1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
# Owner(s): ["module: tests"]
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyCUDA,
onlyNativeDeviceTypes,
skipCUDAIfRocm,
skipMeta,
)
from torch.testing._internal.common_dtype import all_types_and_complex_and
from torch.testing._internal.common_utils import IS_JETSON, run_tests, TestCase
from torch.utils.dlpack import from_dlpack, to_dlpack
# Wraps a tensor, exposing only DLPack methods:
# - __dlpack__
# - __dlpack_device__
#
# This is used for guaranteeing we are going through the DLPack method, and not
# something else, e.g.: CUDA array interface, buffer protocol, etc.
class TensorDLPackWrapper:
def __init__(self, tensor):
self.tensor = tensor
def __dlpack__(self, *args, **kwargs):
return self.tensor.__dlpack__(*args, **kwargs)
def __dlpack_device__(self, *args, **kwargs):
return self.tensor.__dlpack_device__(*args, **kwargs)
class TestTorchDlPack(TestCase):
exact_dtype = True
@skipMeta
@onlyNativeDeviceTypes
@dtypes(
*all_types_and_complex_and(
torch.half,
torch.bfloat16,
torch.bool,
torch.uint16,
torch.uint32,
torch.uint64,
)
)
def test_dlpack_capsule_conversion(self, device, dtype):
x = make_tensor((5,), dtype=dtype, device=device)
z = from_dlpack(to_dlpack(x))
self.assertEqual(z, x)
@skipMeta
@onlyNativeDeviceTypes
@dtypes(
*all_types_and_complex_and(
torch.half,
torch.bfloat16,
torch.bool,
torch.uint16,
torch.uint32,
torch.uint64,
)
)
def test_dlpack_protocol_conversion(self, device, dtype):
x = make_tensor((5,), dtype=dtype, device=device)
z = from_dlpack(x)
self.assertEqual(z, x)
@skipMeta
@onlyNativeDeviceTypes
def test_dlpack_shared_storage(self, device):
x = make_tensor((5,), dtype=torch.float64, device=device)
z = from_dlpack(to_dlpack(x))
z[0] = z[0] + 20.0
self.assertEqual(z, x)
@skipMeta
@onlyCUDA
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_dlpack_conversion_with_streams(self, device, dtype):
# Create a stream where the tensor will reside
stream = torch.cuda.Stream()
with torch.cuda.stream(stream):
# Do an operation in the actual stream
x = make_tensor((5,), dtype=dtype, device=device) + 1
# DLPack protocol helps establish a correct stream order
# (hence data dependency) at the exchange boundary.
# DLPack manages this synchronization for us, so we don't need to
# explicitly wait until x is populated
if IS_JETSON:
# DLPack protocol that establishes correct stream order
# does not behave as expected on Jetson
stream.synchronize()
stream = torch.cuda.Stream()
with torch.cuda.stream(stream):
z = from_dlpack(x)
stream.synchronize()
self.assertEqual(z, x)
@skipMeta
@onlyNativeDeviceTypes
@dtypes(
*all_types_and_complex_and(
torch.half,
torch.bfloat16,
torch.bool,
torch.uint16,
torch.uint32,
torch.uint64,
)
)
def test_from_dlpack(self, device, dtype):
x = make_tensor((5,), dtype=dtype, device=device)
y = torch.from_dlpack(x)
self.assertEqual(x, y)
@skipMeta
@onlyNativeDeviceTypes
@dtypes(
*all_types_and_complex_and(
torch.half,
torch.bfloat16,
torch.bool,
torch.uint16,
torch.uint32,
torch.uint64,
)
)
def test_from_dlpack_noncontinguous(self, device, dtype):
x = make_tensor((25,), dtype=dtype, device=device).reshape(5, 5)
y1 = x[0]
y1_dl = torch.from_dlpack(y1)
self.assertEqual(y1, y1_dl)
y2 = x[:, 0]
y2_dl = torch.from_dlpack(y2)
self.assertEqual(y2, y2_dl)
y3 = x[1, :]
y3_dl = torch.from_dlpack(y3)
self.assertEqual(y3, y3_dl)
y4 = x[1]
y4_dl = torch.from_dlpack(y4)
self.assertEqual(y4, y4_dl)
y5 = x.t()
y5_dl = torch.from_dlpack(y5)
self.assertEqual(y5, y5_dl)
@skipMeta
@onlyCUDA
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_dlpack_conversion_with_diff_streams(self, device, dtype):
stream_a = torch.cuda.Stream()
stream_b = torch.cuda.Stream()
# DLPack protocol helps establish a correct stream order
# (hence data dependency) at the exchange boundary.
# the `tensor.__dlpack__` method will insert a synchronization event
# in the current stream to make sure that it was correctly populated.
with torch.cuda.stream(stream_a):
x = make_tensor((5,), dtype=dtype, device=device) + 1
z = torch.from_dlpack(x.__dlpack__(stream_b.cuda_stream))
stream_a.synchronize()
stream_b.synchronize()
self.assertEqual(z, x)
@skipMeta
@onlyNativeDeviceTypes
@dtypes(
*all_types_and_complex_and(
torch.half,
torch.bfloat16,
torch.bool,
torch.uint16,
torch.uint32,
torch.uint64,
)
)
def test_from_dlpack_dtype(self, device, dtype):
x = make_tensor((5,), dtype=dtype, device=device)
y = torch.from_dlpack(x)
assert x.dtype == y.dtype
@skipMeta
@onlyCUDA
def test_dlpack_default_stream(self, device):
class DLPackTensor:
def __init__(self, tensor):
self.tensor = tensor
def __dlpack_device__(self):
return self.tensor.__dlpack_device__()
def __dlpack__(self, stream=None):
if torch.version.hip is None:
assert stream == 1
else:
assert stream == 0
capsule = self.tensor.__dlpack__(stream)
return capsule
# CUDA-based tests runs on non-default streams
with torch.cuda.stream(torch.cuda.default_stream()):
x = DLPackTensor(make_tensor((5,), dtype=torch.float32, device=device))
from_dlpack(x)
@skipMeta
@onlyCUDA
@skipCUDAIfRocm
def test_dlpack_convert_default_stream(self, device):
# tests run on non-default stream, so _sleep call
# below will run on a non-default stream, causing
# default stream to wait due to inserted syncs
torch.cuda.default_stream().synchronize()
# run _sleep call on a non-default stream, causing
# default stream to wait due to inserted syncs
side_stream = torch.cuda.Stream()
with torch.cuda.stream(side_stream):
x = torch.zeros(1, device=device)
torch.cuda._sleep(2**20)
self.assertTrue(torch.cuda.default_stream().query())
d = x.__dlpack__(1)
# check that the default stream has work (a pending cudaStreamWaitEvent)
self.assertFalse(torch.cuda.default_stream().query())
@skipMeta
@onlyNativeDeviceTypes
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16))
def test_dlpack_tensor_invalid_stream(self, device, dtype):
with self.assertRaises(TypeError):
x = make_tensor((5,), dtype=dtype, device=device)
x.__dlpack__(stream=object())
# TODO: add interchange tests once NumPy 1.22 (dlpack support) is required
@skipMeta
def test_dlpack_export_requires_grad(self):
x = torch.zeros(10, dtype=torch.float32, requires_grad=True)
with self.assertRaisesRegex(RuntimeError, r"require gradient"):
x.__dlpack__()
@skipMeta
def test_dlpack_export_is_conj(self):
x = torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j])
y = torch.conj(x)
with self.assertRaisesRegex(RuntimeError, r"conjugate bit"):
y.__dlpack__()
@skipMeta
def test_dlpack_export_non_strided(self):
x = torch.sparse_coo_tensor([[0]], [1], size=(1,))
y = torch.conj(x)
with self.assertRaisesRegex(RuntimeError, r"strided"):
y.__dlpack__()
@skipMeta
def test_dlpack_normalize_strides(self):
x = torch.rand(16)
y = x[::3][:1]
self.assertEqual(y.shape, (1,))
self.assertEqual(y.stride(), (3,))
z = from_dlpack(y)
self.assertEqual(z.shape, (1,))
# gh-83069, make sure __dlpack__ normalizes strides
self.assertEqual(z.stride(), (1,))
@skipMeta
@onlyNativeDeviceTypes
def test_automatically_select_in_creation(self, device):
# Create a new tensor, and wrap it using TensorDLPackWrapper.
tensor = torch.rand(10)
wrap = TensorDLPackWrapper(tensor)
# Create a new tensor from the wrapper.
# This should identify that the wrapper class provides the DLPack methods
# and use them for creating the new tensor, instead of iterating element
# by element.
new_tensor = torch.tensor(wrap)
self.assertEqual(tensor, new_tensor)
instantiate_device_type_tests(TestTorchDlPack, globals())
if __name__ == "__main__":
run_tests()
|