1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
|
# Owner(s): ["module: cpp-extensions"]
import _codecs
import io
import os
import sys
import tempfile
import types
import unittest
from typing import Union
from unittest.mock import patch
import numpy as np
import torch
import torch.testing._internal.common_utils as common
import torch.utils.cpp_extension
from torch.serialization import safe_globals
from torch.testing._internal.common_utils import (
IS_ARM64,
skipIfTorchDynamo,
TemporaryFileName,
TEST_CUDA,
TEST_XPU,
)
from torch.utils.cpp_extension import CUDA_HOME, ROCM_HOME
TEST_CUDA = TEST_CUDA and CUDA_HOME is not None
TEST_ROCM = TEST_CUDA and torch.version.hip is not None and ROCM_HOME is not None
def generate_faked_module():
def device_count() -> int:
return 1
def get_rng_state(device: Union[int, str, torch.device] = "foo") -> torch.Tensor:
# create a tensor using our custom device object.
return torch.empty(4, 4, device="foo")
def set_rng_state(
new_state: torch.Tensor, device: Union[int, str, torch.device] = "foo"
) -> None:
pass
def is_available():
return True
def current_device():
return 0
# create a new module to fake torch.foo dynamicaly
foo = types.ModuleType("foo")
foo.device_count = device_count
foo.get_rng_state = get_rng_state
foo.set_rng_state = set_rng_state
foo.is_available = is_available
foo.current_device = current_device
foo._lazy_init = lambda: None
foo.is_initialized = lambda: True
return foo
@unittest.skipIf(IS_ARM64, "Does not work on arm")
@unittest.skipIf(TEST_XPU, "XPU does not support cppextension currently")
@torch.testing._internal.common_utils.markDynamoStrictTest
class TestCppExtensionOpenRgistration(common.TestCase):
"""Tests Open Device Registration with C++ extensions."""
module = None
def setUp(self):
super().setUp()
# cpp extensions use relative paths. Those paths are relative to
# this file, so we'll change the working directory temporarily
self.old_working_dir = os.getcwd()
os.chdir(os.path.dirname(os.path.abspath(__file__)))
assert self.module is not None
def tearDown(self):
super().tearDown()
# return the working directory (see setUp)
os.chdir(self.old_working_dir)
@classmethod
def setUpClass(cls):
torch.testing._internal.common_utils.remove_cpp_extensions_build_root()
cls.module = torch.utils.cpp_extension.load(
name="custom_device_extension",
sources=[
"cpp_extensions/open_registration_extension.cpp",
],
extra_include_paths=["cpp_extensions"],
extra_cflags=["-g"],
verbose=True,
)
# register torch.foo module and foo device to torch
torch.utils.rename_privateuse1_backend("foo")
torch.utils.generate_methods_for_privateuse1_backend(for_storage=True)
torch._register_device_module("foo", generate_faked_module())
def test_base_device_registration(self):
self.assertFalse(self.module.custom_add_called())
# create a tensor using our custom device object
device = self.module.custom_device()
x = torch.empty(4, 4, device=device)
y = torch.empty(4, 4, device=device)
# Check that our device is correct.
self.assertTrue(x.device == device)
self.assertFalse(x.is_cpu)
self.assertFalse(self.module.custom_add_called())
# calls out custom add kernel, registered to the dispatcher
z = x + y
# check that it was called
self.assertTrue(self.module.custom_add_called())
z_cpu = z.to(device="cpu")
# Check that our cross-device copy correctly copied the data to cpu
self.assertTrue(z_cpu.is_cpu)
self.assertFalse(z.is_cpu)
self.assertTrue(z.device == device)
self.assertEqual(z, z_cpu)
def test_common_registration(self):
# check unsupported device and duplicated registration
with self.assertRaisesRegex(RuntimeError, "Expected one of cpu"):
torch._register_device_module("dev", generate_faked_module())
with self.assertRaisesRegex(RuntimeError, "The runtime module of"):
torch._register_device_module("foo", generate_faked_module())
# backend name can be renamed to the same name multiple times
torch.utils.rename_privateuse1_backend("foo")
# backend name can't be renamed multiple times to different names.
with self.assertRaisesRegex(
RuntimeError, "torch.register_privateuse1_backend()"
):
torch.utils.rename_privateuse1_backend("dev")
# generator tensor and module can be registered only once
with self.assertRaisesRegex(RuntimeError, "The custom device module of"):
torch.utils.generate_methods_for_privateuse1_backend()
# check whether torch.foo have been registered correctly
self.assertTrue(
torch.utils.backend_registration._get_custom_mod_func("device_count")() == 1
)
with self.assertRaisesRegex(RuntimeError, "Try to call torch.foo"):
torch.utils.backend_registration._get_custom_mod_func("func_name_")
# check attributes after registered
self.assertTrue(hasattr(torch.Tensor, "is_foo"))
self.assertTrue(hasattr(torch.Tensor, "foo"))
self.assertTrue(hasattr(torch.TypedStorage, "is_foo"))
self.assertTrue(hasattr(torch.TypedStorage, "foo"))
self.assertTrue(hasattr(torch.UntypedStorage, "is_foo"))
self.assertTrue(hasattr(torch.UntypedStorage, "foo"))
self.assertTrue(hasattr(torch.nn.Module, "foo"))
self.assertTrue(hasattr(torch.nn.utils.rnn.PackedSequence, "is_foo"))
self.assertTrue(hasattr(torch.nn.utils.rnn.PackedSequence, "foo"))
def test_open_device_generator_registration_and_hooks(self):
device = self.module.custom_device()
# None of our CPU operations should call the custom add function.
self.assertFalse(self.module.custom_add_called())
# check generator registered before using
with self.assertRaisesRegex(
RuntimeError,
"Please register a generator to the PrivateUse1 dispatch key",
):
torch.Generator(device=device)
self.module.register_generator_first()
gen = torch.Generator(device=device)
self.assertTrue(gen.device == device)
# generator can be registered only once
with self.assertRaisesRegex(
RuntimeError,
"Only can register a generator to the PrivateUse1 dispatch key once",
):
self.module.register_generator_second()
if self.module.is_register_hook() is False:
self.module.register_hook()
default_gen = self.module.default_generator(0)
self.assertTrue(
default_gen.device.type == torch._C._get_privateuse1_backend_name()
)
def test_open_device_dispatchstub(self):
# test kernels could be reused by privateuse1 backend through dispatchstub
input_data = torch.randn(2, 2, 3, dtype=torch.float32, device="cpu")
foo_input_data = input_data.to("foo")
output_data = torch.abs(input_data)
foo_output_data = torch.abs(foo_input_data)
self.assertEqual(output_data, foo_output_data.cpu())
output_data = torch.randn(2, 2, 6, dtype=torch.float32, device="cpu")
# output operand will resize flag is True in TensorIterator.
foo_input_data = input_data.to("foo")
foo_output_data = output_data.to("foo")
# output operand will resize flag is False in TensorIterator.
torch.abs(input_data, out=output_data[:, :, 0:6:2])
torch.abs(foo_input_data, out=foo_output_data[:, :, 0:6:2])
self.assertEqual(output_data, foo_output_data.cpu())
# output operand will resize flag is True in TensorIterator.
# and convert output to contiguous tensor in TensorIterator.
output_data = torch.randn(2, 2, 6, dtype=torch.float32, device="cpu")
foo_input_data = input_data.to("foo")
foo_output_data = output_data.to("foo")
torch.abs(input_data, out=output_data[:, :, 0:6:3])
torch.abs(foo_input_data, out=foo_output_data[:, :, 0:6:3])
self.assertEqual(output_data, foo_output_data.cpu())
def test_open_device_quantized(self):
input_data = torch.randn(3, 4, 5, dtype=torch.float32, device="cpu").to("foo")
quantized_tensor = torch.quantize_per_tensor(input_data, 0.1, 10, torch.qint8)
self.assertEqual(quantized_tensor.device, torch.device("foo:0"))
self.assertEqual(quantized_tensor.dtype, torch.qint8)
def test_open_device_random(self):
# check if torch.foo have implemented get_rng_state
with torch.random.fork_rng(device_type="foo"):
pass
def test_open_device_tensor(self):
device = self.module.custom_device()
# check whether print tensor.type() meets the expectation
dtypes = {
torch.bool: "torch.foo.BoolTensor",
torch.double: "torch.foo.DoubleTensor",
torch.float32: "torch.foo.FloatTensor",
torch.half: "torch.foo.HalfTensor",
torch.int32: "torch.foo.IntTensor",
torch.int64: "torch.foo.LongTensor",
torch.int8: "torch.foo.CharTensor",
torch.short: "torch.foo.ShortTensor",
torch.uint8: "torch.foo.ByteTensor",
}
for tt, dt in dtypes.items():
test_tensor = torch.empty(4, 4, dtype=tt, device=device)
self.assertTrue(test_tensor.type() == dt)
# check whether the attributes and methods of the corresponding custom backend are generated correctly
x = torch.empty(4, 4)
self.assertFalse(x.is_foo)
x = x.foo(torch.device("foo"))
self.assertFalse(self.module.custom_add_called())
self.assertTrue(x.is_foo)
# test different device type input
y = torch.empty(4, 4)
self.assertFalse(y.is_foo)
y = y.foo(torch.device("foo:0"))
self.assertFalse(self.module.custom_add_called())
self.assertTrue(y.is_foo)
# test different device type input
z = torch.empty(4, 4)
self.assertFalse(z.is_foo)
z = z.foo(0)
self.assertFalse(self.module.custom_add_called())
self.assertTrue(z.is_foo)
def test_open_device_packed_sequence(self):
device = self.module.custom_device()
a = torch.rand(5, 3)
b = torch.tensor([1, 1, 1, 1, 1])
input = torch.nn.utils.rnn.PackedSequence(a, b)
self.assertFalse(input.is_foo)
input_foo = input.foo()
self.assertTrue(input_foo.is_foo)
def test_open_device_storage(self):
# check whether the attributes and methods for storage of the corresponding custom backend are generated correctly
x = torch.empty(4, 4)
z1 = x.storage()
self.assertFalse(z1.is_foo)
z1 = z1.foo()
self.assertFalse(self.module.custom_add_called())
self.assertTrue(z1.is_foo)
with self.assertRaisesRegex(RuntimeError, "Invalid device"):
z1.foo(torch.device("cpu"))
z1 = z1.cpu()
self.assertFalse(self.module.custom_add_called())
self.assertFalse(z1.is_foo)
z1 = z1.foo(device="foo:0", non_blocking=False)
self.assertFalse(self.module.custom_add_called())
self.assertTrue(z1.is_foo)
with self.assertRaisesRegex(RuntimeError, "Invalid device"):
z1.foo(device="cuda:0", non_blocking=False)
# check UntypedStorage
y = torch.empty(4, 4)
z2 = y.untyped_storage()
self.assertFalse(z2.is_foo)
z2 = z2.foo()
self.assertFalse(self.module.custom_add_called())
self.assertTrue(z2.is_foo)
# check custom StorageImpl create
self.module.custom_storage_registry()
z3 = y.untyped_storage()
self.assertFalse(self.module.custom_storageImpl_called())
z3 = z3.foo()
self.assertTrue(self.module.custom_storageImpl_called())
self.assertFalse(self.module.custom_storageImpl_called())
z3 = z3[0:3]
self.assertTrue(self.module.custom_storageImpl_called())
@unittest.skipIf(
sys.version_info >= (3, 13),
"Error: Please register PrivateUse1HooksInterface by `RegisterPrivateUse1HooksInterface` first.",
)
@skipIfTorchDynamo("unsupported aten.is_pinned.default")
def test_open_device_storage_pin_memory(self):
# Check if the pin_memory is functioning properly on custom device
cpu_tensor = torch.empty(3)
self.assertFalse(cpu_tensor.is_foo)
self.assertFalse(cpu_tensor.is_pinned("foo"))
cpu_tensor_pin = cpu_tensor.pin_memory("foo")
self.assertTrue(cpu_tensor_pin.is_pinned("foo"))
# Test storage pin_memory and is_pin
cpu_storage = cpu_tensor.storage()
# We implement a dummy pin_memory of no practical significance
# for custom device. Once tensor.pin_memory() has been called,
# then tensor.is_pinned() will always return true no matter
# what tensor it's called on.
self.assertTrue(cpu_storage.is_pinned("foo"))
cpu_storage_pinned = cpu_storage.pin_memory("foo")
self.assertTrue(cpu_storage_pinned.is_pinned("foo"))
# Test untyped storage pin_memory and is_pin
cpu_tensor = torch.randn([3, 2, 1, 4])
cpu_untyped_storage = cpu_tensor.untyped_storage()
self.assertTrue(cpu_untyped_storage.is_pinned("foo"))
cpu_untyped_storage_pinned = cpu_untyped_storage.pin_memory("foo")
self.assertTrue(cpu_untyped_storage_pinned.is_pinned("foo"))
@unittest.skip(
"Temporarily disable due to the tiny differences between clang++ and g++ in defining static variable in inline function"
)
def test_open_device_serialization(self):
self.module.set_custom_device_index(-1)
storage = torch.UntypedStorage(4, device=torch.device("foo"))
self.assertEqual(torch.serialization.location_tag(storage), "foo")
self.module.set_custom_device_index(0)
storage = torch.UntypedStorage(4, device=torch.device("foo"))
self.assertEqual(torch.serialization.location_tag(storage), "foo:0")
cpu_storage = torch.empty(4, 4).storage()
foo_storage = torch.serialization.default_restore_location(cpu_storage, "foo:0")
self.assertTrue(foo_storage.is_foo)
# test tensor MetaData serialization
x = torch.empty(4, 4).long()
y = x.foo()
self.assertFalse(self.module.check_backend_meta(y))
self.module.custom_set_backend_meta(y)
self.assertTrue(self.module.check_backend_meta(y))
self.module.custom_serialization_registry()
with tempfile.TemporaryDirectory() as tmpdir:
path = os.path.join(tmpdir, "data.pt")
torch.save(y, path)
z1 = torch.load(path)
# loads correctly onto the foo backend device
self.assertTrue(z1.is_foo)
# loads BackendMeta data correctly
self.assertTrue(self.module.check_backend_meta(z1))
# cross-backend
z2 = torch.load(path, map_location="cpu")
# loads correctly onto the cpu backend device
self.assertFalse(z2.is_foo)
# loads BackendMeta data correctly
self.assertFalse(self.module.check_backend_meta(z2))
def test_open_device_storage_resize(self):
cpu_tensor = torch.randn([8])
foo_tensor = cpu_tensor.foo()
foo_storage = foo_tensor.storage()
self.assertTrue(foo_storage.size() == 8)
# Only register tensor resize_ function.
foo_tensor.resize_(8)
self.assertTrue(foo_storage.size() == 8)
with self.assertRaisesRegex(TypeError, "Overflow"):
foo_tensor.resize_(8**29)
def test_open_device_storage_type(self):
# test cpu float storage
cpu_tensor = torch.randn([8]).float()
cpu_storage = cpu_tensor.storage()
self.assertEqual(cpu_storage.type(), "torch.FloatStorage")
# test custom float storage before defining FloatStorage
foo_tensor = cpu_tensor.foo()
foo_storage = foo_tensor.storage()
self.assertEqual(foo_storage.type(), "torch.storage.TypedStorage")
class CustomFloatStorage:
@property
def __module__(self):
return "torch." + torch._C._get_privateuse1_backend_name()
@property
def __name__(self):
return "FloatStorage"
# test custom float storage after defining FloatStorage
try:
torch.foo.FloatStorage = CustomFloatStorage()
self.assertEqual(foo_storage.type(), "torch.foo.FloatStorage")
# test custom int storage after defining FloatStorage
foo_tensor2 = torch.randn([8]).int().foo()
foo_storage2 = foo_tensor2.storage()
self.assertEqual(foo_storage2.type(), "torch.storage.TypedStorage")
finally:
torch.foo.FloatStorage = None
def test_open_device_faketensor(self):
with torch._subclasses.fake_tensor.FakeTensorMode.push():
a = torch.empty(1, device="foo")
b = torch.empty(1, device="foo:0")
result = a + b
def test_open_device_named_tensor(self):
torch.empty([2, 3, 4, 5], device="foo", names=["N", "C", "H", "W"])
# Not an open registration test - this file is just very convenient
# for testing torch.compile on custom C++ operators
def test_compile_autograd_function_returns_self(self):
x_ref = torch.randn(4, requires_grad=True)
out_ref = self.module.custom_autograd_fn_returns_self(x_ref)
out_ref.sum().backward()
x_test = x_ref.detach().clone().requires_grad_(True)
f_compiled = torch.compile(self.module.custom_autograd_fn_returns_self)
out_test = f_compiled(x_test)
out_test.sum().backward()
self.assertEqual(out_ref, out_test)
self.assertEqual(x_ref.grad, x_test.grad)
# Not an open registration test - this file is just very convenient
# for testing torch.compile on custom C++ operators
@skipIfTorchDynamo("Temporary disabled due to torch._ops.OpOverloadPacket")
def test_compile_autograd_function_aliasing(self):
x_ref = torch.randn(4, requires_grad=True)
out_ref = torch.ops._test_funcs.custom_autograd_fn_aliasing(x_ref)
out_ref.sum().backward()
x_test = x_ref.detach().clone().requires_grad_(True)
f_compiled = torch.compile(torch.ops._test_funcs.custom_autograd_fn_aliasing)
out_test = f_compiled(x_test)
out_test.sum().backward()
self.assertEqual(out_ref, out_test)
self.assertEqual(x_ref.grad, x_test.grad)
def test_open_device_scalar_type_fallback(self):
z_cpu = torch.Tensor([[0, 0, 0, 1, 1, 2], [0, 1, 2, 1, 2, 2]]).to(torch.int64)
z = torch.triu_indices(3, 3, device="foo")
self.assertEqual(z_cpu, z)
def test_open_device_tensor_type_fallback(self):
# create tensors located in custom device
x = torch.Tensor([[1, 2, 3], [2, 3, 4]]).to("foo")
y = torch.Tensor([1, 0, 2]).to("foo")
# create result tensor located in cpu
z_cpu = torch.Tensor([[0, 2, 1], [1, 3, 2]])
# Check that our device is correct.
device = self.module.custom_device()
self.assertTrue(x.device == device)
self.assertFalse(x.is_cpu)
# call sub op, which will fallback to cpu
z = torch.sub(x, y)
self.assertEqual(z_cpu, z)
# call index op, which will fallback to cpu
z_cpu = torch.Tensor([3, 1])
y = torch.Tensor([1, 0]).long().to("foo")
z = x[y, y]
self.assertEqual(z_cpu, z)
def test_open_device_tensorlist_type_fallback(self):
# create tensors located in custom device
v_foo = torch.Tensor([1, 2, 3]).to("foo")
# create result tensor located in cpu
z_cpu = torch.Tensor([2, 4, 6])
# create tensorlist for foreach_add op
x = (v_foo, v_foo)
y = (v_foo, v_foo)
# Check that our device is correct.
device = self.module.custom_device()
self.assertTrue(v_foo.device == device)
self.assertFalse(v_foo.is_cpu)
# call _foreach_add op, which will fallback to cpu
z = torch._foreach_add(x, y)
self.assertEqual(z_cpu, z[0])
self.assertEqual(z_cpu, z[1])
# call _fused_adamw_ with undefined tensor.
self.module.fallback_with_undefined_tensor()
@unittest.skipIf(
np.__version__ < "1.25",
"versions < 1.25 serialize dtypes differently from how it's serialized in data_legacy_numpy",
)
def test_open_device_numpy_serialization(self):
"""
This tests the legacy _rebuild_device_tensor_from_numpy serialization path
"""
torch.utils.rename_privateuse1_backend("foo")
device = self.module.custom_device()
default_protocol = torch.serialization.DEFAULT_PROTOCOL
# Legacy data saved with _rebuild_device_tensor_from_numpy on f80ed0b8 via
# with patch.object(torch._C, "_has_storage", return_value=False):
# x = torch.tensor([[1, 2, 3], [4, 5, 6]], dtype=torch.float32, device=device)
# x_foo = x.to(device)
# sd = {"x": x_foo}
# rebuild_func = x_foo._reduce_ex_internal(default_protocol)[0]
# self.assertTrue(
# rebuild_func is torch._utils._rebuild_device_tensor_from_numpy
# )
# with open("foo.pt", "wb") as f:
# torch.save(sd, f)
data_legacy_numpy = (
b"PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
b"\x00\x00\x00\x10\x00\x12\x00archive/data.pklFB\x0e\x00ZZZZZZZZZZZZZZ\x80\x02}q\x00X\x01"
b"\x00\x00\x00xq\x01ctorch._utils\n_rebuild_device_tensor_from_numpy\nq\x02(cnumpy.core.m"
b"ultiarray\n_reconstruct\nq\x03cnumpy\nndarray\nq\x04K\x00\x85q\x05c_codecs\nencode\nq\x06"
b"X\x01\x00\x00\x00bq\x07X\x06\x00\x00\x00latin1q\x08\x86q\tRq\n\x87q\x0bRq\x0c(K\x01K\x02K"
b"\x03\x86q\rcnumpy\ndtype\nq\x0eX\x02\x00\x00\x00f4q\x0f\x89\x88\x87q\x10Rq\x11(K\x03X\x01"
b"\x00\x00\x00<q\x12NNNJ\xff\xff\xff\xffJ\xff\xff\xff\xffK\x00tq\x13b\x89h\x06X\x1c\x00\x00"
b"\x00\x00\x00\xc2\x80?\x00\x00\x00@\x00\x00@@\x00\x00\xc2\x80@\x00\x00\xc2\xa0@\x00\x00\xc3"
b"\x80@q\x14h\x08\x86q\x15Rq\x16tq\x17bctorch\nfloat32\nq\x18X\x05\x00\x00\x00foo:0q\x19\x89"
b"tq\x1aRq\x1bs.PK\x07\x08\xe3\xe4\x86\xecO\x01\x00\x00O\x01\x00\x00PK\x03\x04\x00\x00\x08"
b"\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x11\x002\x00"
b"archive/byteorderFB.\x00ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZlittlePK\x07\x08"
b"\x85=\xe3\x19\x06\x00\x00\x00\x06\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00"
b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0f\x00=\x00archive/versionFB9\x00"
b"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ3\nPK\x07\x08\xd1\x9egU\x02\x00\x00"
b"\x00\x02\x00\x00\x00PK\x03\x04\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
b"\x00\x00\x00\x00\x00\x00\x00\x1e\x002\x00archive/.data/serialization_idFB.\x00ZZZZZZZZZZZZZ"
b"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ0636457737946401051300000027264370494161PK\x07\x08\x91\xbf"
b"\xa7\x0c(\x00\x00\x00(\x00\x00\x00PK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00\x00\x00"
b"\xe3\xe4\x86\xecO\x01\x00\x00O\x01\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
b"\x00\x00\x00\x00\x00\x00archive/data.pklPK\x01\x02\x00\x00\x00\x00\x08\x08\x00\x00\x00\x00"
b"\x00\x00\x85=\xe3\x19\x06\x00\x00\x00\x06\x00\x00\x00\x11\x00\x00\x00\x00\x00\x00\x00\x00"
b"\x00\x00\x00\x00\x00\x9f\x01\x00\x00archive/byteorderPK\x01\x02\x00\x00\x00\x00\x08\x08\x00"
b"\x00\x00\x00\x00\x00\xd1\x9egU\x02\x00\x00\x00\x02\x00\x00\x00\x0f\x00\x00\x00\x00\x00\x00"
b"\x00\x00\x00\x00\x00\x00\x00\x16\x02\x00\x00archive/versionPK\x01\x02\x00\x00\x00\x00\x08"
b"\x08\x00\x00\x00\x00\x00\x00\x91\xbf\xa7\x0c(\x00\x00\x00(\x00\x00\x00\x1e\x00\x00\x00\x00"
b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x92\x02\x00\x00archive/.data/serialization_idPK\x06"
b"\x06,\x00\x00\x00\x00\x00\x00\x00\x1e\x03-\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00"
b"\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x06\x01\x00\x00\x00\x00\x00\x008\x03\x00"
b"\x00\x00\x00\x00\x00PK\x06\x07\x00\x00\x00\x00>\x04\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00"
b"PK\x05\x06\x00\x00\x00\x00\x04\x00\x04\x00\x06\x01\x00\x008\x03\x00\x00\x00\x00"
)
buf_data_legacy_numpy = io.BytesIO(data_legacy_numpy)
with safe_globals(
[
(np.core.multiarray._reconstruct, "numpy.core.multiarray._reconstruct")
if np.__version__ >= "2.1"
else np.core.multiarray._reconstruct,
np.ndarray,
np.dtype,
_codecs.encode,
np.dtypes.Float32DType,
]
):
sd_loaded = torch.load(buf_data_legacy_numpy, weights_only=True)
buf_data_legacy_numpy.seek(0)
# Test map_location
sd_loaded_cpu = torch.load(
buf_data_legacy_numpy, weights_only=True, map_location="cpu"
)
expected = torch.tensor(
[[1, 2, 3], [4, 5, 6]], dtype=torch.float32, device=device
)
self.assertEqual(sd_loaded["x"].cpu(), expected.cpu())
self.assertFalse(sd_loaded["x"].is_cpu)
self.assertTrue(sd_loaded_cpu["x"].is_cpu)
def test_open_device_cpu_serialization(self):
torch.utils.rename_privateuse1_backend("foo")
device = self.module.custom_device()
default_protocol = torch.serialization.DEFAULT_PROTOCOL
with patch.object(torch._C, "_has_storage", return_value=False):
x = torch.randn(2, 3)
x_foo = x.to(device)
sd = {"x": x_foo}
rebuild_func = x_foo._reduce_ex_internal(default_protocol)[0]
self.assertTrue(
rebuild_func is torch._utils._rebuild_device_tensor_from_cpu_tensor
)
# Test map_location
with TemporaryFileName() as f:
torch.save(sd, f)
sd_loaded = torch.load(f, weights_only=True)
# Test map_location
sd_loaded_cpu = torch.load(f, weights_only=True, map_location="cpu")
self.assertFalse(sd_loaded["x"].is_cpu)
self.assertEqual(sd_loaded["x"].cpu(), x)
self.assertTrue(sd_loaded_cpu["x"].is_cpu)
# Test metadata_only
with TemporaryFileName() as f:
with self.assertRaisesRegex(
RuntimeError,
"Cannot serialize tensors on backends with no storage under skip_data context manager",
):
with torch.serialization.skip_data():
torch.save(sd, f)
def test_open_device_dlpack(self):
t = torch.randn(2, 3).to("foo")
capsule = torch.utils.dlpack.to_dlpack(t)
t1 = torch.from_dlpack(capsule)
self.assertTrue(t1.device == t.device)
t = t.to("cpu")
t1 = t1.to("cpu")
self.assertEqual(t, t1)
if __name__ == "__main__":
common.run_tests()
|