointing.py")
    def test_output_already_has_autograd_meta(self):
        # View of tensor of non-differentiable dtype still has AutogradMeta
        def fn(x, y):
            return x.view(-1), y.sin().cos()

        x = torch.tensor([1, 2, 3], dtype=torch.int64)
        y = torch.randn(3, requires_grad=True)

        context_fn = functools.partial(
            create_selective_checkpoint_contexts,
            [torch.ops.aten.view.default],
        )
        out = checkpoint(fn, x, y, use_reentrant=False, context_fn=context_fn)
        out[1].sum().backward()

    @skipIfTorchDynamo("compile tested in test/dynamo/test_activation_checkpointing.py")
    def test_subclass_dispatching_sizes(self):
        # Test that we ignore ops that grab metadata like torch.ops.aten.sym_size.default
        # Caching such metadata ops can be problematic when the following are satisfied:
        #
        # 1. size/strides are dispatched upon
        # 2. our policy saves sizes
        ta = torch.randn(6, 2)

        class CustomSizeDynamicShapesTensor(torch.Tensor):
            @staticmethod
            def __new__(cls, inner):
                return torch.Tensor._make_wrapper_subclass(
                    # TODO: right now, _make_wrapper_subclass's dynamic shape interaction is not great.
                    # Calling the overload that has kwargs causes us to go down the first overload path,
                    # which will **always** specialize sizes.
                    # We should probably eventually fix this so that the first overload can just handle dynamic shapes.
                    cls,
                    inner.size(),
                    inner.stride(),
                    None,
                    None,
                    inner.dtype,
                    inner.layout,
                    inner.device,
                    False,
                    inner.requires_grad,
                    "sizes",
                )

            def __init__(self, inner):
                self.inner = inner

            @classmethod
            def __torch_dispatch__(cls, func, types, args, kwargs):
                if kwargs is None:
                    kwargs = {}
                args_inner = torch.utils._pytree.tree_map_only(
                    cls, lambda x: x.inner, args
                )
                out_inner = func(*args_inner, **kwargs)
                return torch.utils._pytree.tree_map_only(
                    torch.Tensor, lambda x: cls(x), out_inner
                )

        def policy_fn(ctx, op, *args, **kwargs):
            if op is torch.ops.aten.sym_size.default:
                # Silently ignored!
                return CheckpointPolicy.MUST_SAVE
            else:
                return CheckpointPolicy.PREFER_RECOMPUTE

        def fn(x):
            # We avoid the following case
            #
            # saved     :[4, 3], [], [], [4, 3], [4, 3], [4, 3], [12]
            # forward   :sum   ,sum,mul, mul   , mul   ,view   , view
            # recompute :sum   ,sum,mul, view  , view
            #
            # Views save the shape of their input, so we expect the second
            # view to save 12, but because during AC packing during forward
            # saves the shapes of the input for metadata checks later,
            # we would save the wrong shape during the recompute.
            view_out = (x * x.sum()).view(-1).view(4, 3)
            self.assertEqual(view_out.grad_fn._saved_self_sym_sizes, [12])
            return view_out.exp()

        x = torch.randn(4, 3, requires_grad=True)
        x_wrapper = CustomSizeDynamicShapesTensor(x)
        context_fn = functools.partial(create_selective_checkpoint_contexts, policy_fn)
        out = checkpoint(fn, x_wrapper, use_reentrant=False, context_fn=context_fn)
        out.sum().backward()

    def test_bad_inputs(self):
        bad_op_list1 = [2]

        with self.assertRaisesRegex(
            ValueError, "Expected op in `op_list` to be an OpOverload"
        ):
            create_selective_checkpoint_contexts(bad_op_list1)

        bad_op_list2 = [torch.ops.aten.sin]

        with self.assertRaisesRegex(
            ValueError, "update the OpOverloadPacket to a specific OpOverload"
        ):
            create_selective_checkpoint_contexts(bad_op_list2)

        with self.assertRaisesRegex(TypeError, "either a function or a list of ops."):
            create_selective_checkpoint_contexts(2)

    # Dynamo fails for various reasons:
    # - some tests using custom op that does not implement Fake
    # - dynamo is trying to trace into saved variable hooks unpack hook for some reason
    @skipIfTorchDynamo("compile tested in test/dynamo/test_activation_checkpointing.py")
    def test_policy_with_state(self):
        # If I have a stateful callable, state is shared between the original
        # forward and the recompute.
        counters = []

        class Policy:
            def __init__(self) -> None:
                self.counter = [0]
                self.recompute_counter = [0]

            def __call__(self, ctx, func, *args, **kwargs):
                counter = self.recompute_counter if ctx.is_recompute else self.counter
                counter[0] += 1
                counters.append(counter[0])
                if counter == 1 and func is torch.ops.aten.mm.default:
                    return CheckpointPolicy.MUST_SAVE
                return CheckpointPolicy.PREFER_RECOMPUTE

        def fn(x):
            return x.sin().sin().sin()

        x = torch.randn(3, requires_grad=True)
        context_fn = functools.partial(
            create_selective_checkpoint_contexts,
            Policy(),
            allow_cache_entry_mutation=True,
        )
        out = checkpoint(fn, x, use_reentrant=False, context_fn=context_fn)
        out.sum().backward()
        # 1. counter properly reset to 0 for the recompute
        # 2. due to early-stop we do not recompute the final op
        self.assertEqual(counters, [1, 2, 3, 1, 2])

    @skipIfTorchDynamo("compile tested in test/dynamo/test_activation_checkpointing.py")
    def test_storage_lifetime(self):
        from torch.utils._python_dispatch import _get_current_dispatch_mode
        from torch.utils.checkpoint import (
            _CachedTorchDispatchMode,
            _CachingTorchDispatchMode,
        )

        def policy_fn(ctx, op, *args, **kwargs):
            return CheckpointPolicy.MUST_SAVE

        ref = None

        def fn(x):
            nonlocal ref

            self.assertIsInstance(
                _get_current_dispatch_mode(),
                (_CachingTorchDispatchMode, _CachedTorchDispatchMode),
            )

            out = x.cos().exp()

            if isinstance(_get_current_dispatch_mode(), _CachingTorchDispatchMode):
                raw_val = (
                    _get_current_dispatch_mode()
                    .storage[torch.ops.aten.exp.default][0]
                    .val
                )
                # ref should've been detached
                # to avoid graph -> the saved variable hooks -> recompute_context -> storage -> graph
                self.assertFalse(raw_val.requires_grad)
                ref = weakref.ref(raw_val)

            # Careful for early-stop
            return out.sin()

        with disable_gc():
            # Case 1: If graph goes away without backward, make sure there's no reference cycle
            #         keeping storage alive.
            x = torch.randn(3, requires_grad=True)
            context_fn = functools.partial(
                create_selective_checkpoint_contexts, policy_fn
            )
            out = checkpoint(fn, x, use_reentrant=False, context_fn=context_fn)
            self.assertIsNotNone(ref())
            del out
            self.assertIsNone(ref())

            # Case 2: After backward, even if retain_graph=True, the storage should go away
            x = torch.randn(3, requires_grad=True)
            context_fn = functools.partial(
                create_selective_checkpoint_contexts, policy_fn
            )
            out = checkpoint(fn, x, use_reentrant=False, context_fn=context_fn)
            self.assertIsNotNone(ref())
            out.sum().backward(retain_graph=True)
            # The dispatch mode's storage should still be alive, but the entries should've
            # been cleared.
            self.assertIsNone(ref())

    @skipIfTorchDynamo("compile tested in test/dynamo/test_activation_checkpointing.py")
    def test_version_counter(self):
        def policy_fn(ctx, op, *args, **kwargs):
            if op == torch.ops.aten.sin.default:
                return CheckpointPolicy.MUST_SAVE
            else:
                return CheckpointPolicy.PREFER_RECOMPUTE

        def fn(x):
            return x.sin().mul_(2).cos().exp()

        x = torch.randn(3, requires_grad=True)
        context_fn = functools.partial(create_selective_checkpoint_contexts, policy_fn)
        out = checkpoint(fn, x, use_reentrant=False, context_fn=context_fn)

        # 1) Error because the output of sin is saved and mutated by mul_
        with self.assertRaisesRegex(RuntimeError, "has been mutated"):
            out.sum().backward()

        x = torch.randn(3, requires_grad=True)
        context_fn = functools.partial(
            create_selective_checkpoint_contexts,
            policy_fn,
            allow_cache_entry_mutation=True,
        )
        out = checkpoint(fn, x, use_reentrant=False, context_fn=context_fn)

        # 2) No longer should be an error because of allow_cache_entry_mutation
        out.sum().backward()

    @skipIfTorchDynamo("compile tested in test/dynamo/test_activation_checkpointing.py")
    def test_function_with_more_than_one_output(self):
        # maybe there is a more systematic way:
        counter = [0]

        def policy_fn(ctx, op, *args, **kwargs):
            if op == torch.ops.aten.var_mean.correction:
                counter[0] += 1
                return CheckpointPolicy.MUST_SAVE
            else:
                return CheckpointPolicy.PREFER_RECOMPUTE

        # var_mean has two outputs
        def fn(x):
            a, b = torch.var_mean(x)
            return a * b

        x = torch.randn(3, requires_grad=True)
        context_fn = functools.partial(create_selective_checkpoint_contexts, policy_fn)
        out = checkpoint(fn, x, use_reentrant=False, context_fn=context_fn)
        x_grad = torch.autograd.grad(out.sum(), (x,))
        x_grad_ref = torch.autograd.grad(fn(x).sum(), (x,))
        self.assertEqual(x_grad, x_grad_ref)
        self.assertEqual(counter[0], 2)

    @skipIfTorchDynamo("compile tested in test/dynamo/test_activation_checkpointing.py")
    def test_function_with_non_tensor_output(self):
        # When SAC is enabled, the op is not computed a second time
        with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
            counter = [0]

            @torch.library.custom_op("mylib::sin_with_extra", mutates_args=())
            def sin_with_extra(x: torch.Tensor) -> Tuple[torch.Tensor, int]:
                counter[0] += 1
                return x.sin(), 2

            def setup_context(ctx, inputs, output) -> torch.Tensor:
                (x,) = inputs
                ctx.save_for_backward(x)

            def backward(ctx, grad, _unused):
                (x,) = ctx.saved_tensors
                return grad * x.cos()

            torch.library.register_autograd(
                "mylib::sin_with_extra", backward, setup_context=setup_context
            )

            x = torch.randn(3, requires_grad=True)

            def fn(x):
                return (torch.ops.mylib.sin_with_extra(x)[0] * x.sin().exp()).sin()

            ops_list = [torch.ops.mylib.sin_with_extra.default]

            x = torch.randn(3, requires_grad=True)
            context_fn = functools.partial(
                create_selective_checkpoint_contexts, ops_list
            )
            out = checkpoint(fn, x, use_reentrant=False, context_fn=context_fn)
            x_grad = torch.autograd.grad(out.sum(), (x,))
            self.assertEqual(counter[0], 1)
            x_grad_ref = torch.autograd.grad(fn(x).sum(), (x,))
            self.assertEqual(x_grad, x_grad_ref)

    @skipIfTorchDynamo("compile tested in test/dynamo/test_activation_checkpointing.py")
    def test_can_only_trigger_recompute_once(self):
        # We don't support this to avoid adding extra complexity for now.
        # If there's a need, we could probably do some kind of use_count tracking.
        # TODO: have a nice error message here.
        def policy_fn(ctx, op, *args, **kwargs):
            if op == torch.ops.aten.sin.default:
                return CheckpointPolicy.MUST_SAVE
            else:
                return CheckpointPolicy.PREFER_RECOMPUTE

        def fn(x):
            return x.sin().cos().exp()

        x = torch.randn(3, requires_grad=True)
        context_fn = functools.partial(create_selective_checkpoint_contexts, policy_fn)
        out = checkpoint(fn, x, use_reentrant=False, context_fn=context_fn)
        out.sum().backward(retain_graph=True)

        with self.assertRaisesRegex(RuntimeError, "Trying to backward an extra time"):
            out.sum().backward(retain_graph=True)


class TestAutogradMultipleDispatch(TestCase):
    def test_autograd_multiple_dispatch_registrations(self, device):
        t = torch.randn(3, 3, device=device, requires_grad=True)
        # using _test_autograd_multiple_dispatch.fullcoverage which has
        # registrations in derivatives.yaml for Default, AutogradCUDA and NestedTensorAutograd
        out = torch._test_autograd_multiple_dispatch(t)
        grad = torch.randn(3, 3, device=device)
        out.backward(grad)

        if "cuda" not in device:
            # bogus default gradient registered for Autograd is grad + 1
            self.assertEqual(t.grad, grad + 1)
        else:
            # bogus gradient registered for AutogradCUDA is grad * 2
            self.assertEqual(t.grad, grad * 2)

        # test registered AutogradNestedTensor formula
        a = (
            torch.arange(6, dtype=torch.float, device=device)
            .reshape(2, 3)
            .requires_grad_(True)
        )
        b = (
            torch.arange(8, dtype=torch.float, device=device)
            .reshape(2, 4)
            .requires_grad_(True)
        )
        nt = torch.nested.as_nested_tensor([a, b], dtype=torch.float, device=device)

        nt_out = torch._test_autograd_multiple_dispatch(nt)
        c = torch.randn(2, 3, device=device)
        d = torch.randn(2, 4, device=device)
        nt_grad = torch.nested.nested_tensor([c, d], dtype=torch.float, device=device)
        nt_out.backward(nt_grad)

        # bogus gradient for AutogradNestedTensor is grad * grad
        self.assertEqual(a.grad, c * c)
        self.assertEqual(b.grad, d * d)

    def test_autograd_composite_implicit_and_dispatch_registration(self, device):
        t = torch.randn(3, 3, device=device, requires_grad=True)
        # using _test_autograd_multiple_dispatch.ntonly
        # which has registrations in derivatives.yaml for NestedTensorAutograd and otherwise is CompositeImplicit
        out = torch._test_autograd_multiple_dispatch(t, True)
        grad = torch.randn(3, 3, device=device)
        out.backward(grad)

        # t.grad is just out.grad by composite op since _test_autograd_multiple_dispatch is just a clone
        self.assertEqual(t.grad, grad)

        # test registered AutogradNestedTensor formula
        a = (
            torch.arange(6, dtype=torch.float, device=device)
            .reshape(2, 3)
            .requires_grad_(True)
        )
        b = (
            torch.arange(8, dtype=torch.float, device=device)
            .reshape(2, 4)
            .requires_grad_(True)
        )
        nt = torch.nested.as_nested_tensor([a, b], dtype=torch.float, device=device)

        nt_out = torch._test_autograd_multiple_dispatch(nt, True)
        c = torch.randn(2, 3, device=device)
        d = torch.randn(2, 4, device=device)
        nt_grad = torch.nested.nested_tensor([c, d], dtype=torch.float, device=device)
        nt_out.backward(nt_grad)

        # bogus gradient for AutogradNestedTensor is grad * grad + grad
        self.assertEqual(a.grad, c * c + c)
        self.assertEqual(b.grad, d * d + d)

    def test_foward_mode_AD(self, device):
        # check that forward mode AD is only registered for the Default
        # dispatch for _test_autograd_multiple_dispatch.fullcoverage and not AutogradCUDA

        primal = torch.randn(3, device=device)
        tangent = torch.randn(3, device=device)

        with fwAD.dual_level():
            dual_input = fwAD.make_dual(primal, tangent)

            err_msg = r"Trying to use forward AD with .* that does not support it"
            hint_msg = "Running forward AD for an OP that does not implement it should raise a NotImplementedError"

            if "cuda" in device:
                with self.assertRaisesRegex(NotImplementedError, err_msg, msg=hint_msg):
                    torch._test_autograd_multiple_dispatch(dual_input)
            else:
                torch._test_autograd_multiple_dispatch(dual_input)

    def test_view_copy(self, device):
        # tests that view_copy derivative formulas are also generated per dispatch key
        # from their respective view ops in derivatives.yaml
        t = torch.randn(2, 2, device=device, requires_grad=True)
        t_ref = t.detach().clone().requires_grad_()
        # _test_autograd_multiple_dispatch_view does a .view(-1) on the input
        t_view = torch._test_autograd_multiple_dispatch_view(t_ref)
        t_view_copy = torch._test_autograd_multiple_dispatch_view_copy(t)

        grad = torch.randn(4, device=device)
        t_view_copy.backward(grad)
        t_view.backward(grad.clone())

        # forward and backward give the same shape + result
        self.assertEqual(t_view_copy, t_view)
        self.assertEqual(t.grad, t_ref.grad)
        # backward results are per-dispatch-key in derivatives.yaml
        if "cuda" in device:
            # gradient registered to AutogradCUDA is grad.reshape_as(self) + 1
            self.assertEqual(t.grad, grad.reshape_as(t) + 1)
        else:
            # Default gradient registered is grad.reshape_as(self)
            self.assertEqual(t.grad, grad.reshape_as(t))

    @onlyCPU
    def test_per_dispatch_key_input_saving(self, device):
        # Tests that sum.dim_IntList's input is not saved for regular tensors but is saved for nested tensors
        def foo(x):
            # Don't modify the input inplace
            x = x.clone()
            res = x.sum(-1, keepdim=True)
            x.add_(x)
            return res

        inp = torch.rand(2, device=device, requires_grad=True)
        # sum's input is not saved for regular Tensors
        foo(inp).backward()

        # sum's input is saved for Nested Tensors
        nt = torch.nested.nested_tensor(
            [torch.rand(2), torch.rand(2)], device=device, requires_grad=True
        )
        with self.assertRaisesRegex(RuntimeError, "modified by an inplace operation"):
            foo(nt).backward(
                torch.nested.nested_tensor(
                    [torch.rand(1), torch.rand(1)], device=device
                )
            )

    @onlyCUDA
    def test_backward_single_threaded(self):
        threads_eq = None

        class TestFn(Function):
            @staticmethod
            def forward(ctx, x, self):
                ctx.self = self
                ctx.tid = threading.get_ident()
                return x.clone()

            @staticmethod
            def backward(ctx, gO):
                nonlocal threads_eq
                threads_eq = ctx.tid == threading.get_ident()
                return gO, None

        inp = torch.rand(10, device="cuda", requires_grad=True)

        with torch.autograd.set_multithreading_enabled(False):
            TestFn.apply(inp, None).sum().backward()
        self.assertTrue(threads_eq)

        TestFn.apply(inp, None).sum().backward()
        self.assertFalse(threads_eq)

    @onlyCUDA
    def test_backward_tls_stash(self):
        local = threading.local()
        local.my_obj = {}
        local.my_obj[10] = 10
        test_self = self
        torch._C._stash_obj_in_tls("my_obj", local.my_obj)

        class TestFn(Function):
            @staticmethod
            def forward(ctx, x, self):
                return x.clone()

            @staticmethod
            def backward(ctx, gO):
                test_self.assertTrue(torch._C._is_key_in_tls("my_obj"))
                test_self.assertTrue(torch._C._get_obj_in_tls("my_obj")[10] == 10)
                torch._C._get_obj_in_tls("my_obj")[10] = 5
                return gO, None

        inp = torch.rand(10, device="cuda", requires_grad=True)

        TestFn.apply(inp, None).sum().backward()
        self.assertEqual(local.my_obj[10], 5)

    def test_is_retain_graph(self):
        retain_graph_set = False

        class TestFn(Function):
            @staticmethod
            def forward(ctx, x):
                return x.clone()

            @staticmethod
            def backward(ctx, gO):
                nonlocal retain_graph_set
                retain_graph_set = (
                    torch._C._autograd._get_current_graph_task_keep_graph()
                )
                return gO, None

        inp = torch.rand(10, requires_grad=True)

        out = TestFn.apply(inp)
        self.assertFalse(retain_graph_set)
        out.sum().backward(retain_graph=True)
        self.assertTrue(retain_graph_set)
        out.sum().backward(retain_graph=False)
        self.assertFalse(retain_graph_set)

    def test_set_sequence_nr(self):
        x = torch.randn((10,), dtype=torch.float32, requires_grad=True)
        y = torch.randn((10,), dtype=torch.float32, requires_grad=True)
        z = torch.randn((10,), dtype=torch.float32, requires_grad=True)

        a = x + y
        b = y + z
        c = a + b

        self.assertIsNotNone(a.grad_fn)
        self.assertIsNotNone(b.grad_fn)
        self.assertIsNotNone(c.grad_fn)

        a.grad_fn._set_sequence_nr(100)
        b.grad_fn._set_sequence_nr(99)
        c.grad_fn._set_sequence_nr(98)

        self.assertEqual(a.grad_fn._sequence_nr(), 100)
        self.assertEqual(b.grad_fn._sequence_nr(), 99)
        self.assertEqual(c.grad_fn._sequence_nr(), 98)

        def log_grad_order(grad: torch.Tensor, name: str, order):
            order.append(name)
            return grad

        order = []
        a.register_hook(partial(log_grad_order, name="a", order=order))
        b.register_hook(partial(log_grad_order, name="b", order=order))
        c.register_hook(partial(log_grad_order, name="c", order=order))

        c.sum().backward()

        # Expect to see that even though c has the smallest sequence number, it is still the first node to get run in autograd.
        # Also check that although a comes first during the forward, after giving it priority with sequence_nr,
        # its autograd node is run before that of b.
        self.assertEqual(order, ["c", "a", "b"])

        self.assertEqual(x.grad, torch.ones_like(x))
        self.assertEqual(y.grad, 2 * torch.ones_like(x))
        self.assertEqual(z.grad, torch.ones_like(x))


# Import test cases from below autograd/ here. These are found
# implicitly by the loader, so Flake8 thinks they are unused, hence
# the suppressions.

from autograd.test_complex import TestAutogradComplex  # noqa: F401
from autograd.test_functional import TestAutogradFunctional  # noqa: F401
from autograd.test_logging import TestAutogradLogging  # noqa: F401


# e.g., TestAutogradDeviceTypeCPU and TestAutogradDeviceTypeCUDA
instantiate_device_type_tests(TestAutogradDeviceType, globals(), except_for=None)

instantiate_device_type_tests(
    TestAutogradMultipleDispatch, globals(), only_for=("cpu", "cuda")
)

instantiate_parametrized_tests(TestAutograd)
instantiate_parametrized_tests(TestNestedCheckpoint)

if __name__ == "__main__":
    run_tests()