File: test_fake_tensor.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (2033 lines) | stat: -rw-r--r-- 74,086 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
# Owner(s): ["module: meta tensors"]


import contextlib
import copy
import dataclasses
import inspect
import itertools
import pickle
import unittest
import weakref
from unittest.mock import patch

import numpy as np
import torch
import torch._dynamo
import torch._functorch.config
import torch._prims as prims
import torch.testing._internal.optests as optests
import torch.utils._pytree as pytree

from torch import distributed as dist
from torch._C._functorch import _add_batch_dim, get_unwrapped, is_batchedtensor
from torch._dispatch.python import enable_python_dispatcher
from torch._dynamo.testing import make_test_cls_with_patches, rand_strided
from torch._guards import tracing, TracingContext
from torch._higher_order_ops.scan import scan
from torch._subclasses.fake_tensor import (
    _CacheKeyState,
    DynamicOutputShapeException,
    extract_tensor_metadata,
    MetadataMismatchError,
    FakeTensor,
    FakeTensorConverter,
    FakeTensorMode,
    unset_fake_temporarily,
    UnsupportedOperatorException,
)
from torch.fx.experimental.proxy_tensor import make_fx
from torch.fx.experimental.symbolic_shapes import (
    DimDynamic,
    free_symbols,
    ShapeEnv,
    ShapeEnvSettings,
    StatelessSymbolicContext,
    statically_known_true,
)
from torch.fx.passes.fake_tensor_prop import FakeTensorProp
from torch.testing import FileCheck
from torch.testing._internal.common_cuda import PLATFORM_SUPPORTS_FLASH_ATTENTION
from torch.testing._internal.common_device_type import (
    instantiate_device_type_tests,
    OpDTypes,
    ops,
)
from torch.testing._internal.common_utils import (
    instantiate_parametrized_tests,
    parametrize,
    run_tests,
    skipIfCrossRef,
    skipIfRocm,
    skipIfTorchDynamo,
    TemporaryFileName,
    TEST_WITH_TORCHDYNAMO,
    TestCase,
    xfailIfTorchDynamo,
)
from torch.testing._internal.custom_op_db import custom_op_db

from torch.testing._internal.inductor_utils import GPU_TYPE
from torch.testing._internal.jit_utils import RUN_CUDA
from torch.utils._mode_utils import no_dispatch
from torch.utils._python_dispatch import TorchDispatchMode

aten = torch.ops.aten

torch._dynamo.config.fake_tensor_cache_enabled = True
torch._dynamo.config.fake_tensor_cache_crosscheck_enabled = True


def expectedFailurePropagateRealTensors(fn):
    fn._expected_failure_propagate_real_tensors = True
    return fn


class FakeTensorTest(TestCase):
    def checkType(self, t, device_str, size):
        self.assertTrue(isinstance(t, FakeTensor))
        self.assertEqual(t.device.type, device_str)
        self.assertEqual(list(t.size()), size)

    @unittest.skipIf(not RUN_CUDA, "requires cuda")
    def test_cuda_initialized(self):
        # doesnt error
        with FakeTensorMode():
            p = torch.randn(4, 2, requires_grad=True, device="cuda")
            x = torch.randn(8, 4, device="cuda")
            y = torch.mm(x, p).square().sum()
            y.backward()

    def test_basic(self):
        x = torch.empty(2, 2, device="cpu")
        y = torch.empty(4, 2, 2, device="cpu")
        with FakeTensorMode() as mode:
            x = mode.from_tensor(x)
            y = mode.from_tensor(y)
            z = x + y
            self.assertEqual(z.shape, (4, 2, 2))
            self.assertEqual(z.device, torch.device("cpu"))
            self.assertTrue(isinstance(z, FakeTensor))

    def test_custom_op_fallback(self):
        from torch.library import impl, Library

        try:
            test_lib = Library("my_test_op", "DEF")  # noqa: TOR901
            test_lib.define("foo(Tensor self) -> Tensor")

            @impl(test_lib, "foo", "CPU")
            def foo_impl(self):
                return self.cos()

            x = torch.empty(2, 2, device="cpu")
            with self.assertRaisesRegex(
                UnsupportedOperatorException, "my_test_op.foo.default"
            ):
                with FakeTensorMode(allow_fallback_kernels=True) as mode:
                    x = mode.from_tensor(x)
                    torch.ops.my_test_op.foo(x)

        finally:
            test_lib._destroy()

    def test_parameter_instantiation(self):
        with FakeTensorMode():
            x = torch.rand([4])
            y = torch.nn.parameter.Parameter(x)
            self.assertTrue(isinstance(y, torch.nn.Parameter))

    @unittest.skipIf(not dist.is_available(), "requires distributed")
    def test_fsdp_flat_param(self):
        from torch.distributed.fsdp._flat_param import FlatParameter

        with FakeTensorMode() as m:
            data = torch.randn(2, 2)
            param = FlatParameter(data, requires_grad=True)
        self.assertIsInstance(param, FlatParameter)
        self.assertIsInstance(param, torch.nn.Parameter)
        self.assertIsInstance(param, FakeTensor)

    def test_non_parameter_grad(self):
        mode = FakeTensorMode()
        t = torch.rand([4], requires_grad=True)
        fake_t = mode.from_tensor(t)
        self.assertEqual(fake_t.requires_grad, t.requires_grad)

    @unittest.skipIf(
        TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile"
    )
    @unittest.skipIf(not RUN_CUDA, "requires cuda")
    def test_index_cuda_with_cpu(self):
        with FakeTensorMode():
            x = torch.rand([2048], device="cuda")
            out = x[torch.zeros([36], dtype=torch.int64)]
            self.checkType(out, "cuda", [36])

    @unittest.skipIf(not RUN_CUDA, "requires cuda")
    def test_shape_take_not_device(self):
        with FakeTensorMode():
            x = torch.empty(1, device="cpu")
            y = torch.empty(8, 8, device="cuda")
            out = x.resize_as_(y)
            self.assertEqual(out.shape, (8, 8))
            self.assertEqual(out.device.type, "cpu")
            self.assertTrue(isinstance(out, FakeTensor))

    def test_repr(self):
        with FakeTensorMode():
            x = torch.empty(2, 2, device="cpu")
            self.assertEqual(repr(x), "FakeTensor(..., size=(2, 2))")
            x = torch.empty(2, 2, device="meta")
            self.assertEqual(repr(x), "FakeTensor(..., device='meta', size=(2, 2))")

    def test_convert_fake_to_real(self):
        x = torch.ones([20])
        with FakeTensorMode(allow_non_fake_inputs=True) as m:
            _ = x + 1

        out = torch._subclasses.fake_utils.try_convert_fake_to_real([x[0:10]])

        self.assertEqual(torch.ones([10]), out[0])

    @unittest.skipIf(not RUN_CUDA, "requires cuda")
    def test_zero_dim(self):
        with FakeTensorMode() as mode:
            x = torch.tensor(0.0)
            y = torch.rand([4, 4], device="cuda")
            out = x + y
            self.assertEqual(out.shape, (4, 4))
            self.assertEqual(out.device, y.device)
            self.assertTrue(isinstance(out, FakeTensor))

    def test_nan_to_num(self):
        with FakeTensorMode():
            for dtype in [torch.float16, torch.float32]:
                x = torch.rand([4], dtype=dtype)
                y = torch.nan_to_num(x, nan=None)
                z = torch.nan_to_num(x, 0.0)
                self.assertEqual(dtype, y.dtype)
                self.assertEqual(dtype, z.dtype)

    @unittest.skipIf(not RUN_CUDA, "requires cuda")
    def test_throw(self):
        x = torch.tensor(0.0)  # TODO: tensor() errors
        with FakeTensorMode() as mode:
            x_conv = mode.from_tensor(x)
            y = torch.rand([4, 4], device="cuda")
            z = torch.rand([4, 4], device="cpu")
            self.assertRaises(Exception, lambda: torch.lerp(x_conv, y, z))

    @unittest.skipIf(not RUN_CUDA, "requires cuda")
    def test_type_as(self):
        with FakeTensorMode():
            x = torch.rand([16, 1], device="cpu")
            y = torch.rand([4, 4], device="cuda")
            out = x.type_as(y)
            self.assertEqual(out.device.type, "cuda")
            self.assertTrue(isinstance(out, FakeTensor))

    @unittest.skipIf(not RUN_CUDA, "requires cuda")
    def test_setitem(self):
        for device in ["cpu", "cuda"]:
            with FakeTensorMode():
                x = torch.rand([16, 1], device=device)
                x[..., 0] = 0

    @unittest.skipIf(not RUN_CUDA, "requires cuda")
    def test_device_inplace_copy(self):
        with FakeTensorMode():
            x = torch.rand([8, 8], device="cpu")
            y = torch.rand([8, 8], device="cuda")
            assert x.copy_(y).device.type == "cpu"
            assert y.copy_(x).device.type == "cuda"

    def test_fake_dispatch_keys(self):
        with FakeTensorMode():
            x = torch.rand([4])
            f = (
                FileCheck()
                .check("CPU")
                .check("ADInplaceOrView")
                .check("AutogradCPU")
                .check("AutocastCPU")
            )
            f.run(torch._C._dispatch_key_set(x))

            with torch.inference_mode():
                x = torch.rand([4])
                y = x + x
                FileCheck().check("CPU").check("AutocastCPU").run(
                    torch._C._dispatch_key_set(y)
                )
                FileCheck().check_not("ADInplaceOrView").check_not("Autograd").run(
                    torch._C._dispatch_key_set(y)
                )

    def test_batch_tensor(self):
        x = torch.rand((3, 4, 5))
        b = _add_batch_dim(x, 0, 0)
        mode = FakeTensorMode()
        fake_b = mode.from_tensor(b)
        prims.utils.compare_tensor_meta(b, fake_b, check_strides=True)

        b1 = _add_batch_dim(x, 1, 1)
        b2 = _add_batch_dim(b1, 0, 2)
        fake_b2 = mode.from_tensor(b2)
        prims.utils.compare_tensor_meta(b2, fake_b2, check_strides=True)
        self.assertTrue(is_batchedtensor(fake_b2))
        fake_b1 = get_unwrapped(fake_b2)
        self.assertTrue(is_batchedtensor(fake_b1))
        fake_tensor = get_unwrapped(fake_b1)
        self.assertIsInstance(fake_tensor, FakeTensor)

    def test_constructor(self):
        with FakeTensorMode():
            x = torch.rand([4, 4], device="cpu")

        self.assertTrue(isinstance(x, FakeTensor))
        self.assertTrue(x.device.type == "cpu")

    def test_mode(self):
        with FakeTensorMode():
            y = torch.rand([4], device="cpu")
            out = y + y

        self.assertTrue(isinstance(out, FakeTensor))

    def test_full(self):
        # Test torch.full returns tensor with correct dtype
        with torch._subclasses.CrossRefFakeMode():
            y = torch.full((4, 4), 1)

    def check_function_with_fake(self, fn):
        out = fn()
        with torch._subclasses.FakeTensorMode():
            out_fake = fn()

        for a, b in zip(pytree.tree_leaves(out), pytree.tree_leaves(out_fake)):
            if not isinstance(a, torch.Tensor):
                self.assertTrue(not isinstance(b, torch.Tensor))
                continue

            prims.utils.compare_tensor_meta(a, b, check_strides=True)

    @unittest.skipIf(not RUN_CUDA, "requires cuda")
    def test_non_kwarg_device(self):
        with FakeTensorMode():
            x = torch.rand([16, 1], device="cpu")
            y = x.to(torch.device("cpu"))
            self.assertIs(x, y)
            z = x.to(torch.device("cuda"))
            self.assertEqual(z.device.type, "cuda")

    def test_non_overlapping_stride_zero(self):
        def foo():
            x = torch.empty_strided([1, 3, 427, 640], (0, 1, 1920, 3))
            return x.half()

        self.check_function_with_fake(foo)

    def test_fake_mode_error(self):
        x = torch.rand([4, 4])

        with self.assertRaisesRegex(Exception, "Please convert all Tensors"):
            with FakeTensorMode():
                y = x[0]

    @unittest.skipIf(
        TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile"
    )
    def test_fake_grad_copy(self):
        x = torch.rand([4, 4], requires_grad=True)
        x.grad = torch.rand([4, 4])
        mode = FakeTensorMode()
        fake_x = mode.from_tensor(x)
        prims.utils.compare_tensor_meta(fake_x, x)
        prims.utils.compare_tensor_meta(fake_x.grad, x.grad)

        self.assertTrue(isinstance(fake_x.grad, FakeTensor))

    @unittest.skipIf(not RUN_CUDA, "requires cuda")
    def test_index_put_error(self):
        mode = FakeTensorMode()
        for context in [contextlib.nullcontext, lambda: mode]:
            with context():
                y = torch.randn(2, 2, 3)
                x = torch.randn(2, 2, 3).to("cuda")
                with self.assertRaises(RuntimeError):
                    x[[1, 1]] = y

                with self.assertRaises(RuntimeError):
                    torch.ops.aten.index_put(x, torch.tensor([1, 1], device="cuda"), y)

                # no error
                torch.ops.aten.index_put(
                    x, torch.tensor([1, 1], device="cuda"), torch.tensor(5.0)
                )
                torch.ops.aten.index_put_(
                    x, torch.tensor([1, 1], device="cuda"), torch.tensor(5.0)
                )

    @unittest.skipIf(not RUN_CUDA, "requires cuda")
    def test_like_constructor(self):
        with FakeTensorMode():
            x = torch.rand([4, 4])
            y = torch.ones_like(x)
            self.assertTrue(isinstance(y, FakeTensor))
            self.assertEqual(y.device.type, "cpu")
            z = torch.ones_like(x, device="cuda")
            self.assertTrue(isinstance(z, FakeTensor))
            self.assertEqual(z.device.type, "cuda")

    def test_binary_op_type_promotion(self):
        with FakeTensorMode():
            x = torch.empty([2, 2], dtype=torch.float)
            y = torch.empty([2, 2], dtype=torch.int64)
            out = x / y
            self.assertEqual(out.dtype, torch.float)
            self.assertEqual(out.device.type, "cpu")

    @unittest.skipIf(
        TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile"
    )
    def test_from_numpy(self):
        with FakeTensorMode():
            x = torch.tensor(np.zeros([4, 4]))
            self.checkType(x, "cpu", [4, 4])

    def test_randperm(self):
        x = torch.randperm(10)
        y = torch.randperm(5, device="cpu")
        with FakeTensorMode():
            x1 = torch.randperm(10)
            prims.utils.compare_tensor_meta(x, x1)
            y1 = torch.randperm(5, device="cpu")
            prims.utils.compare_tensor_meta(y, y1)

    def test_print_in_fake_mode(self):
        x = torch.zeros(2)
        # does not fail
        with FakeTensorMode():
            out = str(x)
        assert "FakeTensor" not in out

    @unittest.skipIf(not RUN_CUDA, "requires cuda")
    def test_upsample_bilinear_small_channels(self):
        out = []
        mode = FakeTensorMode()
        for i, context in enumerate([contextlib.nullcontext, lambda: mode]):
            with context():
                arg0_1 = torch.empty_strided(
                    (3, 427, 640), (1, 1920, 3), dtype=torch.float32, device="cuda"
                )
                unsqueeze = torch.ops.aten.unsqueeze.default(arg0_1, 0)
                out.append(
                    torch.ops.aten.upsample_bilinear2d.default(
                        unsqueeze, [800, 1199], False
                    )
                )

        self.assertTrue(out[1].is_contiguous())
        self.checkMetaProps(out[0], out[1])

    def test_split_return_self(self):
        def fn(x):
            return torch.functional.split(x, 0)[0]

        # meta should not return self
        with FakeTensorMode(), enable_python_dispatcher():
            out_fake = fn(torch.empty((0,)))

        out_eager = fn(torch.empty((0,)))
        self.checkMetaProps(out_fake, out_eager)

    @unittest.skipIf(not RUN_CUDA, "requires cuda")
    def test_cpu_fallback(self):
        with FakeTensorMode(allow_fallback_kernels=False):
            filters = torch.randn(8, 4, 3, 3).cuda()
            inputs = torch.randn(1, 4, 5, 5).cuda()
            out = torch.nn.functional.conv2d(inputs, filters, padding=1)
            self.assertEqual(out.device.type, "cuda")
            self.assertEqual(list(out.size()), [1, 8, 5, 5])

        with FakeTensorMode(allow_fallback_kernels=True):
            # intentionally bad inputs
            filters = torch.randn(8, 20, 3, 3).cuda()
            inputs = torch.randn(1, 7, 10, 5).cuda()
            with self.assertRaises(RuntimeError):
                torch.nn.functional.conv2d(inputs, filters, padding=1)

        with FakeTensorMode(allow_fallback_kernels=True):
            filters = torch.randn(8, 4, 3, 3).cuda()
            inputs = torch.randn(1, 4, 5, 5).cuda()

            out = torch.nn.functional.conv2d(inputs, filters, padding=1)
            self.assertEqual(out.device.type, "cuda")
            self.assertEqual(list(out.size()), [1, 8, 5, 5])

    @unittest.skipIf(not RUN_CUDA, "requires cuda")
    def test_out_multi_device(self):
        with FakeTensorMode():
            x = torch.rand([4])
            y = torch.rand([4], device="cuda")

            with self.assertRaisesRegex(Exception, "found.+two.+devices"):
                torch.sin(x, out=y)

            with self.assertRaisesRegex(Exception, "found.+two.+devices"):
                x.add_(y)

    @unittest.skipIf(
        TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile"
    )
    @unittest.skipIf(not RUN_CUDA, "requires cuda")
    def test_normalize_device(self):
        with FakeTensorMode():
            x = torch.empty(1, device="cuda")
            y = torch.empty(1, device=f"cuda:{torch.cuda.current_device()}")
            out = x + y
        self.checkType(out, "cuda", [1])

    def test_recursive_invocation(self):
        mode = FakeTensorMode()
        with mode:
            x = torch.tensor(2)
            mode.in_kernel_invocation = True
            y = x + x
            self.assertTrue(mode.in_kernel_invocation)

    @unittest.skipIf(
        TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile"
    )
    @skipIfRocm
    @parametrize(
        "allow_fallback_kernels",
        [False, True],
        lambda a: "with_fallback" if a else "without_fallback",
    )
    @unittest.skipIf(not RUN_CUDA, "requires cuda")
    def test_cudnn_rnn(self, allow_fallback_kernels):
        def fn(
            a0,
            b0,
            b1,
            b2,
            b3,
            b4,
            b5,
            b6,
            b7,
            b8,
            b9,
            b10,
            b11,
            b12,
            b13,
            b14,
            b15,
            a3,
            a4,
            a5,
        ):
            a1 = [
                b0,
                b1,
                b2,
                b3,
                b4,
                b5,
                b6,
                b7,
                b8,
                b9,
                b10,
                b11,
                b12,
                b13,
                b14,
                b15,
            ]
            return torch.ops.aten._cudnn_rnn(
                a0,
                a1,
                4,
                a3,
                a4,
                a5,
                2,
                2048,
                0,
                2,
                False,
                0.0,
                False,
                True,
                [],
                None,
            )

        mode = FakeTensorMode(allow_fallback_kernels=allow_fallback_kernels)
        for i, context in enumerate([contextlib.nullcontext, lambda: mode]):
            with context():
                inps1 = [
                    torch.randn([92, 8, 2048]).cuda(),
                    torch.randn([8192, 2048]).cuda(),
                    torch.randn([8192, 2048]).cuda(),
                    torch.randn([8192]).cuda(),
                    torch.randn([8192]).cuda(),
                    torch.randn([8192, 2048]).cuda(),
                    torch.randn([8192, 2048]).cuda(),
                    torch.randn([8192]).cuda(),
                    torch.randn([8192]).cuda(),
                    torch.randn([8192, 4096]).cuda(),
                    torch.randn([8192, 2048]).cuda(),
                    torch.randn([8192]).cuda(),
                    torch.randn([8192]).cuda(),
                    torch.randn([8192, 4096]).cuda(),
                    torch.randn([8192, 2048]).cuda(),
                    torch.randn([8192]).cuda(),
                    torch.randn([8192]).cuda(),
                    torch.randn([167837696]).cuda(),
                    torch.randn([4, 8, 2048]).cuda(),
                    torch.randn([4, 8, 2048]).cuda(),
                ]
                inps2 = inps1
                inps2[len(inps2) - 1] = None  # argument `cx` can be None

                for inps in [inps1, inps2]:
                    out = fn(*inps)
                    self.assertIs(out[4], inps[-3])
                    for ten in out:
                        if i == 1:
                            self.assertTrue(isinstance(ten, FakeTensor))
                        self.assertEqual(ten.device.type, "cuda")

    @unittest.skipIf(not RUN_CUDA, "requires cuda")
    def test_cuda_lstm(self):
        # Ensure CUDA (non-cuDNN) impl succeeds with fake tensors.
        with torch.backends.cudnn.flags(enabled=False):
            fake_tensor_mode = FakeTensorMode(allow_fallback_kernels=False)
            with fake_tensor_mode:
                N = 5
                L = 4
                H_in = 2
                hidden_size = 3
                proj_size = 2
                num_layers = 2
                bidir = False
                D = 2 if bidir else 1
                H_out = proj_size if proj_size > 0 else hidden_size

                lstm = torch.nn.LSTM(
                    input_size=H_in,
                    hidden_size=hidden_size,
                    num_layers=num_layers,
                    proj_size=proj_size,
                    batch_first=False,
                    bias=True,
                    bidirectional=bidir,
                    device="cuda",
                )

                h_0 = torch.randn((num_layers * D, N, H_out), device="cuda")
                c_0 = torch.randn((num_layers * D, N, hidden_size), device="cuda")
                inp = torch.randn((L, N, H_in), device="cuda")
                (output, (h_n, c_n)) = lstm(inp, (h_0, c_0))
                output.sum().backward()

                self.assertEqual(output.shape, (L, N, D * H_out))
                self.assertEqual(h_n.shape, (D * num_layers, N, H_out))
                self.assertEqual(c_n.shape, (D * num_layers, N, hidden_size))

    def test_data_dependent_operator(self):
        with FakeTensorMode(allow_fallback_kernels=False):
            x = torch.rand([10, 10])

            self.assertRaises(DynamicOutputShapeException, lambda: torch.nonzero(x))

    def test_parameter_view(self):
        x = torch.nn.Parameter(torch.randn(4))
        x_view = x.view(4)
        mode = FakeTensorMode()
        fake_x_view = mode.from_tensor(x_view)
        fake_x = mode.from_tensor(x)
        self.assertFalse(isinstance(fake_x_view, torch.nn.Parameter))
        self.assertTrue(isinstance(fake_x, torch.nn.Parameter))

    def test_tolist(self):
        shape_env = ShapeEnv()
        with FakeTensorMode(allow_fallback_kernels=False, shape_env=shape_env):
            x = torch.rand([10])
            x.tolist()

    # Propagate real tensors doesn't work with fake-on-fake
    @expectedFailurePropagateRealTensors
    def test_same_shape_env_preserved(self):
        shape_env = ShapeEnv()
        mode1 = FakeTensorMode(shape_env=shape_env)
        t1 = mode1.from_tensor(
            torch.randn(10),
            symbolic_context=StatelessSymbolicContext(
                dynamic_sizes=[DimDynamic.DYNAMIC], constraint_sizes=[None]
            ),
        )
        mode2 = FakeTensorMode(shape_env=shape_env)
        t2 = mode2.from_tensor(t1)
        # t2.size(0) is still dynamic, even though we didn't pass DYNAMIC here
        self.assertIsNot(t2, t1)
        self.assertIs(t1.fake_mode, mode1)
        self.assertIs(t2.fake_mode, mode2)
        self.assertIs(t2.size(0).node.shape_env, t1.size(0).node.shape_env)
        self.assertEqual(str(t2.size(0)), str(t1.size(0)))

    # TODO: Support NJT.  There's also some funny business with dynamic shapes
    # which would need to be dealt with as well
    @expectedFailurePropagateRealTensors
    def test_jagged_fake_to_fake_preserved(self):
        from torch.nested._internal.nested_tensor import jagged_from_list

        S0, S1, S2 = 3, 4, 5
        D = 4
        a = torch.randn(S0, D, requires_grad=True, dtype=torch.float64)
        b = torch.randn(S1, D, requires_grad=True, dtype=torch.float64)
        c = torch.randn(S2, D, requires_grad=True, dtype=torch.float64)
        offsets = None
        jt, _ = jagged_from_list([a, b, c], offsets)
        shape_env = ShapeEnv()
        mode1 = FakeTensorMode(shape_env=shape_env)
        t1 = mode1.from_tensor(jt)
        mode2 = FakeTensorMode(shape_env=shape_env)
        t2 = mode2.from_tensor(t1)
        # It's not obvious that the invocation above makes it dynamic but it
        # does!
        self.assertTrue(free_symbols(t1.size()))
        self.assertIsNot(t2, t1)
        self.assertIs(t1.offsets().fake_mode, mode1)
        self.assertIs(t2.offsets().fake_mode, mode2)
        self.assertIs(t2.size(1).node.shape_env, t1.size(1).node.shape_env)
        self.assertEqual(str(t2.size(1)), str(t1.size(1)))

    def checkMetaProps(self, t1, t2):
        prims.utils.compare_tensor_meta(t1, t2, check_strides=True)

    @skipIfCrossRef
    def test_deepcopy(self):
        with FakeTensorMode() as mode:
            pass
        mod = torch.nn.BatchNorm2d(10)
        with torch._subclasses.fake_tensor.FakeCopyMode(mode):
            mod_copied = copy.deepcopy(mod)

        def check_copy(mod, mod_copied):
            for name, param in itertools.chain(
                mod.named_parameters(), mod.named_buffers()
            ):
                param_copied = getattr(mod_copied, name)
                self.checkMetaProps(param, param_copied)
                self.assertTrue(isinstance(param_copied, FakeTensor))
                self.assertEqual(
                    isinstance(param, torch.nn.Parameter),
                    isinstance(param_copied, torch.nn.Parameter),
                )
                self.assertEqual(param.requires_grad, param_copied.requires_grad)

        check_copy(mod, mod_copied)

        class ModuleNew(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.a = torch.rand([10, 2])
                self.b = self.a
                self.c = self.a[0]

        mod = ModuleNew()
        with torch._subclasses.fake_tensor.FakeCopyMode(mode):
            mod_copied = copy.deepcopy(mod)

        self.assertIs(mod_copied.a, mod_copied.b)
        self.assertEqual(mod_copied.b.storage()._cdata, mod_copied.a.storage()._cdata)

    @unittest.skipIf(
        TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile"
    )
    @unittest.skipIf(not RUN_CUDA, "requires cuda")
    def test_new(self):
        with FakeTensorMode():
            a = torch.rand([16, 1])
            self.checkType(a.new(10, 10), "cpu", [10, 10])
            self.checkType(a.new([1, 2, 3, 4]), "cpu", [4])
            b = torch.rand([4, 4], device="cuda")
            self.checkType(b.new(device="cuda"), "cuda", [0])
            self.checkType(a.new(torch.rand([1])), "cpu", [1])

    @unittest.skipIf(
        TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile"
    )
    def test_scalar_inputs(self):
        with FakeTensorMode():
            self.checkType(torch.div(3, 2), "cpu", [])
            ten = torch.zeros(2, dtype=torch.int32) * 2.0
            self.assertEqual(ten.dtype, torch.float)
            self.checkType(ten, "cpu", [2])

    @unittest.skipIf(
        TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile"
    )
    def test_allow_meta(self):
        def run_meta():
            with FakeTensorMode():
                x = torch.rand([4], device="meta")
                return x + x

        self.checkType(run_meta(), "meta", [4])

        with patch.object(torch._functorch.config, "fake_tensor_allow_meta", False):
            self.assertRaises(Exception, run_meta)

    def test_embedding_bag_meta(self):
        def f():
            # This behavior was originally unintentional but we see people
            # relying on it
            embedding = torch.nn.EmbeddingBag(10, 3, mode="sum", device="meta")
            input = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9], dtype=torch.long)
            offsets = torch.tensor([0, 4], dtype=torch.long)
            return embedding(input, offsets)

        real_out = f()
        with FakeTensorMode():
            fake_out = f()

        for r, f in zip(real_out, fake_out):
            self.assertEqual(r.size(), f.size())
            self.assertEqual(r.device, f.device)

    @unittest.skipIf(
        TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile"
    )
    def test_mixed_real_and_fake_inputs(self):
        class _TestPattern(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.conv = torch.nn.Conv2d(1, 1, 1)
                self.bn = torch.nn.BatchNorm2d(1)

            def forward(self, input):
                running_std = torch.sqrt(self.bn.running_var + self.bn.eps)
                scale_factor = self.bn.weight / running_std
                weight_shape = [1] * len(self.conv.weight.shape)
                weight_shape[0] = -1
                bias_shape = [1] * len(self.conv.weight.shape)
                bias_shape[1] = -1
                scaled_weight = self.conv.weight * scale_factor.reshape(weight_shape)
                zero_bias = torch.zeros_like(self.conv.bias, dtype=input.dtype)
                conv = self.conv._conv_forward(input, scaled_weight, zero_bias)
                conv_orig = conv / scale_factor.reshape(bias_shape)
                conv_orig = conv_orig + self.conv.bias.reshape(bias_shape)
                conv = self.bn(conv_orig)
                return conv

        example_inputs = (torch.randn(1, 1, 3, 3),)
        mod = _TestPattern()
        with FakeTensorMode(allow_non_fake_inputs=True):
            out = mod(torch.randn(1, 1, 3, 3))
        self.checkType(out, "cpu", (1, 1, 3, 3))

    @unittest.skipIf(
        TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile"
    )
    @unittest.skipIf(not RUN_CUDA, "requires cuda")
    def test_aten_copy_multi_device(self):
        with FakeTensorMode():
            x1 = torch.rand(4, device="cpu")
            x2 = torch.rand(4, device="cuda")
            copy1 = torch.ops.aten.copy.default(x1, x2)
            copy2 = torch.ops.aten.copy.default(x2, x1)
            out = torch.empty(4, device="cpu")
            torch.ops.aten.copy.out(x1, x2, out=out)
        self.checkType(copy1, "cpu", (4,))
        self.checkType(copy2, "cuda", (4,))
        self.checkType(out, "cpu", (4,))

    @unittest.skipIf(
        TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile"
    )
    @unittest.skipIf(not RUN_CUDA, "requires cuda")
    def test_aten_index_multi_device(self):
        with FakeTensorMode():
            x1 = torch.rand(4, 4, device="cpu")
            x2 = torch.rand(4, 4, device="cuda")
            i1 = torch.tensor([0, 1], device="cuda")
            i2 = torch.tensor([0, 1], device="cpu")
            # NB: This one does not work: cuda indices not allowed on cpu
            # tensor
            # r1 = torch.ops.aten.index(x1, i1)
            r2 = torch.ops.aten.index(x2, i2)

            y1 = torch.rand(4, device="cpu")
            y2 = torch.rand(4, device="cuda")
            j1 = torch.tensor([2], device="cuda")
            j2 = torch.tensor([2], device="cpu")
            r3 = torch.ops.aten.index_put.default(x1, j1, y1)
            r4 = torch.ops.aten.index_put.default(x2, j2, y2)
        # self.checkType(r1, "cpu", ())
        self.checkType(r2, "cuda", ())
        self.checkType(r3, "cpu", (4, 4))
        self.checkType(r4, "cuda", (4, 4))

    @unittest.skipIf(
        TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile"
    )
    @unittest.skipIf(not RUN_CUDA, "requires cuda")
    def test_aten_slice_scatter_multi_device(self):
        with FakeTensorMode():
            x1 = torch.rand(4, 4, device="cpu")
            y1 = torch.rand(2, 4, device="cuda")
            x2 = torch.rand(4, 4, device="cuda")
            y2 = torch.rand(2, 4, device="cpu")
            out = torch.empty(4, 4, device="cpu")
            r1 = torch.ops.aten.slice_scatter.default(x1, y1, start=2)
            r2 = torch.ops.aten.slice_scatter.default(x2, y2, start=2)
            r3 = torch.ops.aten.slice_scatter.out(x1, y1, out=out, start=2)
        self.checkType(r1, "cpu", (4, 4))
        self.checkType(r2, "cuda", (4, 4))
        self.checkType(r3, "cpu", (4, 4))
        self.checkType(out, "cpu", (4, 4))

    def test__adaptive_avg_pool2d_backward(self):
        with FakeTensorMode():
            grad_out = torch.rand(2, 3, 4, 4)
            inp = torch.rand(2, 3, 4, 4).to(memory_format=torch.channels_last)
            grad_in = torch.ops.aten._adaptive_avg_pool2d_backward(grad_out, inp)
            self.assertTrue(
                torch._prims_common.suggest_memory_format(grad_in)
                == torch.channels_last
            )

    def test_export_numpy(self):
        class MyNumpyModel(torch.nn.Module):
            def forward(self, input):
                input = input.numpy()
                return input + np.random.randn(*input.shape)

        with FakeTensorMode():
            ep = torch.export.export(MyNumpyModel(), args=(torch.randn(1000),))
            self.assertTrue(isinstance(ep, torch.export.ExportedProgram))

    def test_unsqueeze_copy(self):
        shape_env = ShapeEnv()
        t1 = torch.ones(2, 2, 768)
        with FakeTensorMode(shape_env=shape_env) as fake_mode:
            t = fake_mode.from_tensor(
                t1,
                symbolic_context=StatelessSymbolicContext(
                    dynamic_sizes=[
                        DimDynamic.DYNAMIC,
                        DimDynamic.STATIC,
                        DimDynamic.STATIC,
                    ],
                ),
            )

        self.assertEqual(t.shape[0], torch.ops.aten.unsqueeze_copy(t, 1).shape[0])

    def test_alias_call(self):
        fwAD = torch.autograd.forward_ad

        def f(x):
            return 4312491 * x

        with torch._subclasses.fake_tensor.FakeTensorMode():
            with fwAD.dual_level():
                x = torch.randn(3, device="cpu")
                y = torch.ones_like(x)
                dual = fwAD.make_dual(x, y)
                r = f(dual)

        self.assertIsInstance(r, FakeTensor)
        self.assertEqual(r.size(), [3])

    @parametrize("reverse", [False, True])
    def test_scan(self, reverse):
        def add(x, y):
            return x + y, x + y

        with torch._subclasses.fake_tensor.FakeTensorMode():
            x = torch.randn((3, 5, 7), device="cpu")
            init = torch.randn((3, 7), device="cpu")
            r = scan(add, init, x, dim=1, reverse=reverse)

        self.assertIsInstance(r[0], FakeTensor)
        self.assertIsInstance(r[1], FakeTensor)


instantiate_parametrized_tests(FakeTensorTest)


def make_propagate_real_tensors_cls(cls):
    cls = make_test_cls_with_patches(
        cls,
        "PropagateRealTensors",
        "_propagate_real_tensors",
        (torch._functorch.config, "fake_tensor_propagate_real_tensors", True),
        xfail_prop="_expected_failure_propagate_real_tensors",
        decorator=skipIfTorchDynamo("propagate_real_tensors affects Dynamo"),
    )
    cls.__file__ = __file__
    cls.__module__ = __name__
    globals()[cls.__name__] = cls


make_propagate_real_tensors_cls(FakeTensorTest)


class FakeTensorConstHandling(TestCase):
    def assertConst(self, *args):
        for arg in args:
            self.assertTrue(arg.constant is not None)

    def assertNotConst(self, *args):
        for arg in args:
            self.assertTrue(arg.constant is None)

    def test_simple(self):
        with FakeTensorMode():
            x = torch.tensor(4.0)
            self.assertEqual(x.item(), 4.0)

    def test_inplace_add(self):
        with FakeTensorMode():
            x = torch.tensor(4.0)
            y = x.add_(1)
            self.assertEqual(x.item(), 5.0)
            self.assertEqual(y.item(), 5.0)
            self.assertConst(x, y)

    def test_shared_storages(self):
        with FakeTensorMode():
            x = torch.tensor([4.0])
            y = x[:]

            self.assertEqual(x.storage()._cdata, y.storage()._cdata)
            self.assertEqual(x.constant.storage()._cdata, y.constant.storage()._cdata)

    def test_constant_invalidation(self):
        with FakeTensorMode():
            x = torch.tensor([1.0])
            self.assertConst(x)
            y = torch.rand([1])
            x.add_(y)
            self.assertNotConst(x)

    def test_inplace_view_invalidation(self):
        with FakeTensorMode():
            x = torch.tensor([1])
            self.assertConst(x)
            x.resize_([2])
            self.assertEqual(x.size(0), 2)
            self.assertNotConst(x)

    def test_fake_tensor_in_intlist_repro(self):
        def fn(tensors):
            max_size = torch.tensor([800, 1216], dtype=torch.int64)
            batch_shape = [len(tensors)] + list(tensors[0].shape[:-2]) + list(max_size)
            return tensors[0].new_full(batch_shape, 0.0)

        with self.assertRaises(
            torch._subclasses.fake_tensor.DataDependentOutputException
        ):
            with torch._subclasses.fake_tensor.FakeTensorMode():
                a = torch.randn(3, 800, 1199)
                b = torch.randn(3, 800, 800)
                inputs = [a, b]
                ref = fn(inputs)

    def test_fake_tensor_batch_norm_cpu(self):
        with torch._subclasses.CrossRefFakeMode():
            m = torch.nn.Sequential(
                torch.nn.BatchNorm2d(10),
                torch.nn.ReLU(),
            )
            m.eval()
            out = m(torch.randn([2, 10, 8, 8]))

    def test_shared_storage_invalidation(self):
        with FakeTensorMode():
            x = torch.tensor([1.0])
            y = x[:]
            self.assertConst(x, y)
            y.add_(torch.rand([1]))
            self.assertNotConst(x, y)

    def test_aliased_const_write(self):
        with FakeTensorMode():
            x = torch.tensor([1])
            y = x.expand([4])
            self.assertNotConst(y)
            y[0] = 1
            self.assertNotConst(x)

    def test_constant_propagate_through_functions(self):
        with FakeTensorMode():
            y = torch.div(4, 4, rounding_mode="trunc")
            self.assertConst(y)


make_propagate_real_tensors_cls(FakeTensorConstHandling)


def contains_type(type: torch.Type, maybe_contained_type: torch.Type):
    return maybe_contained_type.isSubtypeOf(type) or any(
        contains_type(e, maybe_contained_type) for e in type.containedTypes()
    )


class FakeTensorOpInfoTest(TestCase):
    @ops(custom_op_db, dtypes=OpDTypes.any_one)
    def test_fake(self, device, dtype, op):
        sample_inputs_itr = op.sample_inputs(device, dtype, requires_grad=False)
        for sample_input in sample_inputs_itr:
            args = (sample_input.input,) + sample_input.args
            kwargs = sample_input.kwargs
            optests.fake_check(op, args, kwargs)


make_propagate_real_tensors_cls(FakeTensorOpInfoTest)
instantiate_device_type_tests(FakeTensorOpInfoTest, globals(), only_for=("cpu", "cuda"))
instantiate_device_type_tests(
    PropagateRealTensorsFakeTensorOpInfoTest, globals(), only_for=("cpu",)  # noqa: F821
)


class FakeTensorConverterTest(TestCase):
    def test_memoized_conversion_to_meta(self):
        x = torch.rand(2, 2, 2)
        mode = FakeTensorMode()
        self.assertTrue(mode.from_tensor(x) is mode.from_tensor(x))

    def test_memoized_conversion_from_meta(self):
        x = torch.rand(2, 2).to(device="meta")
        mode = FakeTensorMode()
        converter = mode.fake_tensor_converter
        self.assertTrue(
            converter.from_meta_and_device(mode, x, "cpu")
            is converter.from_meta_and_device(mode, x, "cpu")
        )

    def test_separate_tensor_storages_view(self):
        x = torch.rand(2, 2, 2)
        y = x[0]
        mode = FakeTensorMode()
        converter = mode.fake_tensor_converter
        x_conv = converter.from_real_tensor(mode, x)
        y_conv = converter.from_real_tensor(mode, y)
        self.assertEqual(torch._C._storage_id(x_conv), torch._C._storage_id(y_conv))

    @xfailIfTorchDynamo
    def test_separate_tensor_storages_non_view(self):
        x = torch.rand(2, 2, 2)
        y = torch.rand(4, 2)
        y.set_(x.storage())
        mode = FakeTensorMode()
        converter = mode.fake_tensor_converter
        x_conv = converter.from_real_tensor(mode, x)
        y_conv = converter.from_real_tensor(mode, y)
        stor_id = torch._C._storage_id(x_conv)
        self.assertEqual(stor_id, torch._C._storage_id(y_conv))
        del x
        del x_conv
        self.assertEqual(len(converter.tensor_memo), 1)
        self.assertEqual(len(converter.meta_converter.storage_memo), 1)
        del y
        del y_conv
        self.assertEqual(len(converter.tensor_memo), 0)
        self.assertEqual(len(converter.meta_converter.storage_memo), 0)

    def test_dead_weak_ref(self):
        x = torch.rand(2, 2, 2)
        y = x[0]
        mode = FakeTensorMode()
        converter = FakeTensorConverter()
        x_conv = converter.from_real_tensor(mode, x)
        x_conv_storage = x_conv.untyped_storage()
        del x_conv
        self.assertFalse(x in converter.tensor_memo)
        y_conv = converter.from_real_tensor(mode, y)
        self.assertIs(x_conv_storage, y_conv.untyped_storage())

    @xfailIfTorchDynamo
    def test_dead_key(self):
        x = torch.rand(2, 2, 2)
        mode = FakeTensorMode()
        converter = FakeTensorConverter()
        x_conv = converter.from_real_tensor(mode, x)
        self.assertEqual(len(converter.tensor_memo), 1)
        x_conv2 = converter.from_real_tensor(mode, x)
        assert x_conv2 is x_conv
        del x
        del x_conv
        del x_conv2
        self.assertEqual(len(converter.tensor_memo), 0)

    def test_no_active_mode(self):
        with FakeTensorMode() as mode:
            x = torch.empty(2, 2, device="cpu")
            y = torch.empty(2, 2, device="cpu")

        out = x + y
        self.assertEqual(mode, out.fake_mode)
        self.assertTrue(isinstance(out, FakeTensor))
        self.assertEqual(out.device.type, "cpu")

    def test_multiple_modes(self):
        t = torch.rand([4])
        t2 = torch.rand([4])
        with FakeTensorMode() as m:
            with FakeTensorMode() as m2:
                t_fake = m.from_tensor(t)
                t2_fake = m2.from_tensor(t2)

                with self.assertRaisesRegex(Exception, "Mixing fake modes"):
                    t_fake + t2_fake

    def test_separate_mode_error(self):
        with FakeTensorMode():
            x = torch.empty(2, 2, device="cpu")
        with FakeTensorMode():
            y = torch.empty(2, 2, device="cpu")
        self.assertRaises(Exception, lambda: x, y)

    @xfailIfTorchDynamo
    def test_no_ref_cycle(self):
        x = torch.rand([4])
        mode = FakeTensorMode()
        y = mode.from_tensor(x)
        self.assertEqual(len(mode.fake_tensor_converter.tensor_memo), 1)
        mode_weak = weakref.ref(mode)
        y_weak = weakref.ref(mode)
        del mode
        del y
        assert mode_weak() is None
        assert y_weak() is None


make_propagate_real_tensors_cls(FakeTensorConverterTest)


class FakeTensorOperatorInvariants(TestCase):
    def get_aten_op(self, schema):
        namespace, name = schema.name.split("::")
        overload = schema.overload_name if schema.overload_name else "default"
        assert namespace == "aten"
        return getattr(getattr(torch.ops.aten, name), overload)

    def get_all_aten_schemas(self):
        for schema in torch._C._jit_get_all_schemas():
            namespace = schema.name.split("::")[0]
            if namespace != "aten":
                continue
            yield schema

    def test_non_kwarg_only_device(self):
        for schema in self.get_all_aten_schemas():
            ten_type = torch._C.TensorType.get()
            if not any(
                contains_type(arg.type, ten_type)
                for arg in itertools.chain(schema.arguments, schema.returns)
            ):
                continue

            opt_device = torch._C.OptionalType(torch._C.DeviceObjType.get())
            has_non_kwarg_device = any(
                not arg.kwarg_only and arg.type.isSubtypeOf(opt_device)
                for arg in schema.arguments
            )
            if has_non_kwarg_device:
                self.assertTrue(
                    self.get_aten_op(schema)
                    in torch._subclasses.fake_tensor._device_not_kwarg_ops
                )

    def test_tensor_constructors_all_have_kwarg_device(self):
        for schema in self.get_all_aten_schemas():
            op = self.get_aten_op(schema)
            if not torch._subclasses.fake_tensor._is_tensor_constructor(op):
                continue

            opt_device = torch._C.OptionalType(torch._C.DeviceObjType.get())
            has_kwarg_device = any(
                arg.kwarg_only and arg.type.isSubtypeOf(opt_device)
                for arg in schema.arguments
            )

            self.assertTrue(
                has_kwarg_device or op == torch.ops.aten._list_to_tensor.default
            )

    @unittest.expectedFailure
    def test_sparse_new(self):
        with FakeTensorMode():
            indices = torch.randn(1, 1, dtype=torch.int64)
            values = torch.randn(1)
            extra = (2,)
            sparse = torch.randn(1).to_sparse()
            # This used to segfault, now it does not, but it still raises an
            # error
            sparse2 = sparse.new(indices, values, extra)

    def test_tensor_new(self):
        with FakeTensorMode():
            x = torch.Tensor([1, 2, 3])
        self.assertIsInstance(x, FakeTensor)

    def test_like_ops(self):
        for schema in self.get_all_aten_schemas():
            if "_like" == schema.name[-5:]:
                op = self.get_aten_op(schema)
                self.assertIn(
                    op, torch._subclasses.fake_tensor._like_tensor_constructors
                )

    def test_str_storage(self):
        x = torch.zeros(3)
        with FakeTensorMode() as m:
            y = m.from_tensor(x)
            self.assertExpectedInline(
                str(x.storage()),
                """\
 0.0
 0.0
 0.0
[torch.storage.TypedStorage(dtype=torch.float32, device=cpu) of size 3]""",
            )
            self.assertExpectedInline(
                str(y.storage()),
                """\
...
[torch.storage.TypedStorage(dtype=torch.float32, device=meta) of size 3]""",
            )

        self.assertExpectedInline(
            str(y.storage()),
            """\
...
[torch.storage.TypedStorage(dtype=torch.float32, device=meta) of size 3]""",
        )

    # at::_embedding_bag has no op info,
    # and returns extra tensors that at::embedding bag throws away
    def test_embedding_bag_private(self):
        args = [
            torch.ones(6, 1),
            torch.ones(6, dtype=torch.int64),
            torch.arange(2, dtype=torch.int64),
            False,
            2,  # mode = max
        ]

        ref_out = torch.ops.aten._embedding_bag(*args)
        with FakeTensorMode() as m:
            meta_args = [
                m.from_tensor(a) if isinstance(a, torch.Tensor) else a for a in args
            ]
            meta_out = torch.ops.aten._embedding_bag(*meta_args)

        self.assertEqual(len(ref_out), len(meta_out))
        for ref_o, meta_o in zip(ref_out, meta_out):
            self.assertEqual(ref_o.size(), meta_o.size())

    def test_cross_entropy_loss(self):
        inp = torch.randn(3, 5)
        target = torch.randint(5, (3,), dtype=torch.long)
        weight = torch.rand(5)
        fn = torch.nn.functional.cross_entropy
        for w in (weight, None):
            args = (inp, target, w)
            ref = fn(*args)
            with FakeTensorMode() as m:
                meta_args = [
                    m.from_tensor(a) if isinstance(a, torch.Tensor) else a for a in args
                ]
                meta_out = torch.nn.functional.cross_entropy(
                    *meta_args, label_smoothing=0.5
                )

            self.assertEqual(ref.size(), meta_out.size())

    @skipIfRocm
    @unittest.skipIf(
        not PLATFORM_SUPPORTS_FLASH_ATTENTION,
        "Does not support SDPA or pre-SM80 hardware",
    )
    def test_flash_attention(self):
        class Repro(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

            def forward(self, arg1, arg2, arg3):
                torch.ops.aten._scaled_dot_product_flash_attention(
                    arg1, arg2, arg3, scale=0.17677669529663687
                )

        args_new = [
            [
                ((1, 48, 64, 64), (0, 4096, 64, 1), torch.float16, "cuda"),
                ((1, 48, 64, 64), (0, 4096, 64, 1), torch.float16, "cuda"),
                ((1, 48, 64, 64), (0, 4096, 64, 1), torch.float16, "cuda"),
            ],
            [
                ((4, 2, 16, 32), (1024, 512, 32, 1), torch.float16, "cuda"),
                ((4, 2, 16, 32), (1024, 512, 32, 1), torch.float16, "cuda"),
                ((4, 2, 16, 32), (1024, 512, 32, 1), torch.float16, "cuda"),
            ],
        ]
        for args_list in args_new:
            args = [
                rand_strided(bsz, num_heads, seq_len, head_dim)
                for (bsz, num_heads, seq_len, head_dim) in args_list
            ]
            try:
                with torch._subclasses.CrossRefFakeMode():
                    Repro()(*args)
            except MetadataMismatchError as e:
                # We expect the cross ref to succed for the first output to fail
                # for the rng state, see Note [Seed and Offset]
                self.assertTrue("output[0]" not in str(e))
                if self.__class__.__name__.startswith("PropagateRealTensors"):
                    self.assertTrue(
                        "Real tensor propagation found a metadata mismatch"
                        in str(e)
                    )
                else:
                    self.assertTrue(
                        "found mismatched tensor metadata for output"
                        in str(e)
                    )

    # IMPORTANT!!! Always run even if CUDA is not available
    def test_fake_gpu_no_init(self):
        # Skip this test, we will try to run CUDA operations to real prop so
        # it clearly will not work on CPU runner
        if torch._functorch.config.fake_tensor_propagate_real_tensors:
            return
        with FakeTensorMode():
            torch.empty(10, device=GPU_TYPE)
            torch.ones(10, device=GPU_TYPE)
            torch.zeros(10, device=GPU_TYPE)
            torch.rand(10, device=GPU_TYPE)
            torch.tensor(3.14, device=GPU_TYPE)
            torch.tensor([[3.14, 2], [1, 2]], device=GPU_TYPE)

    @skipIfRocm
    @unittest.skipIf(not RUN_CUDA, "requires cuda")
    def test_conv_c1_backward(self):
        class Repro(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

            def forward(self, arg1, arg2, arg3):
                torch.ops.aten.convolution_backward.default(
                    arg1,
                    arg2,
                    arg3,
                    [1],
                    [1, 1],
                    [1, 1],
                    [1, 1],
                    False,
                    [0, 0],
                    1,
                    [True, True, False],
                )

        args_new = [
            ((16, 1, 128, 128), (16384, 16384, 128, 1), torch.float16, "cuda"),
            ((16, 64, 128, 128), (1048576, 1, 8192, 64), torch.float16, "cuda"),
            ((1, 64, 3, 3), (576, 9, 3, 1), torch.float16, "cuda"),
        ]
        args = [rand_strided(sh, st, dt, dev) for (sh, st, dt, dev) in args_new]

        with torch._subclasses.CrossRefFakeMode():
            Repro()(*args)

    def test_no_dispatch_with_like_function(self):
        class CountingMode(TorchDispatchMode):
            def __init__(self) -> None:
                self.count = 0

            def __torch_dispatch__(self, func, types, args=(), kwargs=None):
                self.count += 1
                return func(*args, **kwargs)

        with FakeTensorMode():
            x = torch.randn(2)
            with CountingMode() as mode:
                with no_dispatch():
                    torch.zeros_like(x)

        self.assertEqual(mode.count, 0)


make_propagate_real_tensors_cls(FakeTensorOperatorInvariants)


class FakeTensorPropTest(TestCase):
    def test_fake_tensor_prop_on_nn_module(self):
        class ToyNnModuleWithParameters(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.layer1 = torch.nn.Linear(4, 3)
                self.layer2 = torch.nn.Linear(3, 2)

            def forward(self, value):
                value = self.layer1(value)
                value = torch.relu(value)
                value = self.layer2(value)
                return value

        model = ToyNnModuleWithParameters()
        value = torch.randn(5, 4)
        # Convert nn.Module to GraphModule so that FakeTensorProp runs.
        graph_model = torch.fx.symbolic_trace(model, (value,))
        # The following block runs FakeTensorProp on graph_module w/to the same FakeTensorMode
        #
        # TODO(wschin): there should be an API to run FakeTensorProp for GraphModule
        # with parameters and buffers.
        with FakeTensorMode() as fake_tensor_mode:

            def to_fake_tensor(x):
                if isinstance(x, torch.Tensor) and not isinstance(x, FakeTensor):
                    return fake_tensor_mode.from_tensor(x)
                return x

            fake_parameters_and_buffers = {
                k: to_fake_tensor(v)
                for k, v in itertools.chain(
                    graph_model.named_parameters(), graph_model.named_buffers()
                )
            }
            with torch.nn.utils.stateless._reparametrize_module(
                graph_model, fake_parameters_and_buffers
            ):
                # This case uses the **same** fake tensor mode to
                #  1. create fake parameters and fake buffers, and
                #  2. run FakeTensorProp
                # The result should be correct.
                result = FakeTensorProp(graph_model, fake_tensor_mode).propagate(value)
                self.assertTrue(isinstance(result, FakeTensor))
                self.assertEqual(result.shape, (5, 2))
                # This case uses the **different** fake tensor modes to
                #  1. create fake parameters and fake buffers, and
                #  2. run FakeTensorProp
                # The following code should fail.
                failed = False
                try:
                    FakeTensorProp(graph_model).propagate(value)
                except AssertionError:
                    # AssertionError: tensor's device must be `meta`, got cpu instead
                    failed = True
                self.assertTrue(failed)

    def test_fake_tensor_prop_on_nn_module_with_optional_args(self):
        class OptionalArgumentInBetween(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.layer1 = torch.nn.Linear(4, 3)
                self.layer2 = torch.nn.Linear(3, 2)

            def forward(self, value, another_value=None, another_optional_value=None):
                # Mimic huggingface's `forward` methods which have several optional arguments.
                # For example, GPT accepts forward(self, input_ids, None, attention_mask, ...).
                # To apply FakeTensorProp, its from_real_tensor(...) needs to accept None.
                if another_value is None:
                    another_value = torch.rand_like(value)
                if another_optional_value is None:
                    another_optional_value = torch.rand_like(value)
                value = value + another_value + another_optional_value
                return value * value

        fake_mode = FakeTensorMode(
            allow_non_fake_inputs=True, allow_fallback_kernels=False
        )
        with fake_mode:
            model = OptionalArgumentInBetween()
            value = torch.randn(5, 4)
            another_optional_value = torch.randn(5, 4)
            graph_model = torch.fx.symbolic_trace(
                model, (value, None, another_optional_value)
            )
            FakeTensorProp(graph_model, fake_mode).propagate(
                value, None, another_optional_value
            )

    def test_unbacked_shape_realloc(self):
        def f(x):
            return x.nonzero()

        shape_env = ShapeEnv()
        fake_mode = FakeTensorMode(shape_env=shape_env)
        with fake_mode:
            value = torch.randn(5)
            gm = make_fx(f)(value)
        nonzero_nodes = [
            n for n in gm.graph.nodes if n.target is torch.ops.aten.nonzero.default
        ]
        self.assertEqual(len(nonzero_nodes), 1)
        self.assertIsInstance(nonzero_nodes[0].meta["val"].shape[0], torch.SymInt)
        u0 = nonzero_nodes[0].meta["val"].shape[0]
        FakeTensorProp(gm, fake_mode).propagate(value)
        u1 = nonzero_nodes[0].meta["val"].shape[0]
        # Test that this test is actually doing something in that the
        # FakeTensorProp actually triggered a reallocation.  If this assert is
        # failing, it could be because we started memoizing the nnz count for
        # nonzero, which is nice in some sense (no reallocation) but not
        # helpful for this test, which is checking what we do when we have
        # to reallocate.  If so, you need to make this example more
        # complicated (e.g., maybe have a nontrivial computation on the input
        # before feeding it into nonzero, or have some sort of randomness)
        self.assertIsNot(u0, u1)
        self.assertTrue(statically_known_true(u0 == u1))

    def test_torch_load_with_fake_mode(self):
        class TheModelClass(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.fc1 = torch.nn.Linear(5, 10)

            def forward(self, x):
                return self.fc1(x)

        with TemporaryFileName() as state_dict_file:
            # Create state_dict to be loaded later
            model = TheModelClass()
            torch.save(model.state_dict(), state_dict_file)

            fake_mode = FakeTensorMode()
            with fake_mode:
                torch.load(state_dict_file)  # scenario 1
                torch.load(state_dict_file, map_location="cpu")  # scenario 2


make_propagate_real_tensors_cls(FakeTensorPropTest)


class FakeTensorSerialization(TestCase):
    def test_serialization(self):
        x = torch.tensor([0], device="cpu")
        with FakeTensorMode():
            y = pickle.loads(pickle.dumps(x))
            self.assertEqual(type(y), FakeTensor)
            self.assertEqual(y.device.type, "meta")

            with unset_fake_temporarily():
                y = pickle.loads(pickle.dumps(x))
                self.assertEqual(x.device, y.device)

    def test_serialization_with_tracing(self):
        x = torch.tensor([0], device="cpu")
        with tracing(TracingContext(FakeTensorMode())):
            y = pickle.loads(pickle.dumps(x))
            self.assertEqual(x.device, y.device)


class FakeTensorDispatchCache(TestCase):
    def test_shape_env_settings(self):
        """
        Validation that any boolean settings in ShapeEnv are present in the
        ShapeEnvSettings. We hope to ensure that any new settings that might
        affect FakeTensor dispatch are included in the cache key calculation.
        If this test fails, consider updating ShapeEnvSettings or change this
        test to omit checking for the new field.
        """
        init_sig = inspect.signature(ShapeEnv._init)
        args = [
            name
            for name, param in init_sig.parameters.items()
            if type(param.default) is bool
        ]

        settings = [f.name for f in dataclasses.fields(ShapeEnvSettings)]
        for arg in args:
            self.assertTrue(arg in settings)

    def _test_cache_key(self, fm, x, y, z):
        """
        Helper for all test_cache_key_* tests below. Assert that the
        cache keys for inputs x and y are the same, but z is different.
        """
        func = aten.add.Tensor
        state = _CacheKeyState()
        key_x = fm._cache_key(state, func, [x], {})
        key_y = fm._cache_key(state, func, [y], {})
        key_z = fm._cache_key(state, func, [z], {})

        self.assertEqual(key_x, key_y)
        self.assertNotEqual(key_x, key_z)

    def test_cache_key_dtype(self):
        with FakeTensorMode() as fm:
            x = torch.randn(4, 3, dtype=torch.float16)
            y = torch.randn(4, 3, dtype=torch.float16)
            z = x.to(dtype=torch.float32)
            self._test_cache_key(fm, x, y, z)

    def test_cache_key_shape(self):
        with FakeTensorMode() as fm:
            x = torch.randn(4, 3)
            y = torch.randn(4, 3)
            z = torch.randn(4, 2)
            self._test_cache_key(fm, x, y, z)

    def test_cache_key_stride(self):
        with FakeTensorMode() as fm:
            x = torch.randn(4, 2)
            y = torch.randn(4, 2)
            z = x.as_strided((4, 2), (1, 2))
            self._test_cache_key(fm, x, y, z)

    @unittest.skipIf(not RUN_CUDA, "requires cuda")
    def test_cache_key_device(self):
        with FakeTensorMode() as fm:
            x = torch.randn(4, 3)
            y = torch.randn(4, 3)
            z = x.to(device="cuda")
            self._test_cache_key(fm, x, y, z)

    def test_cache_key_memory_format(self):
        with FakeTensorMode() as fm:
            x = torch.randn(1, 2, 3, 4)
            y = torch.randn(1, 2, 3, 4)
            z = x.to(memory_format=torch.channels_last)
            self._test_cache_key(fm, x, y, z)

    def test_cache_key_storage_offset(self):
        with FakeTensorMode() as fm:
            x = torch.randn(3)[1:]
            y = torch.randn(3)[1:]
            z = torch.randn(2)
            self._test_cache_key(fm, x, y, z)

    def test_cache_key_requires_grad(self):
        with FakeTensorMode() as fm:
            x = torch.randn(4, 3)
            y = torch.randn(4, 3)
            z = torch.randn(4, 3, requires_grad=True)
            self._test_cache_key(fm, x, y, z)

    def test_cache_key_is_conj(self):
        with FakeTensorMode() as fm:
            x = torch.randn(4, 3, dtype=torch.complex64)
            y = torch.randn(4, 3, dtype=torch.complex64)
            z = torch.randn(4, 3, dtype=torch.complex64)
            torch._C._set_conj(z, not z.is_conj())
            self._test_cache_key(fm, x, y, z)

    def test_cache_key_is_neg(self):
        with FakeTensorMode() as fm:
            x = torch.randn(4, 3, dtype=torch.complex64)
            y = torch.randn(4, 3, dtype=torch.complex64)
            z = torch.randn(4, 3, dtype=torch.complex64)
            torch._C._set_neg(z, not z.is_neg())
            self._test_cache_key(fm, x, y, z)

    def test_cache_key_is_inference(self):
        with torch.inference_mode(True):
            t = torch.randn(4, 3)
        with FakeTensorMode() as fm:
            x = torch.randn(4, 3)
            y = torch.randn(4, 3)
            z = fm.from_tensor(t)
            self._test_cache_key(fm, x, y, z)

    def test_cache_key_constants(self):
        with FakeTensorMode() as fm:
            # Python hashes 1.0 to the same value as 1. Make sure the
            # cache key calculation differentiates them.
            self._test_cache_key(fm, 1.0, 1.0, 1)
            self._test_cache_key(fm, 0.0, 0.0, 0)

    def assertHitsMisses(self, hits, misses):
        """
        Helper to assert on the number of recorded hits and misses.
        """
        info = FakeTensorMode.cache_info()
        self.assertEqual(info.hits, hits)
        self.assertEqual(info.misses, misses)

    def assertBypasses(self, reason, count):
        """
        Helper to assert on the number of recorded bypasses.
        """
        info = FakeTensorMode.cache_info()
        if count > 0:
            self.assertIn(reason, info.bypasses)
            self.assertEqual(info.bypasses[reason], count)
        else:
            self.assertNotIn(reason, info.bypasses)

    def test_cache_hit(self):
        """
        Test that cache hit/miss counters are updated correctly.
        """
        with FakeTensorMode():
            x = torch.randn(4, 3)
            y = torch.randn(4, 3)

            FakeTensorMode.cache_clear()
            self.assertHitsMisses(0, 0)
            res1 = x + y
            self.assertHitsMisses(0, 1)
            res2 = x + y
            self.assertHitsMisses(1, 1)

            self.assertEqual(
                extract_tensor_metadata(res1),
                extract_tensor_metadata(res2),
            )

    def test_cache_bypass(self):
        """
        Test that cache bypass counters are updated correctly.
        """
        with FakeTensorMode():
            x = torch.randn(1, 2)

            FakeTensorMode.cache_clear()
            self.assertBypasses("inplace view", 0)

            x.unsqueeze_(0)
            self.assertBypasses("inplace view", 1)

    def test_cache_default_dtype(self):
        """
        Test that the default dtype is respected when serving cached results.
        """
        with FakeTensorMode():
            x = torch.tensor([1, 2], dtype=torch.int32)
            torch.set_default_dtype(torch.float32)

            FakeTensorMode.cache_clear()
            self.assertHitsMisses(0, 0)

            y = x + 1.0
            self.assertEqual(y.dtype, torch.float32)
            self.assertHitsMisses(0, 1)

            torch.set_default_dtype(torch.float16)
            y = x + 1.0
            self.assertEqual(y.dtype, torch.float16)
            self.assertHitsMisses(0, 2)

            torch.set_default_dtype(torch.float32)
            y = x + 1.0
            self.assertEqual(y.dtype, torch.float32)
            self.assertHitsMisses(1, 2)

    @unittest.skipIf(not RUN_CUDA, "requires cuda")
    def test_cache_default_device(self):
        """
        Test that the default device is respected when serving cached results.
        """
        with FakeTensorMode():
            FakeTensorMode.cache_clear()
            self.assertHitsMisses(0, 0)

            torch.set_default_device("cpu")
            x = torch.tensor([1, 2])
            y = x + 1.0
            self.assertEqual(y.device.type, "cpu")
            self.assertHitsMisses(0, 1)

            torch.set_default_device("cuda")
            x = torch.tensor([1, 2])
            y = x + 1.0
            self.assertEqual(y.device.type, "cuda")
            self.assertHitsMisses(0, 2)

            torch.set_default_device("cpu")
            x = torch.tensor([1, 2])
            y = x + 1.0
            self.assertEqual(y.device.type, "cpu")
            self.assertHitsMisses(1, 2)

    def test_cache_inplace_op(self):
        """
        Test that inplace ops served from the cache correctly reference the
        input parameter.
        """
        with FakeTensorMode():
            x = torch.randn(1, 2)
            y = torch.randn(1, 2)

            FakeTensorMode.cache_clear()
            self.assertHitsMisses(0, 0)

            z = x.add_(y)
            self.assertHitsMisses(0, 1)
            self.assertEqual(id(x), id(z))

            w = x.add_(y)
            self.assertHitsMisses(1, 1)
            self.assertEqual(id(x), id(w))

    def test_cache_view_op(self):
        """
        Test that view ops are handled correctly when served from the cache.
        """
        with FakeTensorMode():
            x1 = torch.ones(2, requires_grad=True).clone()
            x2 = torch.ones(2, requires_grad=True).clone()
            y2 = x2.view(-1)

            # Test operating on a non-view tensor, then the same operation
            # on a view tensor. Assert that the view property is set correctly.
            z1 = x1.mul_(2)
            self.assertFalse(z1._is_view())

            z2 = y2.mul_(2)
            self.assertTrue(z2._is_view())

            # Now the other way around: first operate on a view tensor, then
            # the same operation on a non-view tensor.
            z2 = y2.mul_(2)
            self.assertTrue(z2._is_view())

            z1 = x1.mul_(2)
            self.assertFalse(z1._is_view())

    def test_cache_dispatch_key_set(self):
        """
        Test that operations that change the dispatch key set bypass caching.
        """
        with FakeTensorMode():
            FakeTensorMode.cache_clear()
            self.assertBypasses("dispatch_key_set mismatch", 0)

            x = torch._efficientzerotensor(3)
            self.assertTrue(x._is_zerotensor())
            self.assertBypasses("dispatch_key_set mismatch", 1)

            y = torch._efficientzerotensor(3)
            self.assertTrue(y._is_zerotensor())
            self.assertBypasses("dispatch_key_set mismatch", 2)

    def test_inference_mode(self):
        """
        Test that caching handles inference mode correctly.
        """
        with FakeTensorMode():
            x = torch.randn(4, 3)
            y = torch.randn(4, 3)

            FakeTensorMode.cache_clear()
            self.assertHitsMisses(0, 0)

            # Expect a miss when the inference mode is different
            res1 = x + y
            with torch.inference_mode():
                res2 = x + y

            self.assertHitsMisses(0, 2)
            self.assertFalse(res1.is_inference())
            self.assertTrue(res2.is_inference())

            # Second tries should see hits
            res3 = x + y

            self.assertHitsMisses(1, 2)
            self.assertFalse(res3.is_inference())
            self.assertEqual(
                extract_tensor_metadata(res1),
                extract_tensor_metadata(res3),
            )

            with torch.inference_mode():
                res4 = x + y

            self.assertHitsMisses(2, 2)
            self.assertTrue(res4.is_inference())
            self.assertEqual(
                extract_tensor_metadata(res2),
                extract_tensor_metadata(res4),
            )


    @unittest.skipIf(not RUN_CUDA, "requires cuda")
    def test_wrapper_tensor_subclass_different_device(self):
        class DifferentDeviceTensor(torch.Tensor):
            @staticmethod
            def __new__(cls, a):
                kwargs = {}
                kwargs["strides"] = a.stride()
                kwargs["storage_offset"] = a.storage_offset()
                kwargs["device"] = torch.device("cpu")
                kwargs["layout"] = a.layout
                kwargs["requires_grad"] = a.requires_grad
                kwargs["dtype"] = a.dtype
                out = torch.Tensor._make_wrapper_subclass(cls, a.size(), **kwargs)
                return out

            def __init__(self, a):
                self.inner_tensor = a

            def __repr__(self):
                return f"DifferentDeviceTensor({repr(self.inner_tensor)})"

            def __tensor_flatten__(self):
                return ["inner_tensor"], None

            @staticmethod
            def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride):
                assert meta is None
                return DifferentDeviceTensor(inner_tensors["inner_tensor"])

            @classmethod
            def __torch_dispatch__(cls, func, types, args, kwargs):
                if kwargs is None:
                    kwargs = {}
                args = pytree.tree_map_only(DifferentDeviceTensor, lambda x: x.inner_tensor, args)
                kwargs = pytree.tree_map_only(DifferentDeviceTensor, lambda x: x.inner_tensor, kwargs)
                # Returns unwrapped tensor
                return func(*args, **kwargs)

        a = torch.ones(2, 2, 768, device="cuda")
        wrapped_a = DifferentDeviceTensor(a)

        # Outer Tensor is on cpu, inner is on cuda
        self.assertTrue(wrapped_a.is_cpu)
        self.assertFalse(wrapped_a.inner_tensor.is_cpu)

        with FakeTensorMode() as fake_mode:
            fake_wrapped_a = fake_mode.from_tensor(wrapped_a)

        self.assertTrue(fake_wrapped_a.is_cpu)
        assert isinstance(fake_wrapped_a, DifferentDeviceTensor)
        self.assertFalse(fake_wrapped_a.inner_tensor.is_cpu)


    def test_cache_tuple_outputs(self):
        """
        Test to check that ops with tuple outputs work.
        """
        with FakeTensorMode():
            x = torch.randn(6, 4)
            y = torch.randn(6, 4)

            FakeTensorMode.cache_clear()
            self.assertHitsMisses(0, 0)

            ref = torch.split(x, 2)
            self.assertHitsMisses(0, 1)

            res = torch.split(y, 2)
            self.assertHitsMisses(1, 1)
            self.assertEqual(len(ref), len(res))
            for a, b in zip(ref, res):
                self.assertEqual(
                    extract_tensor_metadata(a),
                    extract_tensor_metadata(b),
                )


if __name__ == "__main__":
    run_tests()