File: test_compile_benchmark_util.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (56 lines) | stat: -rw-r--r-- 1,526 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Owner(s): ["module: dynamo"]

import unittest

import torch
import torch._dynamo as torchdynamo
from torch.testing._internal.common_utils import run_tests, TEST_CUDA, TestCase


try:
    import tabulate  # noqa: F401  # type: ignore[import]

    from torch.utils.benchmark.utils.compile import bench_all

    HAS_TABULATE = True
except ImportError:
    HAS_TABULATE = False


@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
@unittest.skipIf(not HAS_TABULATE, "tabulate not available")
class TestCompileBenchmarkUtil(TestCase):
    def test_training_and_inference(self):
        class ToyModel(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.weight = torch.nn.Parameter(torch.Tensor(2, 2))

            def forward(self, x):
                return x * self.weight

        torchdynamo.reset()
        model = ToyModel().cuda()

        inference_table = bench_all(model, torch.ones(1024, 2, 2).cuda(), 5)
        self.assertTrue(
            "Inference" in inference_table
            and "Eager" in inference_table
            and "-" in inference_table
        )

        training_table = bench_all(
            model,
            torch.ones(1024, 2, 2).cuda(),
            5,
            optimizer=torch.optim.SGD(model.parameters(), lr=0.01),
        )
        self.assertTrue(
            "Train" in training_table
            and "Eager" in training_table
            and "-" in training_table
        )


if __name__ == "__main__":
    run_tests()