1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
|
# Owner(s): ["module: meta tensors"]
import contextlib
import copy
import dataclasses
import inspect
import itertools
import pickle
import unittest
import weakref
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._functorch.config
import torch._prims as prims
import torch.testing._internal.optests as optests
import torch.utils._pytree as pytree
from torch import distributed as dist
from torch._C._functorch import _add_batch_dim, get_unwrapped, is_batchedtensor
from torch._dispatch.python import enable_python_dispatcher
from torch._dynamo.testing import make_test_cls_with_patches, rand_strided
from torch._guards import tracing, TracingContext
from torch._higher_order_ops.scan import scan
from torch._subclasses.fake_tensor import (
_CacheKeyState,
DynamicOutputShapeException,
extract_tensor_metadata,
MetadataMismatchError,
FakeTensor,
FakeTensorConverter,
FakeTensorMode,
unset_fake_temporarily,
UnsupportedOperatorException,
)
from torch.fx.experimental.proxy_tensor import make_fx
from torch.fx.experimental.symbolic_shapes import (
DimDynamic,
free_symbols,
ShapeEnv,
ShapeEnvSettings,
StatelessSymbolicContext,
statically_known_true,
)
from torch.fx.passes.fake_tensor_prop import FakeTensorProp
from torch.testing import FileCheck
from torch.testing._internal.common_cuda import PLATFORM_SUPPORTS_FLASH_ATTENTION
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
OpDTypes,
ops,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfCrossRef,
skipIfRocm,
skipIfTorchDynamo,
TemporaryFileName,
TEST_WITH_TORCHDYNAMO,
TestCase,
xfailIfTorchDynamo,
)
from torch.testing._internal.custom_op_db import custom_op_db
from torch.testing._internal.inductor_utils import GPU_TYPE
from torch.testing._internal.jit_utils import RUN_CUDA
from torch.utils._mode_utils import no_dispatch
from torch.utils._python_dispatch import TorchDispatchMode
aten = torch.ops.aten
torch._dynamo.config.fake_tensor_cache_enabled = True
torch._dynamo.config.fake_tensor_cache_crosscheck_enabled = True
def expectedFailurePropagateRealTensors(fn):
fn._expected_failure_propagate_real_tensors = True
return fn
class FakeTensorTest(TestCase):
def checkType(self, t, device_str, size):
self.assertTrue(isinstance(t, FakeTensor))
self.assertEqual(t.device.type, device_str)
self.assertEqual(list(t.size()), size)
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_cuda_initialized(self):
# doesnt error
with FakeTensorMode():
p = torch.randn(4, 2, requires_grad=True, device="cuda")
x = torch.randn(8, 4, device="cuda")
y = torch.mm(x, p).square().sum()
y.backward()
def test_basic(self):
x = torch.empty(2, 2, device="cpu")
y = torch.empty(4, 2, 2, device="cpu")
with FakeTensorMode() as mode:
x = mode.from_tensor(x)
y = mode.from_tensor(y)
z = x + y
self.assertEqual(z.shape, (4, 2, 2))
self.assertEqual(z.device, torch.device("cpu"))
self.assertTrue(isinstance(z, FakeTensor))
def test_custom_op_fallback(self):
from torch.library import impl, Library
try:
test_lib = Library("my_test_op", "DEF") # noqa: TOR901
test_lib.define("foo(Tensor self) -> Tensor")
@impl(test_lib, "foo", "CPU")
def foo_impl(self):
return self.cos()
x = torch.empty(2, 2, device="cpu")
with self.assertRaisesRegex(
UnsupportedOperatorException, "my_test_op.foo.default"
):
with FakeTensorMode(allow_fallback_kernels=True) as mode:
x = mode.from_tensor(x)
torch.ops.my_test_op.foo(x)
finally:
test_lib._destroy()
def test_parameter_instantiation(self):
with FakeTensorMode():
x = torch.rand([4])
y = torch.nn.parameter.Parameter(x)
self.assertTrue(isinstance(y, torch.nn.Parameter))
@unittest.skipIf(not dist.is_available(), "requires distributed")
def test_fsdp_flat_param(self):
from torch.distributed.fsdp._flat_param import FlatParameter
with FakeTensorMode() as m:
data = torch.randn(2, 2)
param = FlatParameter(data, requires_grad=True)
self.assertIsInstance(param, FlatParameter)
self.assertIsInstance(param, torch.nn.Parameter)
self.assertIsInstance(param, FakeTensor)
def test_non_parameter_grad(self):
mode = FakeTensorMode()
t = torch.rand([4], requires_grad=True)
fake_t = mode.from_tensor(t)
self.assertEqual(fake_t.requires_grad, t.requires_grad)
@unittest.skipIf(
TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile"
)
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_index_cuda_with_cpu(self):
with FakeTensorMode():
x = torch.rand([2048], device="cuda")
out = x[torch.zeros([36], dtype=torch.int64)]
self.checkType(out, "cuda", [36])
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_shape_take_not_device(self):
with FakeTensorMode():
x = torch.empty(1, device="cpu")
y = torch.empty(8, 8, device="cuda")
out = x.resize_as_(y)
self.assertEqual(out.shape, (8, 8))
self.assertEqual(out.device.type, "cpu")
self.assertTrue(isinstance(out, FakeTensor))
def test_repr(self):
with FakeTensorMode():
x = torch.empty(2, 2, device="cpu")
self.assertEqual(repr(x), "FakeTensor(..., size=(2, 2))")
x = torch.empty(2, 2, device="meta")
self.assertEqual(repr(x), "FakeTensor(..., device='meta', size=(2, 2))")
def test_convert_fake_to_real(self):
x = torch.ones([20])
with FakeTensorMode(allow_non_fake_inputs=True) as m:
_ = x + 1
out = torch._subclasses.fake_utils.try_convert_fake_to_real([x[0:10]])
self.assertEqual(torch.ones([10]), out[0])
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_zero_dim(self):
with FakeTensorMode() as mode:
x = torch.tensor(0.0)
y = torch.rand([4, 4], device="cuda")
out = x + y
self.assertEqual(out.shape, (4, 4))
self.assertEqual(out.device, y.device)
self.assertTrue(isinstance(out, FakeTensor))
def test_nan_to_num(self):
with FakeTensorMode():
for dtype in [torch.float16, torch.float32]:
x = torch.rand([4], dtype=dtype)
y = torch.nan_to_num(x, nan=None)
z = torch.nan_to_num(x, 0.0)
self.assertEqual(dtype, y.dtype)
self.assertEqual(dtype, z.dtype)
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_throw(self):
x = torch.tensor(0.0) # TODO: tensor() errors
with FakeTensorMode() as mode:
x_conv = mode.from_tensor(x)
y = torch.rand([4, 4], device="cuda")
z = torch.rand([4, 4], device="cpu")
self.assertRaises(Exception, lambda: torch.lerp(x_conv, y, z))
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_type_as(self):
with FakeTensorMode():
x = torch.rand([16, 1], device="cpu")
y = torch.rand([4, 4], device="cuda")
out = x.type_as(y)
self.assertEqual(out.device.type, "cuda")
self.assertTrue(isinstance(out, FakeTensor))
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_setitem(self):
for device in ["cpu", "cuda"]:
with FakeTensorMode():
x = torch.rand([16, 1], device=device)
x[..., 0] = 0
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_device_inplace_copy(self):
with FakeTensorMode():
x = torch.rand([8, 8], device="cpu")
y = torch.rand([8, 8], device="cuda")
assert x.copy_(y).device.type == "cpu"
assert y.copy_(x).device.type == "cuda"
def test_fake_dispatch_keys(self):
with FakeTensorMode():
x = torch.rand([4])
f = (
FileCheck()
.check("CPU")
.check("ADInplaceOrView")
.check("AutogradCPU")
.check("AutocastCPU")
)
f.run(torch._C._dispatch_key_set(x))
with torch.inference_mode():
x = torch.rand([4])
y = x + x
FileCheck().check("CPU").check("AutocastCPU").run(
torch._C._dispatch_key_set(y)
)
FileCheck().check_not("ADInplaceOrView").check_not("Autograd").run(
torch._C._dispatch_key_set(y)
)
def test_batch_tensor(self):
x = torch.rand((3, 4, 5))
b = _add_batch_dim(x, 0, 0)
mode = FakeTensorMode()
fake_b = mode.from_tensor(b)
prims.utils.compare_tensor_meta(b, fake_b, check_strides=True)
b1 = _add_batch_dim(x, 1, 1)
b2 = _add_batch_dim(b1, 0, 2)
fake_b2 = mode.from_tensor(b2)
prims.utils.compare_tensor_meta(b2, fake_b2, check_strides=True)
self.assertTrue(is_batchedtensor(fake_b2))
fake_b1 = get_unwrapped(fake_b2)
self.assertTrue(is_batchedtensor(fake_b1))
fake_tensor = get_unwrapped(fake_b1)
self.assertIsInstance(fake_tensor, FakeTensor)
def test_constructor(self):
with FakeTensorMode():
x = torch.rand([4, 4], device="cpu")
self.assertTrue(isinstance(x, FakeTensor))
self.assertTrue(x.device.type == "cpu")
def test_mode(self):
with FakeTensorMode():
y = torch.rand([4], device="cpu")
out = y + y
self.assertTrue(isinstance(out, FakeTensor))
def test_full(self):
# Test torch.full returns tensor with correct dtype
with torch._subclasses.CrossRefFakeMode():
y = torch.full((4, 4), 1)
def check_function_with_fake(self, fn):
out = fn()
with torch._subclasses.FakeTensorMode():
out_fake = fn()
for a, b in zip(pytree.tree_leaves(out), pytree.tree_leaves(out_fake)):
if not isinstance(a, torch.Tensor):
self.assertTrue(not isinstance(b, torch.Tensor))
continue
prims.utils.compare_tensor_meta(a, b, check_strides=True)
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_non_kwarg_device(self):
with FakeTensorMode():
x = torch.rand([16, 1], device="cpu")
y = x.to(torch.device("cpu"))
self.assertIs(x, y)
z = x.to(torch.device("cuda"))
self.assertEqual(z.device.type, "cuda")
def test_non_overlapping_stride_zero(self):
def foo():
x = torch.empty_strided([1, 3, 427, 640], (0, 1, 1920, 3))
return x.half()
self.check_function_with_fake(foo)
def test_fake_mode_error(self):
x = torch.rand([4, 4])
with self.assertRaisesRegex(Exception, "Please convert all Tensors"):
with FakeTensorMode():
y = x[0]
@unittest.skipIf(
TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile"
)
def test_fake_grad_copy(self):
x = torch.rand([4, 4], requires_grad=True)
x.grad = torch.rand([4, 4])
mode = FakeTensorMode()
fake_x = mode.from_tensor(x)
prims.utils.compare_tensor_meta(fake_x, x)
prims.utils.compare_tensor_meta(fake_x.grad, x.grad)
self.assertTrue(isinstance(fake_x.grad, FakeTensor))
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_index_put_error(self):
mode = FakeTensorMode()
for context in [contextlib.nullcontext, lambda: mode]:
with context():
y = torch.randn(2, 2, 3)
x = torch.randn(2, 2, 3).to("cuda")
with self.assertRaises(RuntimeError):
x[[1, 1]] = y
with self.assertRaises(RuntimeError):
torch.ops.aten.index_put(x, torch.tensor([1, 1], device="cuda"), y)
# no error
torch.ops.aten.index_put(
x, torch.tensor([1, 1], device="cuda"), torch.tensor(5.0)
)
torch.ops.aten.index_put_(
x, torch.tensor([1, 1], device="cuda"), torch.tensor(5.0)
)
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_like_constructor(self):
with FakeTensorMode():
x = torch.rand([4, 4])
y = torch.ones_like(x)
self.assertTrue(isinstance(y, FakeTensor))
self.assertEqual(y.device.type, "cpu")
z = torch.ones_like(x, device="cuda")
self.assertTrue(isinstance(z, FakeTensor))
self.assertEqual(z.device.type, "cuda")
def test_binary_op_type_promotion(self):
with FakeTensorMode():
x = torch.empty([2, 2], dtype=torch.float)
y = torch.empty([2, 2], dtype=torch.int64)
out = x / y
self.assertEqual(out.dtype, torch.float)
self.assertEqual(out.device.type, "cpu")
@unittest.skipIf(
TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile"
)
def test_from_numpy(self):
with FakeTensorMode():
x = torch.tensor(np.zeros([4, 4]))
self.checkType(x, "cpu", [4, 4])
def test_randperm(self):
x = torch.randperm(10)
y = torch.randperm(5, device="cpu")
with FakeTensorMode():
x1 = torch.randperm(10)
prims.utils.compare_tensor_meta(x, x1)
y1 = torch.randperm(5, device="cpu")
prims.utils.compare_tensor_meta(y, y1)
def test_print_in_fake_mode(self):
x = torch.zeros(2)
# does not fail
with FakeTensorMode():
out = str(x)
assert "FakeTensor" not in out
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_upsample_bilinear_small_channels(self):
out = []
mode = FakeTensorMode()
for i, context in enumerate([contextlib.nullcontext, lambda: mode]):
with context():
arg0_1 = torch.empty_strided(
(3, 427, 640), (1, 1920, 3), dtype=torch.float32, device="cuda"
)
unsqueeze = torch.ops.aten.unsqueeze.default(arg0_1, 0)
out.append(
torch.ops.aten.upsample_bilinear2d.default(
unsqueeze, [800, 1199], False
)
)
self.assertTrue(out[1].is_contiguous())
self.checkMetaProps(out[0], out[1])
def test_split_return_self(self):
def fn(x):
return torch.functional.split(x, 0)[0]
# meta should not return self
with FakeTensorMode(), enable_python_dispatcher():
out_fake = fn(torch.empty((0,)))
out_eager = fn(torch.empty((0,)))
self.checkMetaProps(out_fake, out_eager)
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_cpu_fallback(self):
with FakeTensorMode(allow_fallback_kernels=False):
filters = torch.randn(8, 4, 3, 3).cuda()
inputs = torch.randn(1, 4, 5, 5).cuda()
out = torch.nn.functional.conv2d(inputs, filters, padding=1)
self.assertEqual(out.device.type, "cuda")
self.assertEqual(list(out.size()), [1, 8, 5, 5])
with FakeTensorMode(allow_fallback_kernels=True):
# intentionally bad inputs
filters = torch.randn(8, 20, 3, 3).cuda()
inputs = torch.randn(1, 7, 10, 5).cuda()
with self.assertRaises(RuntimeError):
torch.nn.functional.conv2d(inputs, filters, padding=1)
with FakeTensorMode(allow_fallback_kernels=True):
filters = torch.randn(8, 4, 3, 3).cuda()
inputs = torch.randn(1, 4, 5, 5).cuda()
out = torch.nn.functional.conv2d(inputs, filters, padding=1)
self.assertEqual(out.device.type, "cuda")
self.assertEqual(list(out.size()), [1, 8, 5, 5])
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_out_multi_device(self):
with FakeTensorMode():
x = torch.rand([4])
y = torch.rand([4], device="cuda")
with self.assertRaisesRegex(Exception, "found.+two.+devices"):
torch.sin(x, out=y)
with self.assertRaisesRegex(Exception, "found.+two.+devices"):
x.add_(y)
@unittest.skipIf(
TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile"
)
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_normalize_device(self):
with FakeTensorMode():
x = torch.empty(1, device="cuda")
y = torch.empty(1, device=f"cuda:{torch.cuda.current_device()}")
out = x + y
self.checkType(out, "cuda", [1])
def test_recursive_invocation(self):
mode = FakeTensorMode()
with mode:
x = torch.tensor(2)
mode.in_kernel_invocation = True
y = x + x
self.assertTrue(mode.in_kernel_invocation)
@unittest.skipIf(
TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile"
)
@skipIfRocm
@parametrize(
"allow_fallback_kernels",
[False, True],
lambda a: "with_fallback" if a else "without_fallback",
)
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_cudnn_rnn(self, allow_fallback_kernels):
def fn(
a0,
b0,
b1,
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9,
b10,
b11,
b12,
b13,
b14,
b15,
a3,
a4,
a5,
):
a1 = [
b0,
b1,
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9,
b10,
b11,
b12,
b13,
b14,
b15,
]
return torch.ops.aten._cudnn_rnn(
a0,
a1,
4,
a3,
a4,
a5,
2,
2048,
0,
2,
False,
0.0,
False,
True,
[],
None,
)
mode = FakeTensorMode(allow_fallback_kernels=allow_fallback_kernels)
for i, context in enumerate([contextlib.nullcontext, lambda: mode]):
with context():
inps1 = [
torch.randn([92, 8, 2048]).cuda(),
torch.randn([8192, 2048]).cuda(),
torch.randn([8192, 2048]).cuda(),
torch.randn([8192]).cuda(),
torch.randn([8192]).cuda(),
torch.randn([8192, 2048]).cuda(),
torch.randn([8192, 2048]).cuda(),
torch.randn([8192]).cuda(),
torch.randn([8192]).cuda(),
torch.randn([8192, 4096]).cuda(),
torch.randn([8192, 2048]).cuda(),
torch.randn([8192]).cuda(),
torch.randn([8192]).cuda(),
torch.randn([8192, 4096]).cuda(),
torch.randn([8192, 2048]).cuda(),
torch.randn([8192]).cuda(),
torch.randn([8192]).cuda(),
torch.randn([167837696]).cuda(),
torch.randn([4, 8, 2048]).cuda(),
torch.randn([4, 8, 2048]).cuda(),
]
inps2 = inps1
inps2[len(inps2) - 1] = None # argument `cx` can be None
for inps in [inps1, inps2]:
out = fn(*inps)
self.assertIs(out[4], inps[-3])
for ten in out:
if i == 1:
self.assertTrue(isinstance(ten, FakeTensor))
self.assertEqual(ten.device.type, "cuda")
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_cuda_lstm(self):
# Ensure CUDA (non-cuDNN) impl succeeds with fake tensors.
with torch.backends.cudnn.flags(enabled=False):
fake_tensor_mode = FakeTensorMode(allow_fallback_kernels=False)
with fake_tensor_mode:
N = 5
L = 4
H_in = 2
hidden_size = 3
proj_size = 2
num_layers = 2
bidir = False
D = 2 if bidir else 1
H_out = proj_size if proj_size > 0 else hidden_size
lstm = torch.nn.LSTM(
input_size=H_in,
hidden_size=hidden_size,
num_layers=num_layers,
proj_size=proj_size,
batch_first=False,
bias=True,
bidirectional=bidir,
device="cuda",
)
h_0 = torch.randn((num_layers * D, N, H_out), device="cuda")
c_0 = torch.randn((num_layers * D, N, hidden_size), device="cuda")
inp = torch.randn((L, N, H_in), device="cuda")
(output, (h_n, c_n)) = lstm(inp, (h_0, c_0))
output.sum().backward()
self.assertEqual(output.shape, (L, N, D * H_out))
self.assertEqual(h_n.shape, (D * num_layers, N, H_out))
self.assertEqual(c_n.shape, (D * num_layers, N, hidden_size))
def test_data_dependent_operator(self):
with FakeTensorMode(allow_fallback_kernels=False):
x = torch.rand([10, 10])
self.assertRaises(DynamicOutputShapeException, lambda: torch.nonzero(x))
def test_parameter_view(self):
x = torch.nn.Parameter(torch.randn(4))
x_view = x.view(4)
mode = FakeTensorMode()
fake_x_view = mode.from_tensor(x_view)
fake_x = mode.from_tensor(x)
self.assertFalse(isinstance(fake_x_view, torch.nn.Parameter))
self.assertTrue(isinstance(fake_x, torch.nn.Parameter))
def test_tolist(self):
shape_env = ShapeEnv()
with FakeTensorMode(allow_fallback_kernels=False, shape_env=shape_env):
x = torch.rand([10])
x.tolist()
# Propagate real tensors doesn't work with fake-on-fake
@expectedFailurePropagateRealTensors
def test_same_shape_env_preserved(self):
shape_env = ShapeEnv()
mode1 = FakeTensorMode(shape_env=shape_env)
t1 = mode1.from_tensor(
torch.randn(10),
symbolic_context=StatelessSymbolicContext(
dynamic_sizes=[DimDynamic.DYNAMIC], constraint_sizes=[None]
),
)
mode2 = FakeTensorMode(shape_env=shape_env)
t2 = mode2.from_tensor(t1)
# t2.size(0) is still dynamic, even though we didn't pass DYNAMIC here
self.assertIsNot(t2, t1)
self.assertIs(t1.fake_mode, mode1)
self.assertIs(t2.fake_mode, mode2)
self.assertIs(t2.size(0).node.shape_env, t1.size(0).node.shape_env)
self.assertEqual(str(t2.size(0)), str(t1.size(0)))
# TODO: Support NJT. There's also some funny business with dynamic shapes
# which would need to be dealt with as well
@expectedFailurePropagateRealTensors
def test_jagged_fake_to_fake_preserved(self):
from torch.nested._internal.nested_tensor import jagged_from_list
S0, S1, S2 = 3, 4, 5
D = 4
a = torch.randn(S0, D, requires_grad=True, dtype=torch.float64)
b = torch.randn(S1, D, requires_grad=True, dtype=torch.float64)
c = torch.randn(S2, D, requires_grad=True, dtype=torch.float64)
offsets = None
jt, _ = jagged_from_list([a, b, c], offsets)
shape_env = ShapeEnv()
mode1 = FakeTensorMode(shape_env=shape_env)
t1 = mode1.from_tensor(jt)
mode2 = FakeTensorMode(shape_env=shape_env)
t2 = mode2.from_tensor(t1)
# It's not obvious that the invocation above makes it dynamic but it
# does!
self.assertTrue(free_symbols(t1.size()))
self.assertIsNot(t2, t1)
self.assertIs(t1.offsets().fake_mode, mode1)
self.assertIs(t2.offsets().fake_mode, mode2)
self.assertIs(t2.size(1).node.shape_env, t1.size(1).node.shape_env)
self.assertEqual(str(t2.size(1)), str(t1.size(1)))
def checkMetaProps(self, t1, t2):
prims.utils.compare_tensor_meta(t1, t2, check_strides=True)
@skipIfCrossRef
def test_deepcopy(self):
with FakeTensorMode() as mode:
pass
mod = torch.nn.BatchNorm2d(10)
with torch._subclasses.fake_tensor.FakeCopyMode(mode):
mod_copied = copy.deepcopy(mod)
def check_copy(mod, mod_copied):
for name, param in itertools.chain(
mod.named_parameters(), mod.named_buffers()
):
param_copied = getattr(mod_copied, name)
self.checkMetaProps(param, param_copied)
self.assertTrue(isinstance(param_copied, FakeTensor))
self.assertEqual(
isinstance(param, torch.nn.Parameter),
isinstance(param_copied, torch.nn.Parameter),
)
self.assertEqual(param.requires_grad, param_copied.requires_grad)
check_copy(mod, mod_copied)
class ModuleNew(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.a = torch.rand([10, 2])
self.b = self.a
self.c = self.a[0]
mod = ModuleNew()
with torch._subclasses.fake_tensor.FakeCopyMode(mode):
mod_copied = copy.deepcopy(mod)
self.assertIs(mod_copied.a, mod_copied.b)
self.assertEqual(mod_copied.b.storage()._cdata, mod_copied.a.storage()._cdata)
@unittest.skipIf(
TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile"
)
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_new(self):
with FakeTensorMode():
a = torch.rand([16, 1])
self.checkType(a.new(10, 10), "cpu", [10, 10])
self.checkType(a.new([1, 2, 3, 4]), "cpu", [4])
b = torch.rand([4, 4], device="cuda")
self.checkType(b.new(device="cuda"), "cuda", [0])
self.checkType(a.new(torch.rand([1])), "cpu", [1])
@unittest.skipIf(
TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile"
)
def test_scalar_inputs(self):
with FakeTensorMode():
self.checkType(torch.div(3, 2), "cpu", [])
ten = torch.zeros(2, dtype=torch.int32) * 2.0
self.assertEqual(ten.dtype, torch.float)
self.checkType(ten, "cpu", [2])
@unittest.skipIf(
TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile"
)
def test_allow_meta(self):
def run_meta():
with FakeTensorMode():
x = torch.rand([4], device="meta")
return x + x
self.checkType(run_meta(), "meta", [4])
with patch.object(torch._functorch.config, "fake_tensor_allow_meta", False):
self.assertRaises(Exception, run_meta)
def test_embedding_bag_meta(self):
def f():
# This behavior was originally unintentional but we see people
# relying on it
embedding = torch.nn.EmbeddingBag(10, 3, mode="sum", device="meta")
input = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9], dtype=torch.long)
offsets = torch.tensor([0, 4], dtype=torch.long)
return embedding(input, offsets)
real_out = f()
with FakeTensorMode():
fake_out = f()
for r, f in zip(real_out, fake_out):
self.assertEqual(r.size(), f.size())
self.assertEqual(r.device, f.device)
@unittest.skipIf(
TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile"
)
def test_mixed_real_and_fake_inputs(self):
class _TestPattern(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = torch.nn.Conv2d(1, 1, 1)
self.bn = torch.nn.BatchNorm2d(1)
def forward(self, input):
running_std = torch.sqrt(self.bn.running_var + self.bn.eps)
scale_factor = self.bn.weight / running_std
weight_shape = [1] * len(self.conv.weight.shape)
weight_shape[0] = -1
bias_shape = [1] * len(self.conv.weight.shape)
bias_shape[1] = -1
scaled_weight = self.conv.weight * scale_factor.reshape(weight_shape)
zero_bias = torch.zeros_like(self.conv.bias, dtype=input.dtype)
conv = self.conv._conv_forward(input, scaled_weight, zero_bias)
conv_orig = conv / scale_factor.reshape(bias_shape)
conv_orig = conv_orig + self.conv.bias.reshape(bias_shape)
conv = self.bn(conv_orig)
return conv
example_inputs = (torch.randn(1, 1, 3, 3),)
mod = _TestPattern()
with FakeTensorMode(allow_non_fake_inputs=True):
out = mod(torch.randn(1, 1, 3, 3))
self.checkType(out, "cpu", (1, 1, 3, 3))
@unittest.skipIf(
TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile"
)
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_aten_copy_multi_device(self):
with FakeTensorMode():
x1 = torch.rand(4, device="cpu")
x2 = torch.rand(4, device="cuda")
copy1 = torch.ops.aten.copy.default(x1, x2)
copy2 = torch.ops.aten.copy.default(x2, x1)
out = torch.empty(4, device="cpu")
torch.ops.aten.copy.out(x1, x2, out=out)
self.checkType(copy1, "cpu", (4,))
self.checkType(copy2, "cuda", (4,))
self.checkType(out, "cpu", (4,))
@unittest.skipIf(
TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile"
)
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_aten_index_multi_device(self):
with FakeTensorMode():
x1 = torch.rand(4, 4, device="cpu")
x2 = torch.rand(4, 4, device="cuda")
i1 = torch.tensor([0, 1], device="cuda")
i2 = torch.tensor([0, 1], device="cpu")
# NB: This one does not work: cuda indices not allowed on cpu
# tensor
# r1 = torch.ops.aten.index(x1, i1)
r2 = torch.ops.aten.index(x2, i2)
y1 = torch.rand(4, device="cpu")
y2 = torch.rand(4, device="cuda")
j1 = torch.tensor([2], device="cuda")
j2 = torch.tensor([2], device="cpu")
r3 = torch.ops.aten.index_put.default(x1, j1, y1)
r4 = torch.ops.aten.index_put.default(x2, j2, y2)
# self.checkType(r1, "cpu", ())
self.checkType(r2, "cuda", ())
self.checkType(r3, "cpu", (4, 4))
self.checkType(r4, "cuda", (4, 4))
@unittest.skipIf(
TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile"
)
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_aten_slice_scatter_multi_device(self):
with FakeTensorMode():
x1 = torch.rand(4, 4, device="cpu")
y1 = torch.rand(2, 4, device="cuda")
x2 = torch.rand(4, 4, device="cuda")
y2 = torch.rand(2, 4, device="cpu")
out = torch.empty(4, 4, device="cpu")
r1 = torch.ops.aten.slice_scatter.default(x1, y1, start=2)
r2 = torch.ops.aten.slice_scatter.default(x2, y2, start=2)
r3 = torch.ops.aten.slice_scatter.out(x1, y1, out=out, start=2)
self.checkType(r1, "cpu", (4, 4))
self.checkType(r2, "cuda", (4, 4))
self.checkType(r3, "cpu", (4, 4))
self.checkType(out, "cpu", (4, 4))
def test__adaptive_avg_pool2d_backward(self):
with FakeTensorMode():
grad_out = torch.rand(2, 3, 4, 4)
inp = torch.rand(2, 3, 4, 4).to(memory_format=torch.channels_last)
grad_in = torch.ops.aten._adaptive_avg_pool2d_backward(grad_out, inp)
self.assertTrue(
torch._prims_common.suggest_memory_format(grad_in)
== torch.channels_last
)
def test_export_numpy(self):
class MyNumpyModel(torch.nn.Module):
def forward(self, input):
input = input.numpy()
return input + np.random.randn(*input.shape)
with FakeTensorMode():
ep = torch.export.export(MyNumpyModel(), args=(torch.randn(1000),))
self.assertTrue(isinstance(ep, torch.export.ExportedProgram))
def test_unsqueeze_copy(self):
shape_env = ShapeEnv()
t1 = torch.ones(2, 2, 768)
with FakeTensorMode(shape_env=shape_env) as fake_mode:
t = fake_mode.from_tensor(
t1,
symbolic_context=StatelessSymbolicContext(
dynamic_sizes=[
DimDynamic.DYNAMIC,
DimDynamic.STATIC,
DimDynamic.STATIC,
],
),
)
self.assertEqual(t.shape[0], torch.ops.aten.unsqueeze_copy(t, 1).shape[0])
def test_alias_call(self):
fwAD = torch.autograd.forward_ad
def f(x):
return 4312491 * x
with torch._subclasses.fake_tensor.FakeTensorMode():
with fwAD.dual_level():
x = torch.randn(3, device="cpu")
y = torch.ones_like(x)
dual = fwAD.make_dual(x, y)
r = f(dual)
self.assertIsInstance(r, FakeTensor)
self.assertEqual(r.size(), [3])
@parametrize("reverse", [False, True])
def test_scan(self, reverse):
def add(x, y):
return x + y, x + y
with torch._subclasses.fake_tensor.FakeTensorMode():
x = torch.randn((3, 5, 7), device="cpu")
init = torch.randn((3, 7), device="cpu")
r = scan(add, init, x, dim=1, reverse=reverse)
self.assertIsInstance(r[0], FakeTensor)
self.assertIsInstance(r[1], FakeTensor)
instantiate_parametrized_tests(FakeTensorTest)
def make_propagate_real_tensors_cls(cls):
cls = make_test_cls_with_patches(
cls,
"PropagateRealTensors",
"_propagate_real_tensors",
(torch._functorch.config, "fake_tensor_propagate_real_tensors", True),
xfail_prop="_expected_failure_propagate_real_tensors",
decorator=skipIfTorchDynamo("propagate_real_tensors affects Dynamo"),
)
cls.__file__ = __file__
cls.__module__ = __name__
globals()[cls.__name__] = cls
make_propagate_real_tensors_cls(FakeTensorTest)
class FakeTensorConstHandling(TestCase):
def assertConst(self, *args):
for arg in args:
self.assertTrue(arg.constant is not None)
def assertNotConst(self, *args):
for arg in args:
self.assertTrue(arg.constant is None)
def test_simple(self):
with FakeTensorMode():
x = torch.tensor(4.0)
self.assertEqual(x.item(), 4.0)
def test_inplace_add(self):
with FakeTensorMode():
x = torch.tensor(4.0)
y = x.add_(1)
self.assertEqual(x.item(), 5.0)
self.assertEqual(y.item(), 5.0)
self.assertConst(x, y)
def test_shared_storages(self):
with FakeTensorMode():
x = torch.tensor([4.0])
y = x[:]
self.assertEqual(x.storage()._cdata, y.storage()._cdata)
self.assertEqual(x.constant.storage()._cdata, y.constant.storage()._cdata)
def test_constant_invalidation(self):
with FakeTensorMode():
x = torch.tensor([1.0])
self.assertConst(x)
y = torch.rand([1])
x.add_(y)
self.assertNotConst(x)
def test_inplace_view_invalidation(self):
with FakeTensorMode():
x = torch.tensor([1])
self.assertConst(x)
x.resize_([2])
self.assertEqual(x.size(0), 2)
self.assertNotConst(x)
def test_fake_tensor_in_intlist_repro(self):
def fn(tensors):
max_size = torch.tensor([800, 1216], dtype=torch.int64)
batch_shape = [len(tensors)] + list(tensors[0].shape[:-2]) + list(max_size)
return tensors[0].new_full(batch_shape, 0.0)
with self.assertRaises(
torch._subclasses.fake_tensor.DataDependentOutputException
):
with torch._subclasses.fake_tensor.FakeTensorMode():
a = torch.randn(3, 800, 1199)
b = torch.randn(3, 800, 800)
inputs = [a, b]
ref = fn(inputs)
def test_fake_tensor_batch_norm_cpu(self):
with torch._subclasses.CrossRefFakeMode():
m = torch.nn.Sequential(
torch.nn.BatchNorm2d(10),
torch.nn.ReLU(),
)
m.eval()
out = m(torch.randn([2, 10, 8, 8]))
def test_shared_storage_invalidation(self):
with FakeTensorMode():
x = torch.tensor([1.0])
y = x[:]
self.assertConst(x, y)
y.add_(torch.rand([1]))
self.assertNotConst(x, y)
def test_aliased_const_write(self):
with FakeTensorMode():
x = torch.tensor([1])
y = x.expand([4])
self.assertNotConst(y)
y[0] = 1
self.assertNotConst(x)
def test_constant_propagate_through_functions(self):
with FakeTensorMode():
y = torch.div(4, 4, rounding_mode="trunc")
self.assertConst(y)
make_propagate_real_tensors_cls(FakeTensorConstHandling)
def contains_type(type: torch.Type, maybe_contained_type: torch.Type):
return maybe_contained_type.isSubtypeOf(type) or any(
contains_type(e, maybe_contained_type) for e in type.containedTypes()
)
class FakeTensorOpInfoTest(TestCase):
@ops(custom_op_db, dtypes=OpDTypes.any_one)
def test_fake(self, device, dtype, op):
sample_inputs_itr = op.sample_inputs(device, dtype, requires_grad=False)
for sample_input in sample_inputs_itr:
args = (sample_input.input,) + sample_input.args
kwargs = sample_input.kwargs
optests.fake_check(op, args, kwargs)
make_propagate_real_tensors_cls(FakeTensorOpInfoTest)
instantiate_device_type_tests(FakeTensorOpInfoTest, globals(), only_for=("cpu", "cuda"))
instantiate_device_type_tests(
PropagateRealTensorsFakeTensorOpInfoTest, globals(), only_for=("cpu",) # noqa: F821
)
class FakeTensorConverterTest(TestCase):
def test_memoized_conversion_to_meta(self):
x = torch.rand(2, 2, 2)
mode = FakeTensorMode()
self.assertTrue(mode.from_tensor(x) is mode.from_tensor(x))
def test_memoized_conversion_from_meta(self):
x = torch.rand(2, 2).to(device="meta")
mode = FakeTensorMode()
converter = mode.fake_tensor_converter
self.assertTrue(
converter.from_meta_and_device(mode, x, "cpu")
is converter.from_meta_and_device(mode, x, "cpu")
)
def test_separate_tensor_storages_view(self):
x = torch.rand(2, 2, 2)
y = x[0]
mode = FakeTensorMode()
converter = mode.fake_tensor_converter
x_conv = converter.from_real_tensor(mode, x)
y_conv = converter.from_real_tensor(mode, y)
self.assertEqual(torch._C._storage_id(x_conv), torch._C._storage_id(y_conv))
@xfailIfTorchDynamo
def test_separate_tensor_storages_non_view(self):
x = torch.rand(2, 2, 2)
y = torch.rand(4, 2)
y.set_(x.storage())
mode = FakeTensorMode()
converter = mode.fake_tensor_converter
x_conv = converter.from_real_tensor(mode, x)
y_conv = converter.from_real_tensor(mode, y)
stor_id = torch._C._storage_id(x_conv)
self.assertEqual(stor_id, torch._C._storage_id(y_conv))
del x
del x_conv
self.assertEqual(len(converter.tensor_memo), 1)
self.assertEqual(len(converter.meta_converter.storage_memo), 1)
del y
del y_conv
self.assertEqual(len(converter.tensor_memo), 0)
self.assertEqual(len(converter.meta_converter.storage_memo), 0)
def test_dead_weak_ref(self):
x = torch.rand(2, 2, 2)
y = x[0]
mode = FakeTensorMode()
converter = FakeTensorConverter()
x_conv = converter.from_real_tensor(mode, x)
x_conv_storage = x_conv.untyped_storage()
del x_conv
self.assertFalse(x in converter.tensor_memo)
y_conv = converter.from_real_tensor(mode, y)
self.assertIs(x_conv_storage, y_conv.untyped_storage())
@xfailIfTorchDynamo
def test_dead_key(self):
x = torch.rand(2, 2, 2)
mode = FakeTensorMode()
converter = FakeTensorConverter()
x_conv = converter.from_real_tensor(mode, x)
self.assertEqual(len(converter.tensor_memo), 1)
x_conv2 = converter.from_real_tensor(mode, x)
assert x_conv2 is x_conv
del x
del x_conv
del x_conv2
self.assertEqual(len(converter.tensor_memo), 0)
def test_no_active_mode(self):
with FakeTensorMode() as mode:
x = torch.empty(2, 2, device="cpu")
y = torch.empty(2, 2, device="cpu")
out = x + y
self.assertEqual(mode, out.fake_mode)
self.assertTrue(isinstance(out, FakeTensor))
self.assertEqual(out.device.type, "cpu")
def test_multiple_modes(self):
t = torch.rand([4])
t2 = torch.rand([4])
with FakeTensorMode() as m:
with FakeTensorMode() as m2:
t_fake = m.from_tensor(t)
t2_fake = m2.from_tensor(t2)
with self.assertRaisesRegex(Exception, "Mixing fake modes"):
t_fake + t2_fake
def test_separate_mode_error(self):
with FakeTensorMode():
x = torch.empty(2, 2, device="cpu")
with FakeTensorMode():
y = torch.empty(2, 2, device="cpu")
self.assertRaises(Exception, lambda: x, y)
@xfailIfTorchDynamo
def test_no_ref_cycle(self):
x = torch.rand([4])
mode = FakeTensorMode()
y = mode.from_tensor(x)
self.assertEqual(len(mode.fake_tensor_converter.tensor_memo), 1)
mode_weak = weakref.ref(mode)
y_weak = weakref.ref(mode)
del mode
del y
assert mode_weak() is None
assert y_weak() is None
make_propagate_real_tensors_cls(FakeTensorConverterTest)
class FakeTensorOperatorInvariants(TestCase):
def get_aten_op(self, schema):
namespace, name = schema.name.split("::")
overload = schema.overload_name if schema.overload_name else "default"
assert namespace == "aten"
return getattr(getattr(torch.ops.aten, name), overload)
def get_all_aten_schemas(self):
for schema in torch._C._jit_get_all_schemas():
namespace = schema.name.split("::")[0]
if namespace != "aten":
continue
yield schema
def test_non_kwarg_only_device(self):
for schema in self.get_all_aten_schemas():
ten_type = torch._C.TensorType.get()
if not any(
contains_type(arg.type, ten_type)
for arg in itertools.chain(schema.arguments, schema.returns)
):
continue
opt_device = torch._C.OptionalType(torch._C.DeviceObjType.get())
has_non_kwarg_device = any(
not arg.kwarg_only and arg.type.isSubtypeOf(opt_device)
for arg in schema.arguments
)
if has_non_kwarg_device:
self.assertTrue(
self.get_aten_op(schema)
in torch._subclasses.fake_tensor._device_not_kwarg_ops
)
def test_tensor_constructors_all_have_kwarg_device(self):
for schema in self.get_all_aten_schemas():
op = self.get_aten_op(schema)
if not torch._subclasses.fake_tensor._is_tensor_constructor(op):
continue
opt_device = torch._C.OptionalType(torch._C.DeviceObjType.get())
has_kwarg_device = any(
arg.kwarg_only and arg.type.isSubtypeOf(opt_device)
for arg in schema.arguments
)
self.assertTrue(
has_kwarg_device or op == torch.ops.aten._list_to_tensor.default
)
@unittest.expectedFailure
def test_sparse_new(self):
with FakeTensorMode():
indices = torch.randn(1, 1, dtype=torch.int64)
values = torch.randn(1)
extra = (2,)
sparse = torch.randn(1).to_sparse()
# This used to segfault, now it does not, but it still raises an
# error
sparse2 = sparse.new(indices, values, extra)
def test_tensor_new(self):
with FakeTensorMode():
x = torch.Tensor([1, 2, 3])
self.assertIsInstance(x, FakeTensor)
def test_like_ops(self):
for schema in self.get_all_aten_schemas():
if "_like" == schema.name[-5:]:
op = self.get_aten_op(schema)
self.assertIn(
op, torch._subclasses.fake_tensor._like_tensor_constructors
)
def test_str_storage(self):
x = torch.zeros(3)
with FakeTensorMode() as m:
y = m.from_tensor(x)
self.assertExpectedInline(
str(x.storage()),
"""\
0.0
0.0
0.0
[torch.storage.TypedStorage(dtype=torch.float32, device=cpu) of size 3]""",
)
self.assertExpectedInline(
str(y.storage()),
"""\
...
[torch.storage.TypedStorage(dtype=torch.float32, device=meta) of size 3]""",
)
self.assertExpectedInline(
str(y.storage()),
"""\
...
[torch.storage.TypedStorage(dtype=torch.float32, device=meta) of size 3]""",
)
# at::_embedding_bag has no op info,
# and returns extra tensors that at::embedding bag throws away
def test_embedding_bag_private(self):
args = [
torch.ones(6, 1),
torch.ones(6, dtype=torch.int64),
torch.arange(2, dtype=torch.int64),
False,
2, # mode = max
]
ref_out = torch.ops.aten._embedding_bag(*args)
with FakeTensorMode() as m:
meta_args = [
m.from_tensor(a) if isinstance(a, torch.Tensor) else a for a in args
]
meta_out = torch.ops.aten._embedding_bag(*meta_args)
self.assertEqual(len(ref_out), len(meta_out))
for ref_o, meta_o in zip(ref_out, meta_out):
self.assertEqual(ref_o.size(), meta_o.size())
def test_cross_entropy_loss(self):
inp = torch.randn(3, 5)
target = torch.randint(5, (3,), dtype=torch.long)
weight = torch.rand(5)
fn = torch.nn.functional.cross_entropy
for w in (weight, None):
args = (inp, target, w)
ref = fn(*args)
with FakeTensorMode() as m:
meta_args = [
m.from_tensor(a) if isinstance(a, torch.Tensor) else a for a in args
]
meta_out = torch.nn.functional.cross_entropy(
*meta_args, label_smoothing=0.5
)
self.assertEqual(ref.size(), meta_out.size())
@skipIfRocm
@unittest.skipIf(
not PLATFORM_SUPPORTS_FLASH_ATTENTION,
"Does not support SDPA or pre-SM80 hardware",
)
def test_flash_attention(self):
class Repro(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, arg1, arg2, arg3):
torch.ops.aten._scaled_dot_product_flash_attention(
arg1, arg2, arg3, scale=0.17677669529663687
)
args_new = [
[
((1, 48, 64, 64), (0, 4096, 64, 1), torch.float16, "cuda"),
((1, 48, 64, 64), (0, 4096, 64, 1), torch.float16, "cuda"),
((1, 48, 64, 64), (0, 4096, 64, 1), torch.float16, "cuda"),
],
[
((4, 2, 16, 32), (1024, 512, 32, 1), torch.float16, "cuda"),
((4, 2, 16, 32), (1024, 512, 32, 1), torch.float16, "cuda"),
((4, 2, 16, 32), (1024, 512, 32, 1), torch.float16, "cuda"),
],
]
for args_list in args_new:
args = [
rand_strided(bsz, num_heads, seq_len, head_dim)
for (bsz, num_heads, seq_len, head_dim) in args_list
]
try:
with torch._subclasses.CrossRefFakeMode():
Repro()(*args)
except MetadataMismatchError as e:
# We expect the cross ref to succed for the first output to fail
# for the rng state, see Note [Seed and Offset]
self.assertTrue("output[0]" not in str(e))
if self.__class__.__name__.startswith("PropagateRealTensors"):
self.assertTrue(
"Real tensor propagation found a metadata mismatch"
in str(e)
)
else:
self.assertTrue(
"found mismatched tensor metadata for output"
in str(e)
)
# IMPORTANT!!! Always run even if CUDA is not available
def test_fake_gpu_no_init(self):
# Skip this test, we will try to run CUDA operations to real prop so
# it clearly will not work on CPU runner
if torch._functorch.config.fake_tensor_propagate_real_tensors:
return
with FakeTensorMode():
torch.empty(10, device=GPU_TYPE)
torch.ones(10, device=GPU_TYPE)
torch.zeros(10, device=GPU_TYPE)
torch.rand(10, device=GPU_TYPE)
torch.tensor(3.14, device=GPU_TYPE)
torch.tensor([[3.14, 2], [1, 2]], device=GPU_TYPE)
@skipIfRocm
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_conv_c1_backward(self):
class Repro(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, arg1, arg2, arg3):
torch.ops.aten.convolution_backward.default(
arg1,
arg2,
arg3,
[1],
[1, 1],
[1, 1],
[1, 1],
False,
[0, 0],
1,
[True, True, False],
)
args_new = [
((16, 1, 128, 128), (16384, 16384, 128, 1), torch.float16, "cuda"),
((16, 64, 128, 128), (1048576, 1, 8192, 64), torch.float16, "cuda"),
((1, 64, 3, 3), (576, 9, 3, 1), torch.float16, "cuda"),
]
args = [rand_strided(sh, st, dt, dev) for (sh, st, dt, dev) in args_new]
with torch._subclasses.CrossRefFakeMode():
Repro()(*args)
def test_no_dispatch_with_like_function(self):
class CountingMode(TorchDispatchMode):
def __init__(self) -> None:
self.count = 0
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
self.count += 1
return func(*args, **kwargs)
with FakeTensorMode():
x = torch.randn(2)
with CountingMode() as mode:
with no_dispatch():
torch.zeros_like(x)
self.assertEqual(mode.count, 0)
make_propagate_real_tensors_cls(FakeTensorOperatorInvariants)
class FakeTensorPropTest(TestCase):
def test_fake_tensor_prop_on_nn_module(self):
class ToyNnModuleWithParameters(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.layer1 = torch.nn.Linear(4, 3)
self.layer2 = torch.nn.Linear(3, 2)
def forward(self, value):
value = self.layer1(value)
value = torch.relu(value)
value = self.layer2(value)
return value
model = ToyNnModuleWithParameters()
value = torch.randn(5, 4)
# Convert nn.Module to GraphModule so that FakeTensorProp runs.
graph_model = torch.fx.symbolic_trace(model, (value,))
# The following block runs FakeTensorProp on graph_module w/to the same FakeTensorMode
#
# TODO(wschin): there should be an API to run FakeTensorProp for GraphModule
# with parameters and buffers.
with FakeTensorMode() as fake_tensor_mode:
def to_fake_tensor(x):
if isinstance(x, torch.Tensor) and not isinstance(x, FakeTensor):
return fake_tensor_mode.from_tensor(x)
return x
fake_parameters_and_buffers = {
k: to_fake_tensor(v)
for k, v in itertools.chain(
graph_model.named_parameters(), graph_model.named_buffers()
)
}
with torch.nn.utils.stateless._reparametrize_module(
graph_model, fake_parameters_and_buffers
):
# This case uses the **same** fake tensor mode to
# 1. create fake parameters and fake buffers, and
# 2. run FakeTensorProp
# The result should be correct.
result = FakeTensorProp(graph_model, fake_tensor_mode).propagate(value)
self.assertTrue(isinstance(result, FakeTensor))
self.assertEqual(result.shape, (5, 2))
# This case uses the **different** fake tensor modes to
# 1. create fake parameters and fake buffers, and
# 2. run FakeTensorProp
# The following code should fail.
failed = False
try:
FakeTensorProp(graph_model).propagate(value)
except AssertionError:
# AssertionError: tensor's device must be `meta`, got cpu instead
failed = True
self.assertTrue(failed)
def test_fake_tensor_prop_on_nn_module_with_optional_args(self):
class OptionalArgumentInBetween(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.layer1 = torch.nn.Linear(4, 3)
self.layer2 = torch.nn.Linear(3, 2)
def forward(self, value, another_value=None, another_optional_value=None):
# Mimic huggingface's `forward` methods which have several optional arguments.
# For example, GPT accepts forward(self, input_ids, None, attention_mask, ...).
# To apply FakeTensorProp, its from_real_tensor(...) needs to accept None.
if another_value is None:
another_value = torch.rand_like(value)
if another_optional_value is None:
another_optional_value = torch.rand_like(value)
value = value + another_value + another_optional_value
return value * value
fake_mode = FakeTensorMode(
allow_non_fake_inputs=True, allow_fallback_kernels=False
)
with fake_mode:
model = OptionalArgumentInBetween()
value = torch.randn(5, 4)
another_optional_value = torch.randn(5, 4)
graph_model = torch.fx.symbolic_trace(
model, (value, None, another_optional_value)
)
FakeTensorProp(graph_model, fake_mode).propagate(
value, None, another_optional_value
)
def test_unbacked_shape_realloc(self):
def f(x):
return x.nonzero()
shape_env = ShapeEnv()
fake_mode = FakeTensorMode(shape_env=shape_env)
with fake_mode:
value = torch.randn(5)
gm = make_fx(f)(value)
nonzero_nodes = [
n for n in gm.graph.nodes if n.target is torch.ops.aten.nonzero.default
]
self.assertEqual(len(nonzero_nodes), 1)
self.assertIsInstance(nonzero_nodes[0].meta["val"].shape[0], torch.SymInt)
u0 = nonzero_nodes[0].meta["val"].shape[0]
FakeTensorProp(gm, fake_mode).propagate(value)
u1 = nonzero_nodes[0].meta["val"].shape[0]
# Test that this test is actually doing something in that the
# FakeTensorProp actually triggered a reallocation. If this assert is
# failing, it could be because we started memoizing the nnz count for
# nonzero, which is nice in some sense (no reallocation) but not
# helpful for this test, which is checking what we do when we have
# to reallocate. If so, you need to make this example more
# complicated (e.g., maybe have a nontrivial computation on the input
# before feeding it into nonzero, or have some sort of randomness)
self.assertIsNot(u0, u1)
self.assertTrue(statically_known_true(u0 == u1))
def test_torch_load_with_fake_mode(self):
class TheModelClass(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = torch.nn.Linear(5, 10)
def forward(self, x):
return self.fc1(x)
with TemporaryFileName() as state_dict_file:
# Create state_dict to be loaded later
model = TheModelClass()
torch.save(model.state_dict(), state_dict_file)
fake_mode = FakeTensorMode()
with fake_mode:
torch.load(state_dict_file) # scenario 1
torch.load(state_dict_file, map_location="cpu") # scenario 2
make_propagate_real_tensors_cls(FakeTensorPropTest)
class FakeTensorSerialization(TestCase):
def test_serialization(self):
x = torch.tensor([0], device="cpu")
with FakeTensorMode():
y = pickle.loads(pickle.dumps(x))
self.assertEqual(type(y), FakeTensor)
self.assertEqual(y.device.type, "meta")
with unset_fake_temporarily():
y = pickle.loads(pickle.dumps(x))
self.assertEqual(x.device, y.device)
def test_serialization_with_tracing(self):
x = torch.tensor([0], device="cpu")
with tracing(TracingContext(FakeTensorMode())):
y = pickle.loads(pickle.dumps(x))
self.assertEqual(x.device, y.device)
class FakeTensorDispatchCache(TestCase):
def test_shape_env_settings(self):
"""
Validation that any boolean settings in ShapeEnv are present in the
ShapeEnvSettings. We hope to ensure that any new settings that might
affect FakeTensor dispatch are included in the cache key calculation.
If this test fails, consider updating ShapeEnvSettings or change this
test to omit checking for the new field.
"""
init_sig = inspect.signature(ShapeEnv._init)
args = [
name
for name, param in init_sig.parameters.items()
if type(param.default) is bool
]
settings = [f.name for f in dataclasses.fields(ShapeEnvSettings)]
for arg in args:
self.assertTrue(arg in settings)
def _test_cache_key(self, fm, x, y, z):
"""
Helper for all test_cache_key_* tests below. Assert that the
cache keys for inputs x and y are the same, but z is different.
"""
func = aten.add.Tensor
state = _CacheKeyState()
key_x = fm._cache_key(state, func, [x], {})
key_y = fm._cache_key(state, func, [y], {})
key_z = fm._cache_key(state, func, [z], {})
self.assertEqual(key_x, key_y)
self.assertNotEqual(key_x, key_z)
def test_cache_key_dtype(self):
with FakeTensorMode() as fm:
x = torch.randn(4, 3, dtype=torch.float16)
y = torch.randn(4, 3, dtype=torch.float16)
z = x.to(dtype=torch.float32)
self._test_cache_key(fm, x, y, z)
def test_cache_key_shape(self):
with FakeTensorMode() as fm:
x = torch.randn(4, 3)
y = torch.randn(4, 3)
z = torch.randn(4, 2)
self._test_cache_key(fm, x, y, z)
def test_cache_key_stride(self):
with FakeTensorMode() as fm:
x = torch.randn(4, 2)
y = torch.randn(4, 2)
z = x.as_strided((4, 2), (1, 2))
self._test_cache_key(fm, x, y, z)
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_cache_key_device(self):
with FakeTensorMode() as fm:
x = torch.randn(4, 3)
y = torch.randn(4, 3)
z = x.to(device="cuda")
self._test_cache_key(fm, x, y, z)
def test_cache_key_memory_format(self):
with FakeTensorMode() as fm:
x = torch.randn(1, 2, 3, 4)
y = torch.randn(1, 2, 3, 4)
z = x.to(memory_format=torch.channels_last)
self._test_cache_key(fm, x, y, z)
def test_cache_key_storage_offset(self):
with FakeTensorMode() as fm:
x = torch.randn(3)[1:]
y = torch.randn(3)[1:]
z = torch.randn(2)
self._test_cache_key(fm, x, y, z)
def test_cache_key_requires_grad(self):
with FakeTensorMode() as fm:
x = torch.randn(4, 3)
y = torch.randn(4, 3)
z = torch.randn(4, 3, requires_grad=True)
self._test_cache_key(fm, x, y, z)
def test_cache_key_is_conj(self):
with FakeTensorMode() as fm:
x = torch.randn(4, 3, dtype=torch.complex64)
y = torch.randn(4, 3, dtype=torch.complex64)
z = torch.randn(4, 3, dtype=torch.complex64)
torch._C._set_conj(z, not z.is_conj())
self._test_cache_key(fm, x, y, z)
def test_cache_key_is_neg(self):
with FakeTensorMode() as fm:
x = torch.randn(4, 3, dtype=torch.complex64)
y = torch.randn(4, 3, dtype=torch.complex64)
z = torch.randn(4, 3, dtype=torch.complex64)
torch._C._set_neg(z, not z.is_neg())
self._test_cache_key(fm, x, y, z)
def test_cache_key_is_inference(self):
with torch.inference_mode(True):
t = torch.randn(4, 3)
with FakeTensorMode() as fm:
x = torch.randn(4, 3)
y = torch.randn(4, 3)
z = fm.from_tensor(t)
self._test_cache_key(fm, x, y, z)
def test_cache_key_constants(self):
with FakeTensorMode() as fm:
# Python hashes 1.0 to the same value as 1. Make sure the
# cache key calculation differentiates them.
self._test_cache_key(fm, 1.0, 1.0, 1)
self._test_cache_key(fm, 0.0, 0.0, 0)
def assertHitsMisses(self, hits, misses):
"""
Helper to assert on the number of recorded hits and misses.
"""
info = FakeTensorMode.cache_info()
self.assertEqual(info.hits, hits)
self.assertEqual(info.misses, misses)
def assertBypasses(self, reason, count):
"""
Helper to assert on the number of recorded bypasses.
"""
info = FakeTensorMode.cache_info()
if count > 0:
self.assertIn(reason, info.bypasses)
self.assertEqual(info.bypasses[reason], count)
else:
self.assertNotIn(reason, info.bypasses)
def test_cache_hit(self):
"""
Test that cache hit/miss counters are updated correctly.
"""
with FakeTensorMode():
x = torch.randn(4, 3)
y = torch.randn(4, 3)
FakeTensorMode.cache_clear()
self.assertHitsMisses(0, 0)
res1 = x + y
self.assertHitsMisses(0, 1)
res2 = x + y
self.assertHitsMisses(1, 1)
self.assertEqual(
extract_tensor_metadata(res1),
extract_tensor_metadata(res2),
)
def test_cache_bypass(self):
"""
Test that cache bypass counters are updated correctly.
"""
with FakeTensorMode():
x = torch.randn(1, 2)
FakeTensorMode.cache_clear()
self.assertBypasses("inplace view", 0)
x.unsqueeze_(0)
self.assertBypasses("inplace view", 1)
def test_cache_default_dtype(self):
"""
Test that the default dtype is respected when serving cached results.
"""
with FakeTensorMode():
x = torch.tensor([1, 2], dtype=torch.int32)
torch.set_default_dtype(torch.float32)
FakeTensorMode.cache_clear()
self.assertHitsMisses(0, 0)
y = x + 1.0
self.assertEqual(y.dtype, torch.float32)
self.assertHitsMisses(0, 1)
torch.set_default_dtype(torch.float16)
y = x + 1.0
self.assertEqual(y.dtype, torch.float16)
self.assertHitsMisses(0, 2)
torch.set_default_dtype(torch.float32)
y = x + 1.0
self.assertEqual(y.dtype, torch.float32)
self.assertHitsMisses(1, 2)
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_cache_default_device(self):
"""
Test that the default device is respected when serving cached results.
"""
with FakeTensorMode():
FakeTensorMode.cache_clear()
self.assertHitsMisses(0, 0)
torch.set_default_device("cpu")
x = torch.tensor([1, 2])
y = x + 1.0
self.assertEqual(y.device.type, "cpu")
self.assertHitsMisses(0, 1)
torch.set_default_device("cuda")
x = torch.tensor([1, 2])
y = x + 1.0
self.assertEqual(y.device.type, "cuda")
self.assertHitsMisses(0, 2)
torch.set_default_device("cpu")
x = torch.tensor([1, 2])
y = x + 1.0
self.assertEqual(y.device.type, "cpu")
self.assertHitsMisses(1, 2)
def test_cache_inplace_op(self):
"""
Test that inplace ops served from the cache correctly reference the
input parameter.
"""
with FakeTensorMode():
x = torch.randn(1, 2)
y = torch.randn(1, 2)
FakeTensorMode.cache_clear()
self.assertHitsMisses(0, 0)
z = x.add_(y)
self.assertHitsMisses(0, 1)
self.assertEqual(id(x), id(z))
w = x.add_(y)
self.assertHitsMisses(1, 1)
self.assertEqual(id(x), id(w))
def test_cache_view_op(self):
"""
Test that view ops are handled correctly when served from the cache.
"""
with FakeTensorMode():
x1 = torch.ones(2, requires_grad=True).clone()
x2 = torch.ones(2, requires_grad=True).clone()
y2 = x2.view(-1)
# Test operating on a non-view tensor, then the same operation
# on a view tensor. Assert that the view property is set correctly.
z1 = x1.mul_(2)
self.assertFalse(z1._is_view())
z2 = y2.mul_(2)
self.assertTrue(z2._is_view())
# Now the other way around: first operate on a view tensor, then
# the same operation on a non-view tensor.
z2 = y2.mul_(2)
self.assertTrue(z2._is_view())
z1 = x1.mul_(2)
self.assertFalse(z1._is_view())
def test_cache_dispatch_key_set(self):
"""
Test that operations that change the dispatch key set bypass caching.
"""
with FakeTensorMode():
FakeTensorMode.cache_clear()
self.assertBypasses("dispatch_key_set mismatch", 0)
x = torch._efficientzerotensor(3)
self.assertTrue(x._is_zerotensor())
self.assertBypasses("dispatch_key_set mismatch", 1)
y = torch._efficientzerotensor(3)
self.assertTrue(y._is_zerotensor())
self.assertBypasses("dispatch_key_set mismatch", 2)
def test_inference_mode(self):
"""
Test that caching handles inference mode correctly.
"""
with FakeTensorMode():
x = torch.randn(4, 3)
y = torch.randn(4, 3)
FakeTensorMode.cache_clear()
self.assertHitsMisses(0, 0)
# Expect a miss when the inference mode is different
res1 = x + y
with torch.inference_mode():
res2 = x + y
self.assertHitsMisses(0, 2)
self.assertFalse(res1.is_inference())
self.assertTrue(res2.is_inference())
# Second tries should see hits
res3 = x + y
self.assertHitsMisses(1, 2)
self.assertFalse(res3.is_inference())
self.assertEqual(
extract_tensor_metadata(res1),
extract_tensor_metadata(res3),
)
with torch.inference_mode():
res4 = x + y
self.assertHitsMisses(2, 2)
self.assertTrue(res4.is_inference())
self.assertEqual(
extract_tensor_metadata(res2),
extract_tensor_metadata(res4),
)
@unittest.skipIf(not RUN_CUDA, "requires cuda")
def test_wrapper_tensor_subclass_different_device(self):
class DifferentDeviceTensor(torch.Tensor):
@staticmethod
def __new__(cls, a):
kwargs = {}
kwargs["strides"] = a.stride()
kwargs["storage_offset"] = a.storage_offset()
kwargs["device"] = torch.device("cpu")
kwargs["layout"] = a.layout
kwargs["requires_grad"] = a.requires_grad
kwargs["dtype"] = a.dtype
out = torch.Tensor._make_wrapper_subclass(cls, a.size(), **kwargs)
return out
def __init__(self, a):
self.inner_tensor = a
def __repr__(self):
return f"DifferentDeviceTensor({repr(self.inner_tensor)})"
def __tensor_flatten__(self):
return ["inner_tensor"], None
@staticmethod
def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride):
assert meta is None
return DifferentDeviceTensor(inner_tensors["inner_tensor"])
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs):
if kwargs is None:
kwargs = {}
args = pytree.tree_map_only(DifferentDeviceTensor, lambda x: x.inner_tensor, args)
kwargs = pytree.tree_map_only(DifferentDeviceTensor, lambda x: x.inner_tensor, kwargs)
# Returns unwrapped tensor
return func(*args, **kwargs)
a = torch.ones(2, 2, 768, device="cuda")
wrapped_a = DifferentDeviceTensor(a)
# Outer Tensor is on cpu, inner is on cuda
self.assertTrue(wrapped_a.is_cpu)
self.assertFalse(wrapped_a.inner_tensor.is_cpu)
with FakeTensorMode() as fake_mode:
fake_wrapped_a = fake_mode.from_tensor(wrapped_a)
self.assertTrue(fake_wrapped_a.is_cpu)
assert isinstance(fake_wrapped_a, DifferentDeviceTensor)
self.assertFalse(fake_wrapped_a.inner_tensor.is_cpu)
def test_cache_tuple_outputs(self):
"""
Test to check that ops with tuple outputs work.
"""
with FakeTensorMode():
x = torch.randn(6, 4)
y = torch.randn(6, 4)
FakeTensorMode.cache_clear()
self.assertHitsMisses(0, 0)
ref = torch.split(x, 2)
self.assertHitsMisses(0, 1)
res = torch.split(y, 2)
self.assertHitsMisses(1, 1)
self.assertEqual(len(ref), len(res))
for a, b in zip(ref, res):
self.assertEqual(
extract_tensor_metadata(a),
extract_tensor_metadata(b),
)
if __name__ == "__main__":
run_tests()
|