1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
|
# Owner(s): ["module: decompositions"]
import functools
import itertools
import re
import unittest
from collections import defaultdict
from functools import partial
import torch._inductor.decomposition
import torch.autograd
from torch import Tensor
from torch._decomp import core_aten_decompositions, decomposition_table
from torch._dispatch.python import enable_python_dispatcher
from torch._export.utils import _is_cia_op
from torch._ops import DispatchKey
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import tf32_off
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyCPU,
onlyCUDA,
onlyNativeDeviceTypes,
ops,
)
from torch.testing._internal.common_methods_invocations import (
op_db,
skip,
skipOps,
xfail,
)
from torch.testing._internal.common_modules import module_db, modules
from torch.testing._internal.common_utils import (
is_iterable_of_tensors,
run_tests,
skipIfCrossRef,
skipIfTorchDynamo,
suppress_warnings,
TEST_WITH_ASAN,
TEST_WITH_SLOW,
TestCase,
unMarkDynamoStrictTest,
)
from torch.utils import _pytree as pytree
from torch.utils._python_dispatch import TorchDispatchMode
from torch.utils._pytree import tree_flatten, tree_map, tree_unflatten
aten = torch.ops.aten
# TODO: this isn't going to work with non-aten namespaces
def overload_to_aten_name(op):
return op._schema.name.split("::")[1]
# All operators that can have decomp tests
decomposition_names = {
overload_to_aten_name(k)
for k in decomposition_table
if isinstance(k, torch._ops.OpOverload)
}
core_decomposition_names = {
overload_to_aten_name(k)
for k in core_aten_decompositions()
if isinstance(k, torch._ops.OpOverload) and not _is_cia_op(k)
}
_decomp_test_ops = [
op
for op in op_db
if op.aten_name in decomposition_names
or op.aten_backward_name in decomposition_names
]
_decomp_test_ops_core_autograd = [
op
for op in op_db
if op.aten_name in core_decomposition_names and op.supports_autograd
]
_sdpa_op_info = [op for op in op_db if "scaled_dot_product_attention" in op.aten_name]
def diff_arg(arg, requires_grad=True):
def is_differentiable_arg(arg):
if requires_grad:
return arg.requires_grad
else:
return arg.is_floating_point() or arg.is_complex()
if is_iterable_of_tensors(arg):
if all(is_differentiable_arg(a) for a in arg):
return True
if all(not is_differentiable_arg(a) for a in arg):
return False
raise RuntimeError("NYI: The test runner can't handle this")
return isinstance(arg, Tensor) and is_differentiable_arg(arg)
# Version of autograd.grad with some differences:
# - pytree inputs is allowed (but leaves of the pytree have to all
# be tensors)
# - if an input is not used as part of derivatives, we will return a
# zero-filled tensor for the result
def _autograd_grad(
outputs, inputs, grad_outputs=None, retain_graph=False, create_graph=True
):
inputs, inputs_spec = tree_flatten(inputs)
diff_inputs = tuple(inp for inp in inputs if inp.requires_grad)
if grad_outputs is None:
diff_outputs = tuple(out for out in outputs if out.requires_grad)
else:
diff_grad_outputs = [
(out, go) for out, go in zip(outputs, grad_outputs) if out.requires_grad
]
if len(diff_grad_outputs) == 0:
diff_outputs, grad_outputs = (), ()
else:
diff_outputs, grad_outputs = zip(*diff_grad_outputs)
grad_inputs = torch.autograd.grad(
diff_outputs,
diff_inputs,
grad_outputs,
retain_graph=retain_graph,
create_graph=create_graph,
allow_unused=True,
)
result = []
grad_inputs_iter = iter(grad_inputs)
for inp in inputs:
if inp.requires_grad:
grad_input = next(grad_inputs_iter)
if grad_input is None:
result.append(torch.zeros_like(inp))
else:
result.append(grad_input)
else:
result.append(torch.zeros_like(inp))
return tree_unflatten(result, inputs_spec)
def _as_tuple(val):
if isinstance(val, tuple):
return val
return (val,)
def ref_vjp_no_create(f, *primals):
result = f(*primals)
def wrapped(cotangents):
return _autograd_grad(
_as_tuple(result),
primals,
_as_tuple(cotangents),
create_graph=False,
retain_graph=True,
)
return result, wrapped
dtype_precisions = {
torch.float16: (0.001, 1e-5),
torch.bfloat16: (0.016, 1e-4),
torch.float32: (1.3e-6, 1e-5),
torch.float64: (1e-7, 1e-7),
torch.complex32: (0.001, 1e-5),
torch.complex64: (1.3e-6, 1e-5),
torch.complex128: (1e-7, 1e-7),
}
# Returns the "default" rtol and atol for comparing scalars or
# tensors of the given dtypes.
def _getDefaultRtolAndAtol(dtype0, dtype1):
rtol = max(
dtype_precisions.get(dtype0, (0, 0))[0], dtype_precisions.get(dtype1, (0, 0))[0]
)
atol = max(
dtype_precisions.get(dtype0, (0, 0))[1], dtype_precisions.get(dtype1, (0, 0))[1]
)
return rtol, atol
def op_assert_ref(test_case, op, test_dtype, i, orig, decomp, ref, args, kwargs):
assert orig.dtype == decomp.dtype, f"{i} Operation: {op}"
if orig.numel() == 0 or decomp.numel() == 0:
assert orig.numel() == decomp.numel()
return
assert orig.shape == decomp.shape, f"{i} Operation: {op}"
tol_table = {
(torch.bfloat16, torch.ops.aten.native_layer_norm.default): 1e-5,
(torch.float16, torch.ops.aten.native_layer_norm.default): 1e-5,
(torch.float16, torch.ops.aten.native_layer_norm_backward.default): 1e-3,
(torch.bfloat16, torch.ops.aten.native_layer_norm_backward.default): 2e-2,
(torch.bfloat16, torch.ops.aten.native_batch_norm.default): 1e-5,
(torch.float16, torch.ops.aten.native_batch_norm.default): 1e-5,
(torch.bfloat16, torch.ops.aten._native_batch_norm_legit.default): 1e-5,
(torch.bfloat16, torch.ops.aten._native_batch_norm_legit.no_stats): 1e-5,
(torch.float16, torch.ops.aten._native_batch_norm_legit.default): 1e-5,
(torch.float16, torch.ops.aten._native_batch_norm_legit.no_stats): 1e-5,
(torch.bfloat16, torch.ops.aten.linalg_vector_norm.default): 1e-4,
(torch.float16, torch.ops.aten.linalg_vector_norm.default): 1e-4,
(torch.bfloat16, torch.ops.aten.var_mean.correction): 5e-7,
(torch.float16, torch.ops.aten.var_mean.correction): 5e-7,
(torch.bfloat16, torch.ops.aten.var_mean.dim): 5e-7,
(torch.float16, torch.ops.aten.var_mean.dim): 5e-7,
(torch.float16, torch.ops.aten.nll_loss_forward.default): 1e-2,
(torch.bfloat16, torch.ops.aten.nll_loss_forward.default): 1e-1,
(torch.float16, torch.ops.aten.nll_loss2d_forward.default): 1e-2,
(torch.bfloat16, torch.ops.aten.nll_loss2d_forward.default): 2e-1,
(torch.float16, torch.ops.aten.hardswish.default): 2e-7,
(torch.bfloat16, torch.ops.aten.hardswish.default): 2e-7,
(torch.float16, torch.ops.aten.multi_margin_loss.default): 3e-2,
(torch.bfloat16, torch.ops.aten.multi_margin_loss.default): 5e-2,
(torch.float16, torch.ops.aten.multilabel_margin_loss_forward.default): 3e-2,
(torch.bfloat16, torch.ops.aten.multilabel_margin_loss_forward.default): 3e-2,
(torch.float16, torch.ops.aten.reflection_pad1d_backward.default): 5e-3,
(torch.bfloat16, torch.ops.aten.reflection_pad1d_backward.default): 5e-3,
(torch.float16, torch.ops.aten.reflection_pad2d_backward.default): 5e-3,
(torch.bfloat16, torch.ops.aten.reflection_pad2d_backward.default): 5e-3,
(torch.float16, torch.ops.aten.reflection_pad3d_backward.default): 5e-3,
(torch.bfloat16, torch.ops.aten.reflection_pad3d_backward.default): 5e-2,
# see https://github.com/pytorch/pytorch/pull/96264
(torch.float16, torch.ops.aten.mv.default): 1e-5,
(torch.bfloat16, torch.ops.aten.mv.default): 1e-5,
(torch.float16, torch.ops.aten.log_sigmoid_backward.default): 2e-5,
(torch.float16, torch.ops.aten._softmax_backward_data.default): 3e-7,
}
if ref.is_floating_point():
orig_diff = (orig - ref).abs().max()
decomp_diff = (decomp - ref).abs().max()
atol = tol_table.get((test_dtype, op), 1e-7)
if decomp_diff > orig_diff + atol:
raise RuntimeError(
f"Difference from float64 is larger with decomposition {op.__name__}"
f" than original on output {i}. Original max diff: {orig_diff}, Decomp max diff: {decomp_diff}\n"
f"atol = {atol}\n"
f"args = {args}\n"
f"kwargs = {kwargs}"
)
else:
test_case.assertEqual(
orig, decomp, msg=f"{op.__name__}\nargs = {args}\nkwargs = {kwargs}"
)
def op_assert_equal(test_case, op, test_dtype, orig, decomp, args, kwargs):
test_case.assertEqual(
orig.dtype,
decomp.dtype,
f"Operation: {op}, orig.dtype: {orig.dtype}, decomp.dtype: {decomp.dtype}, {args}, {kwargs}",
)
# Before adding an entry to this table, make sure your decomposition is right :)
tol_table = {
# Due to strange epsilon behaviors, see https://github.com/pytorch/pytorch/issues/73161
(torch.float32, torch.ops.aten.native_layer_norm.default): (1e-3, 1e-3),
(torch.float32, torch.ops.aten.native_layer_norm_backward.default): (
1e-3,
1e-3,
),
(torch.float64, torch.ops.aten.native_layer_norm.default): (1e-6, 1e-6),
# This exceeds default tolerances only on CPU, on CUDA it's fine
(torch.float32, torch.ops.aten.grid_sampler_2d.default): (7e-6, 3e-5),
# Exceeds tolerances on CUDA, likely due to fma
(torch.float32, torch.ops.aten.mv.default): (1e-5, 3e-5),
(torch.complex64, torch.ops.aten.mv.default): (5e-5, 5e-5),
(torch.float64, torch.ops.aten.upsample_bicubic2d.vec): (1e-5, 5e-4),
(torch.float64, torch.ops.aten.upsample_bicubic2d.default): (1e-5, 5e-4),
# The decomposition is TOO correct. It computes everything in int64, so sometimes
# there's an off-by-one error. See
# https://github.com/pytorch/pytorch/issues/81996
# https://github.com/pytorch/pytorch/issues/82230
(torch.int8, torch.ops.aten.linspace.default): (0, 1),
(torch.uint8, torch.ops.aten.linspace.default): (0, 1),
(torch.int16, torch.ops.aten.linspace.default): (0, 1),
(torch.int32, torch.ops.aten.linspace.default): (0, 1),
(torch.int64, torch.ops.aten.linspace.default): (0, 1),
(torch.int8, torch.ops.aten.linspace.Tensor_Tensor): (0, 1),
(torch.uint8, torch.ops.aten.linspace.Tensor_Tensor): (0, 1),
(torch.int16, torch.ops.aten.linspace.Tensor_Tensor): (0, 1),
(torch.int32, torch.ops.aten.linspace.Tensor_Tensor): (0, 1),
(torch.int64, torch.ops.aten.linspace.Tensor_Tensor): (0, 1),
(torch.int8, torch.ops.aten.linspace.Tensor_Scalar): (0, 1),
(torch.uint8, torch.ops.aten.linspace.Tensor_Scalar): (0, 1),
(torch.int16, torch.ops.aten.linspace.Tensor_Scalar): (0, 1),
(torch.int32, torch.ops.aten.linspace.Tensor_Scalar): (0, 1),
(torch.int64, torch.ops.aten.linspace.Tensor_Scalar): (0, 1),
(torch.int8, torch.ops.aten.linspace.Scalar_Tensor): (0, 1),
(torch.uint8, torch.ops.aten.linspace.Scalar_Tensor): (0, 1),
(torch.int16, torch.ops.aten.linspace.Scalar_Tensor): (0, 1),
(torch.int32, torch.ops.aten.linspace.Scalar_Tensor): (0, 1),
(torch.int64, torch.ops.aten.linspace.Scalar_Tensor): (0, 1),
}
if (decomp.dtype, op) in tol_table:
rtol, atol = tol_table[(decomp.dtype, op)]
else:
rtol, atol = _getDefaultRtolAndAtol(orig.dtype, decomp.dtype)
test_case.assertEqual(
orig,
decomp,
rtol=rtol,
atol=atol,
msg=f"{op.__name__}\nargs = {args}\nkwargs = {kwargs}",
)
# Given f, returns an f' such that:
# - f' takes only positional arguments
# - All arguments to f' are floating-point Tensors
# - All outputs of f' are floating-point Tensors
def normalize_op_input_output2(
f, args, kwargs, output_process_fn_grad=None, requires_grad=True
):
flat_args, args_spec = tree_flatten(args)
diff_argnums = tuple(
i
for i, arg in enumerate(flat_args)
if diff_arg(arg, requires_grad=requires_grad)
)
assert len(diff_argnums) > 0
primals = tuple(flat_args[i] for i in diff_argnums)
@functools.wraps(f)
def wrapped(*primals):
_args = list(flat_args)
for num, arg in zip(diff_argnums, primals):
_args[num] = arg
_args = tree_unflatten(_args, args_spec)
result = f(*_args, **kwargs)
if output_process_fn_grad is not None:
result = output_process_fn_grad(result)
if isinstance(result, tuple):
# TODO We should check that the integer outputs also agree
result = tuple(
r
for r in result
if isinstance(r, Tensor) and (r.is_floating_point() or r.is_complex())
)
assert len(result) > 0
return result
return wrapped, primals
# NB: This also upcasts dtype arguments
# TODO: handle complex correctly
def upcast_tensor(x, dtype=torch.float32):
if isinstance(x, Tensor) and x.dtype.is_floating_point:
return x.to(dtype=dtype)
elif isinstance(x, torch.dtype) and x in [
torch.float16,
torch.bfloat16,
torch.float,
]:
return dtype
else:
return x
def normalize_op_input_output(f, sample, requires_grad=True):
args = tuple([sample.input] + list(sample.args))
return normalize_op_input_output2(
f,
args,
sample.kwargs,
sample.output_process_fn_grad,
requires_grad=requires_grad,
)
CROSS_REF_EXCLUDE_SET = {
# CUBLAS_STATUS_NOT_SUPPORTED when calling
# `cublasGemmStridedBatchedExFix(handle, opa, opb, (int)m, (int)n, (int)k,
# (void*)&falpha, a, CUDA_R_16BF, (int)lda, stridea, b, CUDA_R_16BF,
# (int)ldb, strideb, (void*)&fbeta, c, CUDA_R_16BF, (int)ldc, stridec,
# (int)num_batches, CUDA_R_32F, CUBLAS_GEMM_DEFAULT_TENSOR_OP)`
("cuda", torch.bfloat16, "nn.functional.bilinear"),
# randomness
(None, None, "special.ndtr"), # aten.special_ndtr was not decomposed
(None, None, "new_empty"),
(None, None, "empty_like"),
(None, None, "empty"),
# AssertionError: False is not true : aten.item was not decomposed, saw calls for: aten._local_scalar_dense.default.
(None, None, "item"),
# It's the only in-place op without an out-of-place equivalent in the Python API
# Its OpInfo wrongly registers it as `torch.zero_(x.clone())`.
(None, None, "zero_"),
# No idea what's going on here
# In the recursive test logsumexp.default fails with args = (torch.tensor(-math.inf), [])
# in the test, but it seems to pass when tested locally and in the logsumexp test
(None, torch.float32, "masked.logsumexp"),
(None, torch.float64, "masked.logsumexp"),
# exp_vml_cpu not implemented for Half
(torch.cpu, torch.float16, "signal.windows.exponential"),
(torch.cpu, torch.float16, "signal.windows.gaussian"),
# sin_vml_cpu not implemented for Half
(torch.cpu, torch.float16, "signal.windows.cosine"),
# CompositeAutogradImplicit
# See https://github.com/pytorch/pytorch/issues/81669
(None, None, "nn.functional.relu6"),
# This decomp runs before autograd.
(None, None, "nn.functional.rrelu"),
(None, None, "meshgrid"),
# Decomposition registered as Autograd
(None, None, "nn.functional.hardshrink"),
(None, None, "nn.functional.softshrink"),
# diag was not decomposed (it just registers a decomp for diag_out, torch.diag is CompImplicit)
(None, None, "diag"),
# _softmax_backward_data's CPU kernel for bfloat16 always return the grad_input as float32
("cpu", torch.bfloat16, "_softmax_backward_data"),
(None, None, "norm"),
# native_batch_norm is only implicit when python dispatcher is on (and noncomposite otherwise)
(None, None, "native_batch_norm"),
(None, None, "_upsample_bilinear2d_aa"),
(None, None, "empty_strided"), # aten.empty_strided was not decomposed
(
None,
None,
"bernoulli",
), # bernoulli is a function of randomness, so couldn't do cross-reference.
}
CROSS_REF_BACKWARD_EXCLUDE_SET = {
# Decomposed backward formula is not as precise
("cpu", torch.bfloat16, "nn.functional.hardswish"),
("cuda", torch.float16, "nn.functional.cross_entropy"),
(
None,
None,
"bernoulli",
), # bernoulli is a function of randomness, so couldn't do cross-reference.
}
all_decomposed = set()
all_called = defaultdict(int)
# Helpful snippet for testing coverage
"""
import atexit
def check_coverage():
print("missing coverage:")
print("\n".join(map(str, decomposition_table.keys() - all_decomposed)))
atexit.register(check_coverage)
"""
# Helpful snippet for Horace to create his google sheet :)
"""
import atexit
def dump_ops():
with open('run_ops.txt', 'w') as f, open('count_ops.txt', 'w') as g:
for op, count in sorted(all_called.items(), key=lambda x: x[0].__name__):
f.write(f'{op.__name__}\n')
g.write(f'{count}\n')
with open('run_decompositions.txt', 'w') as f:
for op in sorted([i.__name__ for i in all_decomposed]):
f.write(f'{op}\n')
atexit.register(dump_ops)
"""
def any_unsupported(args, kwargs):
def test_unsupported(t):
if type(t) is torch.Tensor or type(t) is torch.nn.Parameter:
# These are all things that we haven't coded decompositions
# to handle correctly. Maybe they should.
return any(
[
t.is_sparse_csr,
t.is_sparse,
t.is_mkldnn,
t.is_quantized,
t.is_nested,
torch._is_functional_tensor(t),
]
)
elif torch.overrides.is_tensor_like(t):
# Decompositions will generally change the behavior of Tensor-like
# subclasses, so bypass tests in this case too
return True
else:
return False
flat_args = pytree.arg_tree_leaves(*args, **kwargs)
return any(test_unsupported(x) for x in flat_args)
core_backward_failures = {
skip("_softmax_backward_data"), # slow: fails with --timeout=360 secs
xfail("addcdiv"),
skip("addcmul"), # slow: fails with --timeout=360 secs
skip("deg2rad"), # slow: fails with --timeout=360 secs
skip("diag_embed"), # slow: fails with --timeout=360 secs
skip("frac"), # slow: fails with --timeout=360 secs
skip("grid_sampler_2d"), # slow: fails with --timeout=360 secs
xfail("lerp"),
skip("logaddexp"), # slow: fails with --timeout=360 secs
skip("native_dropout_backward"), # slow: fails with --timeout=360 secs
xfail("nn.functional.binary_cross_entropy_with_logits"),
skip("nn.functional.glu"), # slow: fails with --timeout=360 secs
xfail("nn.functional.hardshrink"),
xfail("nn.functional.softshrink"),
skip("nn.functional.unfold"), # slow: fails with --timeout=360 secs
xfail("norm"),
xfail("norm", "fro"),
xfail("norm", "inf"),
xfail("norm", "nuc"),
skip("rad2deg"), # slow: fails with --timeout=360 secs
skip("renorm"), # slow: fails with --timeout=360 secs
skip("rot90"), # slow: fails with --timeout=360 secs
skip("rsub"), # slow: fails with --timeout=360 secs
skip("sgn"), # slow: fails with --timeout=360 secs
skip("special.xlog1py"), # slow: fails with --timeout=360 secs
xfail("stack"),
skip("tril"), # slow: fails with --timeout=360 secs
skip("triu"), # slow: fails with --timeout=360 secs
skip("unfold_copy"), # slow: fails with --timeout=360 secs
skip("xlogy"), # slow: fails with --timeout=360 secs
xfail("zero_"),
}
if not TEST_WITH_SLOW:
core_backward_failures.update(
{
skip("addr"), # slow: takes 46 sec on A100
skip("baddbmm"), # slow: takes 800+ sec on A100
skip("clamp_min"), # slow: takes 800 sec on A100
skip("clamp_max"), # slow: takes 800 sec on A100
skip("logit"), # slow: takes 44 sec on A100
skip("nn.functional.hardswish"), # slow: takes 60 sec on A100
skip("std_mean"), # slow: takes 170 sec on A100
skip("split", variant_name="list_args"), # slow: takes 118 sec on A100
skip("transpose"), # slow: takes 50 sec on A100
skip("unbind"), # slow: takes 70 sec on A100
skip("unsafe_split"), # slow: takes 49 sec on A100
}
)
comprehensive_failures = {
xfail(
"nn.functional.interpolate", "bilinear", dtypes=(torch.uint8,)
), # off by one error
xfail(
"nn.functional.interpolate", "bicubic", dtypes=(torch.uint8,)
), # off by one error
xfail(
"nn.functional.upsample_bilinear", "", dtypes=(torch.uint8,)
), # off by one error
}
@unMarkDynamoStrictTest
class TestDecomp(TestCase):
longMessage = True
# NB: This actually overlaps with test_comprehensive, but it only
# runs on things that are definitely decomposed so it's a lot faster
# to run
@onlyNativeDeviceTypes
@skipIfCrossRef
@suppress_warnings
@ops(_decomp_test_ops)
def test_quick(self, device, dtype, op):
self.do_cross_ref(device, dtype, op, run_all=False)
@skipOps("TestDecomp", "test_quick_core_backward", core_backward_failures)
@onlyNativeDeviceTypes
@skipIfCrossRef
@suppress_warnings
@ops(_decomp_test_ops_core_autograd, allowed_dtypes=(torch.float64,))
def test_quick_core_backward(self, device, dtype, op):
test_keys = [
(torch.device(device).type, dtype, op.name),
(None, dtype, op.name),
(None, None, op.name),
]
if any(key in CROSS_REF_BACKWARD_EXCLUDE_SET for key in test_keys):
self.skipTest(f"{op.name} in {dtype} not supported")
for sample_input in op.sample_inputs(device, dtype, requires_grad=True):
aten_name = op.decomp_aten_name or op.aten_name
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
func = partial(op.get_op(), **kwargs)
with self.DecompCrossRefMode(
self, self.precision, self.rel_tol, dtype, run_all=False
) as mode, enable_python_dispatcher():
torch.autograd.gradcheck(func, args)
self.check_decomposed(aten_name, mode)
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@onlyNativeDeviceTypes
@skipIfCrossRef
@skipOps("TestDecomp", "test_comprehensive", comprehensive_failures)
@suppress_warnings
@ops(op_db)
def test_comprehensive(self, device, dtype, op):
self.do_cross_ref(device, dtype, op, run_all=True)
def test_uniform(self, device):
size = (2, 3, 4, 5)
dtype = torch.float32
x = make_tensor(size, dtype=dtype, device=device)
low = 0.3
high = 0.9
torch.manual_seed(123)
ref = torch.ops.aten.uniform(x, low, high)
torch.manual_seed(123)
res = torch._decomp.decompositions.uniform(x, low=low, high=high)
self.assertEqual(ref, res)
def test_bernoulli_p(self, device):
p = 0.3
input_t = torch.rand(100, 100)
torch.manual_seed(123)
ref = torch.ops.aten.bernoulli.p(input_t, p)
torch.manual_seed(123)
res = torch._decomp.decompositions.bernoulli_p(input_t, p)
ref_p = ref.sum() / torch.prod(torch.tensor(ref.size()))
res_p = res.sum() / torch.prod(torch.tensor(res.size()))
self.assertEqual(ref_p, res_p, atol=0.06 * p, rtol=0.06)
def test_bernoulli_default(self, device):
p = 0.3
p_t = p * torch.ones(5, 5)
torch.manual_seed(123)
ref = torch.ops.aten.bernoulli.default(p_t)
torch.manual_seed(123)
res = torch._decomp.decompositions.bernoulli(p_t)
ref_p = ref.sum() / torch.prod(torch.tensor(ref.size()))
res_p = res.sum() / torch.prod(torch.tensor(res.size()))
self.assertEqual(ref_p, res_p, atol=0.06 * p, rtol=0.06)
def test_broadcasting_index_copy(self, device):
x = torch.zeros([1, 10], device=device)
xs = torch.ones([2, 10], device=device)
def index_copy(xs, x):
torch._decomp.decompositions.index_copy_(
xs, 0, torch.tensor(0).to(device), x
)
index_copy(xs, x)
xs_two = torch.ones([2, 10], device=device)
xs_two[0] = x
self.assertEqual(xs, xs_two)
def test_cat_single_input(self, device):
decomp_table = torch._inductor.decomposition.select_decomp_table()
cat_inductor = decomp_table[torch.ops.aten.cat.default]
inp = torch.rand([2048, 2048], device=device)
inps = [inp for _ in range(10)]
for dim in (-1, 0, 1):
self.assertEqual(torch.cat(inps, dim), cat_inductor(inps, dim))
@suppress_warnings
@tf32_off()
# only tests RNNs since we have py dispsatcher decomps for them
@modules(
filter(
lambda m: m.module_cls in (torch.nn.RNN, torch.nn.LSTM, torch.nn.GRU),
module_db,
)
)
def test_rnn_decomp_module(self, device, dtype, module_info, training):
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(
module_info,
device=device,
dtype=dtype,
requires_grad=True,
training=training,
)
for module_input in module_inputs:
if module_input.forward_input is None:
continue
args, kwargs = (
module_input.constructor_input.args,
module_input.constructor_input.kwargs,
)
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
args, kwargs = (
module_input.forward_input.args,
module_input.forward_input.kwargs,
)
with self.DecompCrossRefMode(
self, self.precision, self.rel_tol, dtype, run_all=True
), enable_python_dispatcher():
decomp_out = m(*args, **kwargs)
non_decomp_out = m(*args, **kwargs)
# without this check, incorrect decomps at the python dispatcher level can still pass because
# they're checking aten decomps at the torch_dispatch level
self.assertEqual(decomp_out, non_decomp_out)
def test_batch_norm_unflatten_weight_bias(self, device):
# https://github.com/pytorch/pytorch/issues/100970
shape = (1, 3, 2, 2)
input = torch.randn(shape, device=device)
weight = torch.randn((3, 1, 1, 1), device=device)
bias = torch.randn(3, device=device)
mean = torch.randn(3, device=device)
var = torch.randn(3, device=device)
res = torch._decomp.decompositions.native_batch_norm(
input, weight, bias, mean, var, False, 1, 1e-05
)
self.assertEqual(shape, res[0].shape)
def test_arange_graph(self, device):
from torch.fx.experimental.proxy_tensor import make_fx
def func(x, start):
le = x.shape[-1]
if start is None:
a = torch.arange(le, dtype=torch.float32, device=x.device)
else:
a = torch.arange(start, le, dtype=torch.float32, device=x.device)
return a
pattern = r", device = device\(.+\), requires_grad = False"
cfunc = make_fx(func, decomposition_table=decomposition_table)
fx_g = cfunc(torch.rand(10, device=device), None)
fx_g_code = fx_g.code.strip()
# Remove device and requires_grad
fx_g_code = re.sub(pattern, "", fx_g_code)
self.assertExpectedInline(
fx_g_code,
"""\
def forward(self, x_1, start_1):
iota = torch.ops.prims.iota.default(10, start = 0, step = 1, dtype = torch.int64)
mul = torch.ops.prims.mul.default(iota, 1); iota = None
add = torch.ops.prims.add.default(mul, 0); mul = None
convert_element_type = torch.ops.prims.convert_element_type.default(add, torch.float32); add = None
return convert_element_type""",
)
fx_g = cfunc(torch.rand(10, device=device), 1)
fx_g_code = fx_g.code.strip()
# Remove device and requires_grad
fx_g_code = re.sub(pattern, "", fx_g_code)
self.assertExpectedInline(
fx_g_code,
"""\
def forward(self, x_1, start_1):
iota = torch.ops.prims.iota.default(9, start = 0, step = 1, dtype = torch.int64)
mul = torch.ops.prims.mul.default(iota, 1); iota = None
add = torch.ops.prims.add.default(mul, 1); mul = None
convert_element_type = torch.ops.prims.convert_element_type.default(add, torch.float32); add = None
return convert_element_type""",
)
def test_masked_fill(self, device):
from torch.fx.experimental.proxy_tensor import make_fx
if torch.device(device).type not in [
"xpu",
"cuda",
torch._C._get_privateuse1_backend_name(),
]:
self.skipTest("only runs on XPU and CUDA and PrivateUse1.")
def func(scores, mask, value):
return scores.masked_fill(mask, value)
scores_t = torch.tensor([1, 2, 3, 4], device=device)
mask_t = torch.tensor([True, True, True, True], device=device)
value_t = torch.tensor(0, dtype=scores_t.dtype)
cfunc = make_fx(func, decomposition_table=decomposition_table)
fx_g = cfunc(scores_t, mask_t, value_t)
self.assertExpectedInline(
fx_g.code.strip(),
"""\
def forward(self, scores_1, mask_1, value_1):
where = torch.ops.prims.where.default(mask_1, value_1, scores_1); mask_1 = value_1 = scores_1 = None
return where""",
)
class DecompCrossRefMode(TorchDispatchMode):
def __init__(self, test_case, saved_precision, saved_rel_tol, dtype, run_all):
self.test_case = test_case
self.saved_precision = saved_precision
self.saved_rel_tol = saved_rel_tol
self.test_dtype = dtype
self.run_all = run_all
# We check the correctness of each decomposition right after running it.
# So, when we encounter a decomposition, we run the function normally, and
# then run the decomposition, and ensure they're identical.
self.called = set()
self.decomposed = set()
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
self.test_case.precision = self.saved_precision
self.test_case.rel_tol = self.saved_rel_tol
self.called.add(func)
all_called[func] += 1
# Stuff we shouldn't bother testing
# (TODO: remove detach from the decomp table?)
# N.b. Testing in-place ops would need dedicated logic
in_place = func.name()[-1] == "_"
ignored_ops = [
torch.ops.aten.detach.default,
# non-deterministic ops
torch.ops.aten.empty.memory_format,
torch.ops.aten.empty_like.default,
torch.ops.aten.new_empty.default,
torch.ops.aten.empty_strided.default,
torch.ops.aten.new_empty_strided.default,
torch.ops.aten.randn.default,
torch.ops.aten.native_dropout.default,
]
if (
func not in decomposition_table
or func in ignored_ops
or torch.Tag.nondeterministic_seeded in func.tags
or any_unsupported(args, kwargs)
or in_place
):
return func(*args, **kwargs)
self.decomposed.add(func)
all_decomposed.add(func)
# We take 2 main strategies for verifying correctness/numerical stability of decompositions
# The first one is simply tolerance checking between decomp_out and pytorch_out
# However, for fp16/bf16 and reductions, this becomes very
# finicky, as there are not many guarantees we can make.
# So, for fp16/bf16, we instead compare the difference of
# {decomp_out, pytorch_out_64} and {pytorch_out,
# pytorch_out_64}. In other words, we compare how far the
# decomposition and pytorch are from the "ground truth" (i.e.
# fp64). If the decomposition results in more error, we error
# We also decompose the decomposition recursively for
# further coverage, as some paths not be exercised directly by
# OpInfos (sadly) but just by other ops
decomposition = decomposition_table[func]
do_relative_check = self.test_dtype in [torch.float16, torch.bfloat16]
if self.run_all:
# Execute recursively via DFS, to find the root of a possible error first
with self:
decomp_out = pytree.tree_leaves(decomposition(*args, **kwargs))
else:
decomp_out = pytree.tree_leaves(decomposition(*args, **kwargs))
# At this stage we should not be decomposing an in-place op
# We'd like to have decompositions that decompose out-of-place ops into out-of-place ops
# because decompositions are run after functionalisation and we would not like them to
# de-functionalise the graph, as that would break AoTAutograd
# We run the real function *after* the decomposition to make sure that the
# decomposition does not modify any of the inputs in-place. If it does
# real_out should be differen than decom_out so we should catch this
real_out_unflat = func(*args, **kwargs)
real_out = pytree.tree_leaves(real_out_unflat)
assert len(real_out) == len(decomp_out)
if do_relative_check:
upcast = partial(upcast_tensor, dtype=torch.float64)
real_out_double, _ = tree_flatten(
func(*tree_map(upcast, args), **tree_map(upcast, kwargs))
)
for i, (orig, decomp, ref) in enumerate(
zip(real_out, decomp_out, real_out_double)
):
if not isinstance(orig, torch.Tensor):
assert type(orig) == type(decomp)
assert orig == decomp
continue
op_assert_ref(
self.test_case,
func,
self.test_dtype,
i,
orig,
decomp,
ref,
args,
kwargs,
)
else:
for orig, decomp in zip(real_out, decomp_out):
if not isinstance(orig, torch.Tensor):
assert type(orig) == type(decomp)
assert orig == decomp
continue
op_assert_equal(
self.test_case,
func,
self.test_dtype,
orig,
decomp,
args,
kwargs,
)
return real_out_unflat
def check_decomposed(self, aten_name, mode):
self.assertTrue(
any(overload_to_aten_name(c) == aten_name for c in mode.decomposed),
msg=(
f"aten.{aten_name} was not decomposed, saw calls for: "
f"{', '.join(map(str, list(mode.called)))}. If your op is "
f"CompositeImplicitAutograd you should skip this test "
f"by updating CROSS_REF_EXCLUDE_SET."
),
)
@skipIfTorchDynamo("Test does not work with TorchDynamo")
def do_cross_ref(self, device, dtype, op, *, run_all):
test_keys = [
(torch.device(device).type, dtype, op.name),
(None, dtype, op.name),
(None, None, op.name),
]
if any(key in CROSS_REF_EXCLUDE_SET for key in test_keys):
self.skipTest(f"{op.name} in {dtype} not supported")
skip_decomp_vjp = any(
key in CROSS_REF_BACKWARD_EXCLUDE_SET for key in test_keys
)
requires_grad = (
op.supports_autograd
and dtype in op.supported_backward_dtypes(torch.device(device).type)
# TODO: OpInfo really ought to error out for this case, but it's
# not exercised in test_ops_gradients atm. The problem is not
# complex32 per-se (which is supported by data movement only ops)
# but that when we do backwards we expect other ops like add to work
and not dtype == torch.complex32
)
samples = op.sample_inputs(device, dtype, requires_grad=requires_grad)
aten_name = op.decomp_aten_name or op.aten_name
func = op.get_op()
def run_without_python_dispatcher(mode):
return any(
isinstance(op, torch._ops.OpOverload)
and op.has_kernel_for_dispatch_key(
DispatchKey.CompositeImplicitAutograd
)
for op in mode.decomposed.union([func])
)
for sample_input in samples:
if requires_grad:
fn, primals = normalize_op_input_output(func, sample_input)
primals = tree_map(
lambda x: x if isinstance(x, torch.Tensor) else x, primals
)
# Once https://github.com/pytorch/pytorch/pull/75965/ I can
# store the called list on the mode object instance and no
# explicit clearing is necessary as I will create a fresh mode
# for each region
with self.DecompCrossRefMode(
self, self.precision, self.rel_tol, dtype, run_all
) as mode, enable_python_dispatcher():
decomp_out, decomp_vjp_fn = ref_vjp_no_create(fn, *primals)
if run_without_python_dispatcher(mode):
# without this check, incorrect decomps at the python dispatcher level can still pass because
# they're checking aten decomps at the torch_dispatch level.
with self.DecompCrossRefMode(
self, self.precision, self.rel_tol, dtype, run_all
) as mode:
decomp_out, decomp_vjp_fn = ref_vjp_no_create(fn, *primals)
if aten_name in decomposition_names:
self.check_decomposed(aten_name, mode)
if not skip_decomp_vjp and (
op.aten_backward_name in decomposition_names or run_all
):
cotangents = tree_map(lambda x: torch.randn_like(x), decomp_out)
with self.DecompCrossRefMode(
self, self.precision, self.rel_tol, dtype, run_all
) as mode, enable_python_dispatcher():
decomp_vjp_fn(cotangents)
if run_without_python_dispatcher(mode):
# without this check, incorrect decomps at the python dispatcher level can still pass because
# they're checking aten decomps at the torch_dispatch level.
with self.DecompCrossRefMode(
self, self.precision, self.rel_tol, dtype, run_all
) as mode:
decomp_vjp_fn(cotangents)
if not run_all:
self.check_decomposed(op.aten_backward_name, mode)
elif aten_name in decomposition_names or run_all:
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
# A failure here might be because the decomposition for the op is wrong or because a
# decomposition used by the particular op is wrong.
with self.DecompCrossRefMode(
self, self.precision, self.rel_tol, dtype, run_all
) as mode, enable_python_dispatcher():
func(*args, **kwargs)
if run_without_python_dispatcher(mode):
# without this check, incorrect decomps at the python dispatcher level can still pass because
# they're checking aten decomps at the torch_dispatch level.
with self.DecompCrossRefMode(
self, self.precision, self.rel_tol, dtype, run_all
) as mode:
func(*args, **kwargs)
if not run_all:
self.check_decomposed(aten_name, mode)
else:
assert op.supports_autograd
self.skipTest(
"only backwards is decomposed, but dtype doesn't support AD"
)
instantiate_device_type_tests(TestDecomp, globals())
class DecompOneOffTests(TestCase):
@onlyNativeDeviceTypes
@skipIfCrossRef
def test_contiguous_softmax(self, device):
size = (2, 4, 3, 3)
stride = (9, 18, 3, 1)
dtype = torch.float32
x = torch.randn(size, dtype=dtype, device=device)
x = torch.as_strided(x, size, stride)
ref = torch.ops.aten._softmax(x, -1, False)
res = torch._decomp.decompositions._softmax(x, -1, False)
self.assertEqual(ref.stride(), res.stride())
@onlyNativeDeviceTypes
@skipIfCrossRef
def test_contiguous_log_softmax(self, device):
size = (2, 4, 3, 3)
stride = (9, 18, 3, 1)
dtype = torch.float32
x = torch.randn(size, dtype=dtype, device=device)
x = torch.as_strided(x, size, stride)
ref = torch.ops.aten._log_softmax(x, -1, False)
res = torch._decomp.decompositions._log_softmax(x, -1, False)
self.assertEqual(ref.stride(), res.stride())
@onlyCUDA
def test_exponential_non_inf(self, device):
inp = torch.empty((4, 400, 256), device=device)
with torch._dynamo.utils.preserve_rng_state():
exp_ref = inp.exponential_()
exp = torch._refs.exponential(inp)
self.assertEqual(exp, exp_ref)
self.assertFalse(exp.isinf().any())
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@skipIfCrossRef
@onlyCUDA
def test_amp_batch_norm_backward(self):
device = "cuda"
grad_out = torch.randn((1, 2, 16, 16), dtype=torch.float16, device=device)
x = torch.randn((1, 2, 16, 16), dtype=torch.float16, device=device)
weight = torch.randn((2,), dtype=torch.float32, device=device)
rmean = torch.randn((2,), dtype=torch.float32, device=device)
rvar = torch.randn((2,), dtype=torch.float32, device=device)
mean = torch.randn((0,), dtype=torch.float32, device=device)
ref = torch.ops.aten.native_batch_norm_backward(
grad_out,
x,
weight,
rmean,
rvar,
mean,
mean,
False,
1e-05,
[True, True, True],
)
res = torch._decomp.decompositions.native_batch_norm_backward(
grad_out,
x,
weight,
rmean,
rvar,
mean,
mean,
False,
1e-05,
[True, True, True],
)
for a, b in zip(ref, res):
self.assertEqual(a.stride(), b.stride())
self.assertEqual(a.dtype, b.dtype)
@onlyNativeDeviceTypes
@skipIfCrossRef
def test_elu_backward(self, device):
size = (2, 4, 3, 3)
dtype = torch.float32
grad_out = torch.randn(size, dtype=dtype, device=device)
out = torch.randn(size, dtype=dtype, device=device)
ref = torch.ops.aten.elu_backward(grad_out, 1.0, 1, 1, True, out)
res = torch._decomp.decompositions.elu_backward(grad_out, 1.0, 1, 1, True, out)
self.assertEqual(ref, res)
@onlyNativeDeviceTypes
@skipIfCrossRef
def test_threshold_backward_dtype(self, device):
grad = torch.randint(10, (4,), device=device)
input_tensor = torch.randint(10, (4,), device=device)
ref = torch.ops.aten.threshold_backward(grad, input_tensor, 1)
res = torch._decomp.decompositions.threshold_backward(grad, input_tensor, 1)
self.assertEqual(ref.dtype, res.dtype)
@onlyNativeDeviceTypes
@skipIfCrossRef
def test_weight_norm_interface(self, device):
g = torch.randn((3, 10, 10), device=device)
v = torch.randn((1, 1, 10), device=device)
ref = torch.ops.aten._weight_norm_interface(g, v, 2)
res = torch._decomp.decompositions._weight_norm_interface(g, v, 2)
self.assertTrue(torch.allclose(ref[0], res[0]))
self.assertTrue(torch.allclose(ref[1], res[1]))
inp = torch.rand([30, 10], device=device)
inp2 = torch.rand([30, 1], device=device)
self.assertEqual(
torch.ops.aten._weight_norm_interface(inp, inp2),
torch._decomp.decompositions._weight_norm_interface(inp, inp2),
)
@onlyCPU
@skipIfCrossRef
@skipOps(
"DecompOneOffTests",
"test_sdpa",
[
xfail(
"nn.functional.scaled_dot_product_attention",
dtypes=[torch.half],
),
],
)
@ops(_sdpa_op_info)
def test_sdpa(self, device, dtype, op):
# SDPA doesn't support float16, this is aligned with aten/src/ATen/native/transformers/attention.cpp. If we
# add support for float16 over there we should update this test as well.
query_layer = torch.randn(1, 128, 100, 64, device=device, dtype=dtype)
key_layer = torch.randn(1, 128, 100, 64, device=device, dtype=dtype)
value_layer = torch.randn(1, 128, 100, 64, device=device, dtype=dtype)
masks = [None, torch.ones((1, 1, 100, 100), device=device, dtype=torch.bool)]
atol, rtol = dtype_precisions[dtype]
for mask in masks:
is_causal = mask is None
decomposed_res = (
torch._decomp.decompositions.scaled_dot_product_flash_attention_for_cpu(
query_layer, key_layer, value_layer, 0.0, is_causal, attn_mask=mask
)
)
actual_res = decomposed_res[0]
# Output has form (N, H, L, E), but should be continuous on (L, N, H, E)
# in order for subsequent view(L * N, H * E) to be valid.
# So permute(2, 0, 1, 3) before checking that tensor is contiguous
self.assertTrue(actual_res.permute(2, 0, 1, 3).is_contiguous())
eager_res = op(
query_layer,
key_layer,
value_layer,
attn_mask=mask,
dropout_p=0.0,
is_causal=is_causal,
)
self.assertTrue(torch.allclose(actual_res, eager_res, atol=atol, rtol=rtol))
@onlyCPU
def test_native_layer_norm_cpu_decomp(self, device):
def f(x, w, b):
return torch.ops.aten.native_layer_norm.default(x, [1, 2, 3], w, b, eps=0.5)
x = torch.randn(1, 2, 3, dtype=torch.bfloat16, device="cpu")
w = torch.randn(1, 2, 3, dtype=torch.bfloat16, requires_grad=True, device="cpu")
b = torch.randn(1, 2, 3, dtype=torch.bfloat16, requires_grad=True, device="cpu")
out_ref = f(x, w, b)
from torch._subclasses.fake_tensor import FakeTensorMode
with enable_python_dispatcher(), FakeTensorMode():
x = torch.randn(1, 2, 3, dtype=torch.bfloat16, device="cpu")
w = torch.randn(
1, 2, 3, dtype=torch.bfloat16, requires_grad=True, device="cpu"
)
b = torch.randn(
1, 2, 3, dtype=torch.bfloat16, requires_grad=True, device="cpu"
)
out = f(x, w, b)
for o_ref, o in zip(out_ref, out):
self.assertEqual(o_ref.dtype, o.dtype)
instantiate_device_type_tests(DecompOneOffTests, globals())
class HasDecompTest(TestCase):
def setUp(self):
super().setUp()
self.maxDiff = None
@staticmethod
def _can_appear_in_trace(op: torch._ops.OpOverload) -> bool:
has_tensor_arg = any(
"Tensor" in str(a.type)
for a in itertools.chain(op._schema.arguments, op._schema.returns)
)
if not has_tensor_arg:
return False
try:
# CompositeImplicitAutograd ops are transparent to the tracer, so don't need decompositions
return not _is_cia_op(op)
except RuntimeError as e:
# has_key fails for some jit-registered ops, which shouldn't be
# relevant here anyway
if "does not exist" in str(e):
return False
raise
def test_has_decomposition(self):
def all_aten_overloads():
for name in torch._C._dispatch_get_all_op_names():
if not name.startswith("aten::"):
continue
name = name[6:]
if "." in name:
packet_name, overload_name = name.split(".")
else:
packet_name, overload_name = name, "default"
packet = getattr(aten, packet_name)
assert isinstance(packet, torch._ops.OpOverloadPacket)
op = getattr(packet, overload_name)
yield op
# This is for operators that are only registered in some CI
# configurations, so would cause the test to fail
allow_list = {aten.get_gradients.default}
overloads_wanting_decomp = {
op for op in all_aten_overloads() if self._can_appear_in_trace(op)
}
ops_missing_decomp = overloads_wanting_decomp - decomposition_table.keys()
ops_missing_decomp -= allow_list
self.assertExpected(
"".join(sorted(op.name() + "\n" for op in ops_missing_decomp))
)
def test_aten_core_operators(self):
# If a decomposition isn't included in the core decompositions,
# then it must decompose a core ATen operator.
#
# See NOTE [Core ATen Ops]
#
# If this test fails then either:
# - Add the decomposition to torch._decomp.core_aten_decompositions,
# if decomposition should be used by inductor (not a core operator).
# - Run this test again with EXPECTTEST_ACCEPT=1 to update the list of
# core ATen operators (and inductor will not use the decomposition).
# Some decompositions are registered for CompositeImplicitAutograd
# operators, which never appear in AOTAutograd's graph so are never used.
useful_decomps = {
op
for op in decomposition_table.keys()
if isinstance(op, torch._ops.OpOverload) and self._can_appear_in_trace(op)
}
core_decomps = torch._decomp.core_aten_decompositions().keys()
core_aten_ops = useful_decomps - core_decomps
self.assertExpected("".join(sorted(op.name() + "\n" for op in core_aten_ops)))
if __name__ == "__main__":
run_tests()
|