1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
# Owner(s): ["module: cuda"]
import multiprocessing
import os
import sys
import unittest
from unittest.mock import patch
import torch
# NOTE: Each of the tests in this module need to be run in a brand new process to ensure CUDA is uninitialized
# prior to test initiation.
with patch.dict(os.environ, {"PYTORCH_NVML_BASED_CUDA_CHECK": "1"}):
# Before executing the desired tests, we need to disable CUDA initialization and fork_handler additions that would
# otherwise be triggered by the `torch.testing._internal.common_utils` module import
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
IS_JETSON,
IS_WINDOWS,
NoTest,
parametrize,
run_tests,
TestCase,
)
# NOTE: Because `remove_device_and_dtype_suffixes` initializes CUDA context (triggered via the import of
# `torch.testing._internal.common_device_type` which imports `torch.testing._internal.common_cuda`) we need
# to bypass that method here which should be irrelevant to the parameterized tests in this module.
torch.testing._internal.common_utils.remove_device_and_dtype_suffixes = lambda x: x
TEST_CUDA = torch.cuda.is_available()
if not TEST_CUDA:
print("CUDA not available, skipping tests", file=sys.stderr)
TestCase = NoTest # type: ignore[misc, assignment] # noqa: F811
@torch.testing._internal.common_utils.markDynamoStrictTest
class TestExtendedCUDAIsAvail(TestCase):
SUBPROCESS_REMINDER_MSG = (
"\n REMINDER: Tests defined in test_cuda_nvml_based_avail.py must be run in a process "
"where there CUDA Driver API has not been initialized. Before further debugging, ensure you are either using "
"run_test.py or have added --subprocess to run each test in a different subprocess."
)
def setUp(self):
super().setUp()
torch.cuda._cached_device_count = (
None # clear the lru_cache on this method before our test
)
@staticmethod
def in_bad_fork_test() -> bool:
_ = torch.cuda.is_available()
return torch.cuda._is_in_bad_fork()
# These tests validate the behavior and activation of the weaker, NVML-based, user-requested
# `torch.cuda.is_available()` assessment. The NVML-based assessment should be attempted when
# `PYTORCH_NVML_BASED_CUDA_CHECK` is set to 1, reverting to the default CUDA Runtime API check otherwise.
# If the NVML-based assessment is attempted but fails, the CUDA Runtime API check should be executed
@unittest.skipIf(IS_WINDOWS, "Needs fork")
@parametrize("nvml_avail", [True, False])
@parametrize("avoid_init", ["1", "0", None])
def test_cuda_is_available(self, avoid_init, nvml_avail):
if IS_JETSON and nvml_avail and avoid_init == "1":
self.skipTest("Not working for Jetson")
patch_env = {"PYTORCH_NVML_BASED_CUDA_CHECK": avoid_init} if avoid_init else {}
with patch.dict(os.environ, **patch_env):
if nvml_avail:
_ = torch.cuda.is_available()
else:
with patch.object(torch.cuda, "_device_count_nvml", return_value=-1):
_ = torch.cuda.is_available()
with multiprocessing.get_context("fork").Pool(1) as pool:
in_bad_fork = pool.apply(TestExtendedCUDAIsAvail.in_bad_fork_test)
if os.getenv("PYTORCH_NVML_BASED_CUDA_CHECK") == "1" and nvml_avail:
self.assertFalse(
in_bad_fork, TestExtendedCUDAIsAvail.SUBPROCESS_REMINDER_MSG
)
else:
assert in_bad_fork
@torch.testing._internal.common_utils.markDynamoStrictTest
class TestVisibleDeviceParses(TestCase):
def test_env_var_parsing(self):
def _parse_visible_devices(val):
from torch.cuda import _parse_visible_devices as _pvd
with patch.dict(os.environ, {"CUDA_VISIBLE_DEVICES": val}, clear=True):
return _pvd()
# rest of the string is ignored
self.assertEqual(_parse_visible_devices("1gpu2,2ampere"), [1, 2])
# Negatives abort parsing
self.assertEqual(_parse_visible_devices("0, 1, 2, -1, 3"), [0, 1, 2])
# Double mention of ordinal returns empty set
self.assertEqual(_parse_visible_devices("0, 1, 2, 1"), [])
# Unary pluses and minuses
self.assertEqual(_parse_visible_devices("2, +3, -0, 5"), [2, 3, 0, 5])
# Random string is used as empty set
self.assertEqual(_parse_visible_devices("one,two,3,4"), [])
# Random string is used as separator
self.assertEqual(_parse_visible_devices("4,3,two,one"), [4, 3])
# GPU ids are parsed
self.assertEqual(_parse_visible_devices("GPU-9e8d35e3"), ["GPU-9e8d35e3"])
# Ordinals are not included in GPUid set
self.assertEqual(_parse_visible_devices("GPU-123, 2"), ["GPU-123"])
# MIG ids are parsed
self.assertEqual(_parse_visible_devices("MIG-89c850dc"), ["MIG-89c850dc"])
def test_partial_uuid_resolver(self):
from torch.cuda import _transform_uuid_to_ordinals
uuids = [
"GPU-9942190a-aa31-4ff1-4aa9-c388d80f85f1",
"GPU-9e8d35e3-a134-0fdd-0e01-23811fdbd293",
"GPU-e429a63e-c61c-4795-b757-5132caeb8e70",
"GPU-eee1dfbc-0a0f-6ad8-5ff6-dc942a8b9d98",
"GPU-bbcd6503-5150-4e92-c266-97cc4390d04e",
"GPU-472ea263-58d7-410d-cc82-f7fdece5bd28",
"GPU-e56257c4-947f-6a5b-7ec9-0f45567ccf4e",
"GPU-1c20e77d-1c1a-d9ed-fe37-18b8466a78ad",
]
self.assertEqual(_transform_uuid_to_ordinals(["GPU-9e8d35e3"], uuids), [1])
self.assertEqual(
_transform_uuid_to_ordinals(["GPU-e4", "GPU-9e8d35e3"], uuids), [2, 1]
)
self.assertEqual(
_transform_uuid_to_ordinals("GPU-9e8d35e3,GPU-1,GPU-47".split(","), uuids),
[1, 7, 5],
)
# First invalid UUID aborts parsing
self.assertEqual(
_transform_uuid_to_ordinals(["GPU-123", "GPU-9e8d35e3"], uuids), []
)
self.assertEqual(
_transform_uuid_to_ordinals(["GPU-9e8d35e3", "GPU-123", "GPU-47"], uuids),
[1],
)
# First ambigous UUID aborts parsing
self.assertEqual(
_transform_uuid_to_ordinals(["GPU-9e8d35e3", "GPU-e", "GPU-47"], uuids), [1]
)
# Duplicate UUIDs result in empty set
self.assertEqual(
_transform_uuid_to_ordinals(["GPU-9e8d35e3", "GPU-47", "GPU-9e8"], uuids),
[],
)
def test_ordinal_parse_visible_devices(self):
def _device_count_nvml(val):
from torch.cuda import _device_count_nvml as _dc
with patch.dict(os.environ, {"CUDA_VISIBLE_DEVICES": val}, clear=True):
return _dc()
with patch.object(torch.cuda, "_raw_device_count_nvml", return_value=2):
self.assertEqual(_device_count_nvml("1, 0"), 2)
# Ordinal out of bounds aborts parsing
self.assertEqual(_device_count_nvml("1, 5, 0"), 1)
instantiate_parametrized_tests(TestExtendedCUDAIsAvail)
if __name__ == "__main__":
run_tests()
|