1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
|
# Owner(s): ["module: mta"]
import itertools
import os
import random
import re
import unittest
import weakref
from contextlib import nullcontext
from numbers import Number
import torch
from torch.testing import make_tensor
from torch.testing._comparison import default_tolerances
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyCUDA,
OpDTypes,
ops,
)
from torch.testing._internal.common_dtype import (
all_types_and_complex_and,
floating_types,
floating_types_and,
integral_types_and,
)
from torch.testing._internal.common_methods_invocations import (
foreach_binary_op_db,
foreach_other_op_db,
foreach_pointwise_op_db,
foreach_reduce_op_db,
foreach_unary_op_db,
)
from torch.testing._internal.common_utils import (
gradcheck,
parametrize,
run_tests,
skipIfRocmVersionLessThan,
skipIfTorchDynamo,
TEST_WITH_ROCM,
TestCase,
)
_BOOL_SUB_ERR_MSG = "Subtraction, the `-` operator"
class RegularFuncWrapper:
def __init__(self, func):
self.func = func
def __call__(self, inputs, scalars=None, **kwargs):
if scalars is not None:
assert len(inputs) == 3
# We need to distribute each scalar to the regular func and it needs
# special consideration as it is a keyword only argument to the
# regular func. (Strangely, it is not a keyword only argument to the
# foreach func)
return [
self.func(*i, value=scalars[idx], **kwargs)
for idx, i in enumerate(zip(*inputs))
]
if len(inputs) == 2 and isinstance(inputs[1], (Number, torch.Tensor)):
# binary op with tensorlist and scalar.
inputs[1] = [inputs[1] for _ in range(len(inputs[0]))]
return [self.func(*i, **kwargs) for i in zip(*inputs)]
class ForeachFuncWrapper:
def __init__(self, func):
self.func = func
# Some foreach functions don't have in-place implementations.
self.is_inplace = False if func is None else func.__name__.endswith("_")
def __call__(self, inputs, is_cuda, expect_fastpath, **kwargs):
actual = None
zero_size = kwargs.pop("zero_size", False)
if (
is_cuda
and torch.autograd.kineto_available()
and torch.profiler.ProfilerActivity.CUDA
in torch.profiler.supported_activities()
):
with torch.profiler.profile() as p:
actual = self.func(*inputs, **kwargs)
keys = tuple([e.key for e in p.key_averages()])
mta_called = any("multi_tensor_apply_kernel" in k for k in keys)
assert (
mta_called == (expect_fastpath and (not zero_size))
), f"{mta_called=}, {expect_fastpath=}, {zero_size=}, {self.func.__name__=}, {keys=}"
else:
actual = self.func(*inputs, **kwargs)
if self.is_inplace:
assert id(inputs[0]) == id(actual)
return actual
class InplaceForeachVersionBumpCheck:
def __init__(
self,
testcase: TestCase,
tensorlist: "List[torch.Tensor]", # noqa: F821
) -> None:
self._testcase = testcase
self._tensorlist = tensorlist
self._orig_version_counts = [t._version for t in tensorlist]
def __enter__(self):
pass
def __exit__(self, exc_type, exc_value, traceback):
# note(crcrpar): some methods e.g. `_binary_test` could call the given inplace function multiple times
self._testcase.assertGreaterEqual(
[t._version for t in self._tensorlist], self._orig_version_counts
)
def get_transform_func(num_tensors, dtype, device, is_fastpath):
def transform(t):
if not torch.is_tensor(t):
return t
if torch.is_tensor(t) and t.ndim == 0:
return t
return make_tensor(
(num_tensors, num_tensors),
dtype=dtype,
device=device,
requires_grad=True,
noncontiguous=not is_fastpath,
)
return transform
# note(crcrpar): `zero_size` is `False` unless (dtype, device) == (torch.float32, "cuda")
# as the pair would go through `multi_tensor_apply_kernel` if inputs are not zero size.
@unittest.mock.patch.dict(os.environ, {"KINETO_LOG_LEVEL": "5"})
class TestForeach(TestCase):
@property
def is_cuda(self):
return self.device_type == "cuda"
def _get_funcs(self, op):
return (
ForeachFuncWrapper(op.method_variant),
RegularFuncWrapper(op.ref),
ForeachFuncWrapper(op.inplace_variant),
RegularFuncWrapper(op.ref_inplace),
)
# note(crcrpar): Make sure 0-size tensors are appropriately ignored by `multi_tensor_apply`
# which is originally reported in https://github.com/pytorch/pytorch/issues/94865.
# rel:
# - https://github.com/pytorch/pytorch/pull/94655
# - https://github.com/pytorch/pytorch/issues/100701
# - https://github.com/pytorch/pytorch/pull/100811
@onlyCUDA
@ops(
foreach_unary_op_db
+ foreach_binary_op_db
+ foreach_pointwise_op_db
+ foreach_reduce_op_db
+ foreach_other_op_db,
dtypes=(torch.float32,),
)
def test_all_zero_size_tensors_do_not_launch_kernel(self, device, dtype, op):
wrapped_op, _, inplace_op, _ = self._get_funcs(op)
for sample in op.sample_zero_size_inputs(device, dtype):
if op.method_variant is not None:
wrapped_op(
(sample.input, *sample.args),
is_cuda=self.is_cuda,
expect_fastpath=True,
zero_size=True,
)
if op.inplace_variant is not None:
with InplaceForeachVersionBumpCheck(self, sample.input):
inplace_op(
(sample.input, *sample.args),
is_cuda=self.is_cuda,
expect_fastpath=True,
zero_size=True,
)
@skipIfRocmVersionLessThan((6, 0))
@ops(
foreach_unary_op_db
+ foreach_binary_op_db
+ foreach_pointwise_op_db
+ foreach_reduce_op_db
+ foreach_other_op_db,
)
@parametrize(
"noncontiguous,inplace",
[(False, False), (False, True), (True, False), (True, True)],
name_fn=lambda x, y: "{}_{}".format(
"fastpath" if not x else "slowpath", "inplace" if y else "outplace"
),
)
def test_parity(self, device, dtype, op, noncontiguous, inplace):
if inplace:
_, _, func, ref = self._get_funcs(op)
else:
func, ref, _, _ = self._get_funcs(op)
for sample in op.sample_inputs(
device, dtype, noncontiguous=noncontiguous, allow_higher_dtype_scalars=True
):
ref_kwargs = sample.kwargs
# div promotes ints to floats, so we cannot go on the fastpath there
div_slowpath = (
dtype in integral_types_and(torch.bool) and op.name == "_foreach_div"
)
expect_fastpath = not (
noncontiguous or sample.disable_fastpath or div_slowpath
)
ref_input, ctxmgr = sample.input, nullcontext()
if inplace:
with torch.no_grad():
ref_input = [t.detach().clone() for t in sample.input]
ctxmgr = InplaceForeachVersionBumpCheck(self, sample.input)
try:
with ctxmgr:
actual = func(
[sample.input, *sample.args],
self.is_cuda,
expect_fastpath,
**sample.kwargs,
)
except Exception as e:
with self.assertRaises(type(e)):
ref([ref_input, *sample.ref_args], **ref_kwargs)
else:
expected = ref([ref_input, *sample.ref_args], **ref_kwargs)
self.assertEqual(expected, actual)
def _binary_test(
self,
dtype,
op,
ref,
inputs,
is_fastpath,
is_inplace,
*,
alpha,
scalar_self_arg: bool,
):
ref_inputs = (
[[t.detach().clone() for t in inputs[0]], inputs[1]]
if is_inplace
else inputs
)
try:
with InplaceForeachVersionBumpCheck(
self, inputs[0]
) if op.is_inplace else nullcontext():
actual = op(inputs, self.is_cuda, is_fastpath)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e).splitlines()[0])):
if not scalar_self_arg:
ref(ref_inputs)
else:
[ref.func(ref_inputs[0], t) for t in ref_inputs[1]]
else:
expected = (
ref(ref_inputs)
if not scalar_self_arg
else [ref.func(ref_inputs[0], t) for t in ref_inputs[1]]
)
self.assertEqual(actual, expected)
if alpha is not None and not scalar_self_arg:
kwargs = {"alpha": alpha}
ref_inputs = inputs
try:
op_kwargs = {}
op_kwargs.update(kwargs)
with InplaceForeachVersionBumpCheck(
self, inputs[0]
) if op.is_inplace else nullcontext():
actual = op(inputs, self.is_cuda, is_fastpath, **op_kwargs)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e).splitlines()[0])):
ref(ref_inputs, **kwargs)
else:
expected = ref(ref_inputs, **kwargs)
if dtype in (torch.float16, torch.bfloat16) and TEST_WITH_ROCM:
self.assertEqual(
expected, actual, atol=1.0e-3, rtol=default_tolerances(dtype)[0]
)
else:
self.assertEqual(expected, actual)
@ops(filter(lambda op: op.supports_scalar_self_arg, foreach_binary_op_db))
@parametrize("is_fastpath", (True, False))
def test_binary_op_with_scalar_self_support(self, device, dtype, op, is_fastpath):
def clone(arg):
if isinstance(arg, (list, tuple)):
return [clone(a) for a in arg]
if torch.is_tensor(arg):
return arg.detach().clone().requires_grad_()
else:
return arg
scalar_self_arg_test_complete = False
for i, sample in enumerate(
op.sample_inputs(
device,
dtype,
noncontiguous=not is_fastpath,
allow_higher_dtype_scalars=True,
)
):
(rhs_arg,) = sample.args
kwargs = {} or sample.kwargs
alpha = kwargs.pop("alpha", None)
wrapped_op, ref, inplace_op, inplace_ref = self._get_funcs(op)
if isinstance(rhs_arg, Number) and not scalar_self_arg_test_complete:
scalar_self_arg_test_complete = True
self._binary_test(
dtype,
wrapped_op,
ref,
[rhs_arg, sample.input],
is_fastpath,
False,
alpha=alpha,
scalar_self_arg=True,
)
if op.supports_autograd and dtype == torch.float32:
transformed_sample = sample.transform(
get_transform_func(
len(sample.input), dtype, device, is_fastpath
)
)
tensors = transformed_sample.input
(rhs_arg,) = transformed_sample.args
ref_tensors, ref_rhs_arg = clone(tensors), clone(rhs_arg)
sum(
wrapped_op(
[rhs_arg, tensors], is_cuda=False, expect_fastpath=False
)
).mean().backward()
sum(ref.func(ref_rhs_arg, t) for t in ref_tensors).mean().backward()
self.assertEqual(
[t.grad for t in tensors], [t.grad for t in ref_tensors]
)
@ops(foreach_pointwise_op_db)
@parametrize("is_fastpath", (True, False))
def test_pointwise_op_with_tensor_of_scalarlist_overload(
self, device, dtype, op, is_fastpath
):
for sample in op.sample_inputs(
device,
dtype,
noncontiguous=not is_fastpath,
allow_higher_dtype_scalars=True,
):
assert isinstance(sample.args, tuple)
assert len(sample.args) == 2
inputs = [sample.input, *sample.args]
kwargs = sample.kwargs.copy()
disable_fastpath = sample.disable_fastpath and is_fastpath
wrapped_op, ref, inplace_op, inplace_ref = self._get_funcs(op)
scalars = kwargs.pop("scalars", None)
if is_fastpath and scalars:
sample = sample.transform(
lambda t: t.detach().clone() if torch.is_tensor(t) else t
)
inputs = [sample.input, *sample.args]
tensor_values = torch.tensor(scalars)
# 1D Tensor of scalars
for is_inplace, op_, ref_ in (
(False, wrapped_op, ref),
(True, inplace_op, inplace_ref),
):
self._pointwise_test(
op_,
ref_,
inputs,
is_fastpath and not disable_fastpath,
is_inplace,
scalars=tensor_values,
**kwargs,
)
self._pointwise_test(
op_,
ref_,
inputs,
is_fastpath and not disable_fastpath,
is_inplace,
scalars=tensor_values[0],
custom_values_err="Expected packed scalar Tensor to be of dimension 1. Got 0 instead.",
**kwargs,
)
if self.is_cuda:
self._pointwise_test(
op_,
ref_,
inputs,
is_fastpath and not disable_fastpath,
is_inplace,
scalars=tensor_values.cuda(),
custom_values_err="Expected scalars to be on CPU, got cuda:0 instead.",
**kwargs,
)
self._pointwise_test(
op_,
ref_,
inputs,
is_fastpath and not disable_fastpath,
is_inplace,
scalars=tensor_values[:2],
custom_values_err=f"Expected length of scalars to match input of length {len(scalars)} but got 2 instead.",
**kwargs,
)
self._pointwise_test(
op_,
ref_,
inputs,
is_fastpath and not disable_fastpath,
is_inplace,
scalars=torch.tensor([[0, 1], [2, 3]])[:, 1],
custom_values_err="Expected scalars to be contiguous.",
**kwargs,
)
# Tests of implicit broadcasting
N = len(sample.input)
inputs = [
[
make_tensor(
(N, N),
device=device,
dtype=dtype,
noncontiguous=not is_fastpath,
)
for _ in range(N)
],
[
make_tensor(
(N - i, 1),
device=device,
dtype=dtype,
noncontiguous=not is_fastpath,
)
for i in range(N)
],
[
make_tensor(
(1, N - i),
device=device,
dtype=dtype,
noncontiguous=not is_fastpath,
)
for i in range(N)
],
]
self._pointwise_test(
wrapped_op,
ref,
inputs,
is_fastpath and disable_fastpath,
is_inplace=False,
scalars=scalars,
**kwargs,
)
self._pointwise_test(
inplace_op,
inplace_ref,
inputs,
is_fastpath and disable_fastpath,
is_inplace=True,
scalars=scalars,
**kwargs,
)
def _pointwise_test(
self,
op,
ref,
inputs,
is_fastpath,
is_inplace,
*,
scalars=None,
custom_values_err=None,
**kwargs,
):
ref_inputs = (
[[t.detach().clone() for t in inputs[0]], inputs[1], inputs[2]]
if is_inplace
else inputs
)
try:
with (
InplaceForeachVersionBumpCheck(self, inputs[0])
if is_inplace
else nullcontext()
):
actual = op(inputs, self.is_cuda, is_fastpath, **kwargs)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e).splitlines()[0])):
ref(ref_inputs, **kwargs)
else:
expected = ref(ref_inputs, **kwargs)
self.assertEqual(expected, actual)
if scalars is not None:
kwargs = kwargs.copy()
kwargs["scalars"] = scalars
try:
actual = op(inputs, self.is_cuda, is_fastpath, **kwargs)
except RuntimeError as e:
# Match with error messages from regular non-foreach reference if no
# custom error message was provided.
if custom_values_err is None:
with self.assertRaisesRegex(
type(e), re.escape(str(e).splitlines()[0])
):
ref(ref_inputs, **kwargs)
else:
self.assertEqual(re.escape(str(e)), re.escape(custom_values_err))
else:
expected = ref(ref_inputs, **kwargs)
self.assertEqual(expected, actual)
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16))
def test_add_scalar_with_empty_list_and_empty_tensor(self, device, dtype):
# TODO: enable empty list case
for tensors in [
[torch.randn([0], device=device, dtype=dtype)],
[torch.empty_strided((0, 1), (0, 0), dtype=dtype, device=device)],
]:
res = torch._foreach_add(tensors, 1)
self.assertEqual(res, tensors)
torch._foreach_add_(tensors, 1)
self.assertEqual(res, tensors)
# Regression test for https://github.com/pytorch/pytorch/issues/113156
torch._foreach_mul_(tensors, 1)
@onlyCUDA
@dtypes(torch.float32)
def test_foreach_check_stride_ignore_dims_of_one(self, device, dtype):
# default tensor stride is (9, 9, 3, 1).
tensor = torch.ones((2, 1, 3, 3), device=device, dtype=dtype)
strided_tensor = torch.ones(
(2, 1, 3, 3), device=device, dtype=dtype
).as_strided((2, 1, 3, 3), (9, 1, 3, 1))
left_inputs = [tensor, strided_tensor]
right_inputs = [strided_tensor, tensor]
compare_result = tensor + strided_tensor
foreach_add_check_ = ForeachFuncWrapper(torch._foreach_add)
out = foreach_add_check_(
(left_inputs, right_inputs), is_cuda=True, expect_fastpath=True
)
for res in out:
self.assertEqual(res, compare_result)
@ops(
filter(lambda op: op.supports_out, foreach_binary_op_db),
dtypes=OpDTypes.supported,
)
def test_binary_op_scalar_with_overlapping_tensors(self, device, dtype, op):
foreach_op, ref = op.method_variant, op.ref
tensors = [torch.ones(1, 1, device=device, dtype=dtype).expand(2, 1, 3)]
if ref == torch.sub and dtype == torch.bool:
with self.assertRaisesRegex(RuntimeError, re.escape(_BOOL_SUB_ERR_MSG)):
[ref(t, 1) for t in tensors]
with self.assertRaisesRegex(RuntimeError, re.escape(_BOOL_SUB_ERR_MSG)):
foreach_op(tensors, 1)
return
expected = [ref(t, 1) for t in tensors]
res = foreach_op(tensors, 1)
self.assertEqual(res, expected)
@ops(
filter(lambda op: op.supports_out, foreach_binary_op_db),
allowed_dtypes=[torch.float],
)
def test_binary_op_scalar_with_different_tensor_dtypes(self, device, dtype, op):
foreach_op = op.method_variant
tensors = [
torch.tensor([1.1], dtype=torch.float, device=device),
torch.tensor([1], dtype=torch.long, device=device),
]
runtime_error = None
try:
foreach_op(tensors, 1)
except RuntimeError as e:
runtime_error = e
self.assertIsNone(runtime_error)
@skipIfTorchDynamo("Different error msgs, TODO")
@ops(
filter(lambda op: op.supports_out, foreach_binary_op_db),
dtypes=OpDTypes.supported,
)
def test_binary_op_list_error_cases(self, device, dtype, op):
foreach_op, foreach_op_, ref, ref_ = (
op.method_variant,
op.inplace_variant,
op.ref,
op.ref_inplace,
)
tensors1 = []
tensors2 = []
ops_to_test = [foreach_op, foreach_op_]
# Empty lists
for fop in ops_to_test:
with self.assertRaisesRegex(
RuntimeError, "Tensor list must have at least one tensor."
):
fop(tensors1, tensors2)
# One empty list
tensors1.append(torch.tensor([1], device=device, dtype=dtype))
for fop in ops_to_test:
with self.assertRaisesRegex(
RuntimeError,
"Tensor list must have same number of elements as scalar list.",
):
fop(tensors1, tensors2)
# Lists have different amount of tensors
tensors2.append(torch.tensor([1], device=device))
tensors2.append(torch.tensor([1], device=device))
for fop in ops_to_test:
with self.assertRaisesRegex(
RuntimeError,
"Tensor lists must have the same number of tensors, got 1 and 2",
):
fop(tensors1, tensors2)
with self.assertRaisesRegex(
RuntimeError,
"Tensor lists must have the same number of tensors, got 2 and 1",
):
fop(tensors2, tensors1)
# Corresponding tensors with different sizes that aren't compatible with broadcast
# If sizes are different then foreach chooses slow path, thus error messages are expected
# to be the same as torch regular function.
tensors1 = [torch.zeros(10, 10, device=device, dtype=dtype) for _ in range(10)]
tensors2 = [torch.ones(11, 11, device=device, dtype=dtype) for _ in range(10)]
if dtype == torch.bool and foreach_op == torch._foreach_sub:
for fop in ops_to_test:
with self.assertRaisesRegex(RuntimeError, re.escape(_BOOL_SUB_ERR_MSG)):
fop(tensors1, tensors2)
return
with self.assertRaisesRegex(
RuntimeError,
r"The size of tensor a \(10\) must match the size of tensor b \(11\) at non-singleton dimension 1",
):
foreach_op(tensors1, tensors2)
with self.assertRaisesRegex(
RuntimeError,
r"The size of tensor a \(10\) must match the size of tensor b \(11\) at non-singleton dimension 1",
):
foreach_op_(tensors1, tensors2)
# different devices
if self.device_type == "cuda" and torch.cuda.device_count() > 1:
tensor1 = torch.zeros(10, 10, device="cuda:0", dtype=dtype)
tensor2 = torch.ones(10, 10, device="cuda:1", dtype=dtype)
with self.assertRaisesRegex(
RuntimeError, "Expected all tensors to be on the same device"
):
foreach_op([tensor1], [tensor2])
if (
dtype in integral_types_and(torch.bool)
and foreach_op == torch._foreach_div
):
with self.assertRaisesRegex(RuntimeError, "result type"):
foreach_op_([tensor1], [tensor2])
else:
with self.assertRaisesRegex(
RuntimeError, "Expected all tensors to be on the same device"
):
foreach_op_([tensor1], [tensor2])
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not found")
@ops(
filter(lambda op: op.supports_out, foreach_binary_op_db),
dtypes=OpDTypes.supported,
)
def test_binary_op_list_slow_path(self, device, dtype, op):
foreach_op, native_op, foreach_op_, native_op_ = self._get_funcs(op)
# 0-strides
tensor1 = make_tensor((10, 10), dtype=dtype, device=device)
tensor2 = make_tensor((1,), device=device, dtype=dtype).expand_as(tensor1)
inputs = ([tensor1], [tensor2])
self._binary_test(
dtype,
foreach_op,
native_op,
inputs,
is_fastpath=False,
is_inplace=False,
alpha=None,
scalar_self_arg=False,
)
self._binary_test(
dtype,
foreach_op_,
native_op_,
inputs,
is_fastpath=False,
is_inplace=True,
alpha=None,
scalar_self_arg=False,
)
# different strides
tensor1 = torch.zeros(10, 10, device=device, dtype=dtype)
tensor2 = torch.ones(10, 10, device=device, dtype=dtype)
inputs = ([tensor1], [tensor2.t()])
self._binary_test(
dtype,
foreach_op,
native_op,
inputs,
is_fastpath=False,
is_inplace=False,
alpha=None,
scalar_self_arg=False,
)
self._binary_test(
dtype,
foreach_op_,
native_op_,
inputs,
is_fastpath=False,
is_inplace=True,
alpha=None,
scalar_self_arg=False,
)
# non contiguous
tensor1 = make_tensor(
(5, 2, 1, 3), device=device, dtype=dtype, noncontiguous=True
)
tensor2 = make_tensor(
(5, 2, 1, 3), device=device, dtype=dtype, noncontiguous=True
)
self.assertFalse(tensor1.is_contiguous())
self.assertFalse(tensor2.is_contiguous())
inputs = ([tensor1], [tensor2])
self._binary_test(
dtype,
foreach_op,
native_op,
inputs,
is_fastpath=False,
is_inplace=False,
alpha=None,
scalar_self_arg=False,
)
self._binary_test(
dtype,
foreach_op_,
native_op_,
inputs,
is_fastpath=False,
is_inplace=True,
alpha=None,
scalar_self_arg=False,
)
# sliced tensor
tensor1 = make_tensor((5, 2, 1, 3), device=device, dtype=dtype)
tensor2 = make_tensor((5, 2, 1, 3 * 7), device=device, dtype=dtype)[
:, :, :, ::7
]
inputs = ([tensor1], [tensor2])
self._binary_test(
dtype,
foreach_op,
native_op,
inputs,
is_fastpath=False,
is_inplace=False,
alpha=None,
scalar_self_arg=False,
)
self._binary_test(
dtype,
foreach_op_,
native_op_,
inputs,
is_fastpath=False,
is_inplace=True,
alpha=None,
scalar_self_arg=False,
)
@ops(
filter(lambda op: op.supports_out, foreach_binary_op_db),
dtypes=floating_types_and(torch.half, torch.bfloat16),
)
def test_binary_op_float_inf_nan(self, device, dtype, op):
inputs = (
[
torch.tensor([float("inf")], device=device, dtype=dtype),
torch.tensor([-float("inf")], device=device, dtype=dtype),
torch.tensor([float("nan")], device=device, dtype=dtype),
torch.tensor([float("nan")], device=device, dtype=dtype),
],
[
torch.tensor([-float("inf")], device=device, dtype=dtype),
torch.tensor([float("inf")], device=device, dtype=dtype),
torch.tensor([float("inf")], device=device, dtype=dtype),
torch.tensor([float("nan")], device=device, dtype=dtype),
],
)
op, ref, inplace_op, inplace_ref = self._get_funcs(op)
self._binary_test(
dtype, op, ref, inputs, True, False, alpha=None, scalar_self_arg=False
)
self._binary_test(
dtype,
inplace_op,
inplace_ref,
inputs,
True,
True,
alpha=None,
scalar_self_arg=False,
)
# note: Below three tests (postfixed with `_tensors_on_different_devices`)
# checks whether foreach works with lists of tensors on different devices
# but tensors of the same index are on the same device, e.g., ['cuda', 'cpu].
@onlyCUDA
@ops(foreach_unary_op_db)
def test_unary_op_tensors_on_different_devices(self, device, dtype, op):
method, ref, inplace_method, ref_inplace = self._get_funcs(op)
# tensors: ['cuda', 'cpu]
tensors = next(
iter(
op.sample_inputs(
device,
dtype,
num_input_tensors=[2],
allow_higher_dtype_scalars=True,
)
)
).input
tensors[1] = tensors[1].to("cpu")
if not op.supports_out:
try:
actual = method((tensors,), False, False, zero_size=False)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), str(e).splitlines()[0]):
ref((tensors,))
else:
expected = ref((tensors,))
self.assertEqual(expected, actual)
try:
inplace_method((tensors,), False, False, zero_size=False)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), str(e).splitlines()[0]):
ref_inplace((tensors,))
else:
if not op.supports_out:
self.assertEqual(expected, tensors)
else:
self.assertEqual([torch.zeros_like(t) for t in tensors], tensors)
@onlyCUDA
@ops(filter(lambda op: op.supports_out, foreach_binary_op_db))
def test_binary_op_tensors_on_different_devices(self, device, dtype, op):
_cuda_tensors = next(
iter(
op.sample_inputs(
device,
dtype,
num_input_tensors=[2],
same_size=True,
allow_higher_dtype_scalars=True,
)
)
).input
_cpu_tensors = next(
iter(
op.sample_inputs(
"cpu",
dtype,
num_input_tensors=[2],
same_size=True,
allow_higher_dtype_scalars=True,
)
)
).input
tensors1, tensors2 = list(zip(_cuda_tensors, _cpu_tensors))
foreach_op, foreach_op_ = op.method_variant, op.inplace_variant
native_op, native_op_ = op.ref, op.ref_inplace
try:
actual = foreach_op(tensors1, tensors2)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e).splitlines()[0])):
[native_op(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
else:
expected = [native_op(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
self.assertEqual(expected, actual)
try:
foreach_op_(tensors1, tensors2)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e).splitlines()[0])):
[native_op_(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
else:
self.assertEqual(actual, tensors1)
@onlyCUDA
@ops(foreach_pointwise_op_db, allowed_dtypes=floating_types())
def test_pointwise_op_tensors_on_different_devices(self, device, dtype, op):
# tensors1: ['cuda', 'cpu]
# tensors2: ['cuda', 'cpu]
# tensors3: ['cuda', 'cpu]
# first tensorlist is zero-size when float32
_cuda_tensors = list(
op.sample_inputs(
device,
dtype,
num_input_tensors=[3],
same_size=True,
allow_higher_dtype_scalars=True,
)
)[int(dtype == torch.float32)].input
_cpu_tensors = next(
iter(
op.sample_inputs(
"cpu",
dtype,
num_input_tensors=[3],
same_size=True,
allow_higher_dtype_scalars=True,
)
)
).input
tensors1, tensors2, tensors3 = list(zip(_cuda_tensors, _cpu_tensors))
foreach_op, foreach_op_, native_op = (
op.method_variant,
op.inplace_variant,
op.ref,
)
actual = foreach_op(tensors1, tensors2, tensors3)
expected = [native_op(*_cuda_tensors), native_op(*_cpu_tensors)]
self.assertEqual(expected, actual)
# note(mkozuki): Limiting dtypes to FP32&FP64, we can safely run inplace ops.
foreach_op_(tensors1, tensors2, tensors3)
self.assertEqual(expected, tensors1)
# note: BFloat16 has the same number of exponent bits as FP32
# so if squared L2 norm overflows in BF16, then it also overflows in FP32.
@onlyCUDA
@ops(
[o for o in foreach_reduce_op_db if "norm" in o.name],
allowed_dtypes=(torch.half, torch.bfloat16),
)
def test_foreach_l2_large_value_input(self, device, dtype, op):
ord, N = 2, 10
max_value = torch.finfo(dtype).max
scaler = torch.tensor([max_value]).sqrt().to(device=device, dtype=dtype)
inputs = (
[
t * scaler
for t in next(
iter(
op.sample_inputs(
device,
dtype,
requries_grad=True,
num_input_tensors=[N],
low=1,
)
)
).input
][:-1],
)
# make sure that the min. of squared L2 norm value per tensor is greater than the max value of `dtype`.
self.assertTrue(scaler * scaler * N > max_value)
fn, ref_fn, *_ = self._get_funcs(op)
actual = fn(
inputs, is_cuda=True, expect_fastpath=True, ord=ord, zero_size=False
)
expect = ref_fn(inputs, ord=ord)
if dtype == torch.float16:
# making sure the reference L2 norm values are in the range of FP16.
self.assertFalse(any(torch.isinf(e) for e in expect))
else:
self.assertTrue(
all(
inputs[0][i].numel() == 0 or torch.isinf(e)
for i, e in enumerate(expect)
)
)
self.assertEqual(expect, actual, equal_nan=False)
@onlyCUDA
@ops(foreach_reduce_op_db, allowed_dtypes=floating_types())
@parametrize("use_cuda_graph", (False, True))
@parametrize("w_empty", (False, True))
def test_big_num_tensors(self, device, dtype, op, use_cuda_graph, w_empty):
# foreach_max cannot handle empty tensors as max requires an identity
intersperse_empty_tensors = w_empty and op.name != "_foreach_max"
N = 600
indices_with_empty_tensors = (
set()
if not intersperse_empty_tensors
else {200, 300, 301, 400, 401, 402, 404, 598}
)
tensorlist = [
make_tensor((2, 3), dtype=dtype, device=device, noncontiguous=False)
if i not in indices_with_empty_tensors
else torch.empty(0, dtype=dtype, device=device)
for i in range(N)
]
fn, ref_fn, *_ = self._get_funcs(op)
import math
if op.name == "_foreach_norm":
ords = [1, 2]
if not intersperse_empty_tensors:
# inf norm over an empty tensor is not defined by vector norm as it expects an identity
ords.append(math.inf)
else:
ords = [None]
for ord in ords:
kwargs = {"ord": ord} if ord else {}
if not use_cuda_graph:
actual = fn(
inputs=[tensorlist],
is_cuda=True,
expect_fastpath=True,
zero_size=False,
**kwargs,
)
else:
# When using CUDA graphs and the tensor metadata doesn't fit in
# the static kernel argument space, multi_tensor_apply creates
# the launch arguments once, uses cudaUserObject_t to tie its
# lifetime to the graph, and reuses it throughout replays. This
# test verifies multi_tensor_apply's behavior in the scenario.
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g):
actual = fn.func(tensorlist, **kwargs)
g.replay()
expect = ref_fn(inputs=[tensorlist], **kwargs)
self.assertEqual(expect, actual, equal_nan=True)
@onlyCUDA
@ops(foreach_reduce_op_db)
@parametrize("w_empty", (False, True))
def test_foreach_reduce_large_input(self, device, dtype, op, w_empty):
# test inputs larger than kChunkSize (65536) * max_num_blocks (320)
N = 65536 * 320 * 2
disable_fastpath = False
kwargs = {}
if op.name == "_foreach_norm":
kwargs["ord"] = 2
disable_fastpath = dtype not in floating_types_and(
torch.half, torch.bfloat16
)
tensorlist = [
make_tensor((N,), dtype=dtype, device=device, noncontiguous=False)
]
# foreach_max cannot handle empty tensors as max over empty is undefined
if w_empty and op.name != "_foreach_max":
tensorlist += [
torch.empty(0, dtype=dtype, device=device),
make_tensor((N,), dtype=dtype, device=device, noncontiguous=False),
]
inputs = (tensorlist,)
wrapped_op, ref, _, _ = self._get_funcs(op)
self.assertEqual(
ref(inputs, **kwargs),
wrapped_op(
inputs, self.is_cuda, not disable_fastpath, zero_size=False, **kwargs
),
)
@onlyCUDA
@ops(
foreach_unary_op_db
+ foreach_binary_op_db
+ foreach_pointwise_op_db
+ foreach_other_op_db,
dtypes=(torch.float,),
)
def test_inplace_foreach_leaf_check_and_grad_fn(self, device, dtype, op):
inplace_op = op.inplace_variant
if inplace_op is None:
self.skipTest("no in-place op available")
sample = next(
iter(
op.sample_inputs(
dtype=dtype, device=device, num_input_tensors=[2], same_size=True
)
)
)
sample.input[0].requires_grad_(True)
with self.assertRaisesRegex(RuntimeError, "a leaf Variable that requires grad"):
inplace_op(sample.input, *sample.args)
sample.input[1].requires_grad_(True)
with self.assertRaisesRegex(RuntimeError, "a leaf Variable that requires grad"):
inplace_op(sample.input, *sample.args)
_tensors = [
t.detach().clone().requires_grad_(i == 0)
for i, t in enumerate(sample.input)
]
tensors = [t.clone() for t in _tensors]
inplace_op(tensors, *sample.args)
self.assertIsNotNone(tensors[0].grad_fn)
self.assertIsNone(tensors[1].grad_fn)
@onlyCUDA
@ops(
filter(
lambda op: op.supports_out,
foreach_unary_op_db
+ foreach_binary_op_db
+ foreach_pointwise_op_db
+ foreach_other_op_db,
),
dtypes=(torch.float,),
)
def test_outplace_with_invalid_grads(self, device, dtype, op):
func, *_ = self._get_funcs(op)
sample = next(
iter(
op.sample_inputs(
dtype=dtype,
device=device,
requires_grad=True,
num_input_tensors=[2],
same_size=True,
)
)
)
self.assertTrue(all(t.requires_grad for t in sample.input))
(out1, out2) = func(
[sample.input, *sample.args],
is_cuda=False,
expect_fastpath=False,
**sample.kwargs,
)
out1.backward(torch.ones_like(out1))
self.assertIsNotNone(sample.input[0].grad)
self.assertIsNone(sample.input[1].grad)
@ops(
filter(
lambda op: op.backward_requires_result,
foreach_unary_op_db
+ foreach_binary_op_db
+ foreach_pointwise_op_db
+ foreach_other_op_db,
),
dtypes=(torch.float32,),
)
def test_lifetime_of_grad_fn_when_result_is_saved(self, device, dtype, op):
def get_ref(func, sample):
class Foo:
pass
out = func(
(sample.input, *sample.args),
is_cuda=False,
expect_fastpath=False,
**sample.kwargs,
)
foo = Foo()
meta_dict = out[0].grad_fn.metadata
meta_dict[0] = foo
ref = weakref.ref(foo)
return out, ref
def _test(func, sample):
out, ref = get_ref(func, sample)
self.assertIsNotNone(ref())
del out
self.assertIsNone(ref())
func = self._get_funcs(op)[0]
for sample in op.sample_inputs(
device, dtype, requires_grad=True, num_input_tensors=[1]
):
for key in ("is_fastpath", "disable_fastpath"):
if key in sample.kwargs:
del sample.kwargs[key]
# note: `_foreach_pow.Scalar` and `_foreach_pow.ScalarList` don't depend on `result`
# see: https://github.com/pytorch/pytorch/blob/5403c777/tools/autograd/derivatives.yaml#L3048-L3049
if op.name == "_foreach_pow":
if (
isinstance(sample.args[0], list)
and isinstance(sample.args[0][0], Number)
) or (
isinstance(sample.args[0], Number)
and not isinstance(sample.args[0], float)
):
continue
if isinstance(sample.args[0], float):
new_args = (sample.input,)
sample.input = sample.args[0]
sample.args = new_args
_test(func, sample)
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_tensors_grouping(self):
num_tensors_per_list = 10
num_devices = torch.cuda.device_count()
dtypes = (torch.float16, torch.float32, torch.float64)
list1 = [
torch.tensor(
i,
device=torch.device("cuda", random.randint(0, num_devices - 1)),
dtype=dtypes[random.randint(0, 2)],
)
for i in range(num_tensors_per_list)
]
list2 = [None for _ in list1]
list3 = [torch.rand_like(t) for t in list1]
nested_tensorlists = [list1, list2, list3]
grouped_tensors = torch.utils._foreach_utils._group_tensors_by_device_and_dtype(
nested_tensorlists, with_indices=True
)
num_tensors_seen = 0
for (device, dtype), ([l1, l2, l3], indices) in grouped_tensors.items():
for t in itertools.chain(l1, l3):
self.assertEqual(t.device, device)
self.assertEqual(t.dtype, dtype)
num_tensors_seen += 1
self.assertEqual(len(l1), len(l2))
self.assertTrue(all(p is None for p in l2))
for i, index in enumerate(indices):
self.assertEqual(l1[i], list1[index])
self.assertEqual(l2[i], list2[index])
self.assertEqual(l3[i], list3[index])
self.assertEqual(num_tensors_seen, 2 * num_tensors_per_list)
@onlyCUDA
def test_0dim_tensor_overload_cpu_ok(self):
tensors = [torch.ones((), device="cuda", dtype=torch.float32) for _ in range(2)]
scalar_cpu_tensor = torch.tensor(4.0, device="cpu")
# For mul and div, the scalar is allowed to be on CPU too
actual = torch._foreach_mul(tensors, scalar_cpu_tensor)
self.assertEqual(actual, [t.mul(scalar_cpu_tensor) for t in tensors])
actual = torch._foreach_div(tensors, scalar_cpu_tensor)
self.assertEqual(actual, [t.div(scalar_cpu_tensor) for t in tensors])
@onlyCUDA
def test_div_reciprocal(self):
expect_m, expect_e = torch.frexp(
torch.div(torch.tensor(0.1, device="cuda"), 10.0)
)
actual_m, actual_e = torch.frexp(
torch._foreach_div([torch.tensor(0.1, device="cuda")], [10.0])[0]
)
self.assertEqual(expect_m, actual_m)
self.assertEqual(expect_e, actual_e)
@onlyCUDA
def test_0dim_tensor_overload_exception(self):
# check exceptions of fast path
tensors = [
make_tensor((2, 2), dtype=torch.float, device="cuda") for _ in range(2)
]
with self.assertRaisesRegex(RuntimeError, "scalar tensor expected to be on"):
torch._foreach_add(tensors, torch.tensor(1.0, device="cpu"), alpha=1.0)
tensors = [
make_tensor((2, 2), dtype=torch.float, device=d) for d in ("cpu", "cuda")
]
with self.assertRaisesRegex(
RuntimeError, "scalar tensor expected to be 0 dim but"
):
torch._foreach_mul(tensors, torch.tensor([1.0, 1.0], device="cuda"))
with self.assertRaisesRegex(
RuntimeError, "scalar tensor expected to be 0 dim but"
):
torch._foreach_add(tensors, torch.tensor([1.0, 1.0], device="cuda"))
@onlyCUDA
@ops(filter(lambda op: op.name == "_foreach_copy", foreach_binary_op_db))
def test_foreach_copy_with_multi_device_inputs(self, device, dtype, op):
foreach_copy_ = op.inplace_variant
copy_ = op.ref_inplace
for non_blocking in (False, True):
for sample in op.sample_inputs(
device, dtype, noncontiguous=False, allow_higher_dtype_scalars=True
):
with torch.no_grad():
ref_input = [t.detach().clone() for t in sample.input]
foreach_copy_(sample.input, sample.args[0], non_blocking)
for t, s in zip(ref_input, sample.args[0]):
copy_(t, s, non_blocking)
self.assertEqual(sample.input, ref_input)
if torch.cuda.device_count() > 1:
device = torch.device("cuda", 1)
rhs_tensors = [t.to(device) for t in sample.args[0]]
foreach_copy_(sample.input, rhs_tensors, non_blocking)
for t, s in zip(ref_input, rhs_tensors):
copy_(t, s, non_blocking)
self.assertEqual(ref_input, sample.input)
@onlyCUDA
@ops(filter(lambda op: op.name == "_foreach_copy", foreach_binary_op_db))
def test_foreach_copy_with_multi_dtypes(self, device, dtype, op):
# check (a) multi_tensor_apply is called and (b) numerical parity with for-loop and Tensor.copy_
foreach_copy_ = ForeachFuncWrapper(op.inplace_variant)
for sample in op.sample_inputs(
device, dtype, noncontiguous=False, allow_higher_dtype_scalars=True
):
for src_dtype in floating_types_and(torch.half, torch.bfloat16):
if src_dtype == dtype:
continue
self_tensors = [t.clone() for t in sample.input]
src_tensors = [t.to(src_dtype) for t in self_tensors]
out = foreach_copy_(
(self_tensors, src_tensors), is_cuda=True, expect_fastpath=True
)
ref_out = [
torch.empty_like(t).copy_(s)
for t, s in zip(self_tensors, src_tensors)
]
for t, ref_t in zip(out, ref_out):
self.assertTrue(torch.equal(t, ref_t))
# Test reverse-mode & forward-mode AD if supported.
@onlyCUDA
@ops(
foreach_unary_op_db
+ foreach_binary_op_db
+ foreach_pointwise_op_db
+ foreach_reduce_op_db
+ foreach_other_op_db,
dtypes=OpDTypes.supported,
allowed_dtypes=(torch.float64, torch.complex128),
)
@parametrize(
"inplace", (False, True), name_fn=lambda x: "inplace" if x else "outplace"
)
def test_autodiff(self, device, dtype, op, inplace):
if (not inplace) and not op.supports_out:
self.skipTest("out-of-place not implemented")
if inplace and op.has_no_in_place:
self.skipTest("in-place not implemented")
if not (
op.supports_autograd
or op.supports_inplace_autograd
or op.supports_forward_ad
):
self.skipTest("neither reverse mode nor forward mode supported")
# note(crcrpar): without this, some unary functions fail, unlike inplace and/or complex.
if (
(not inplace)
and dtype == torch.float64
and op.name
in (
"_foreach_acos",
"_foreach_asin",
"_foreach_log10",
"_foreach_log1p",
"_foreach_log2",
"_foreach_log",
"_foreach_pow",
"_foreach_sqrt",
"_foreach_rsqrt",
)
):
value_range = {"low": 0.5, "high": 1.0}
else:
value_range = {}
for sample in op.sample_inputs(
device,
dtype,
requires_grad=True,
num_input_tensors=[5],
allow_higher_dtype_scalars=True,
**value_range,
):
# Skip `_foreach_pow.ScalarAndTensor(Scalar, Tensor[])`
if op.name == "_foreach_pow" and isinstance(sample.input, Number):
continue
func = None
if inplace:
# Call `clone` to avoid inplace modifications likewise
# `torch.testing._internal.common_utils.TestGradients._get_safe_inplace`
def inplace_func(*tensorlist):
kwargs = (
{"alpha": sample.kwargs["alpha"]}
if "alpha" in sample.kwargs
else {}
)
op.inplace_variant(
tuple(t.clone() for t in tensorlist), *sample.args, **kwargs
)
return tensorlist
func = inplace_func
else:
def outplace_func(*tensorlist):
kwargs = (
{"alpha": sample.kwargs["alpha"]}
if "alpha" in sample.kwargs
else {}
)
return op.method_variant(tensorlist, *sample.args, **kwargs)
func = outplace_func
working_sample, err_msg_pattern = check_autodiff_sample(
op, sample, dtype, inplace
)
def call_gradcheck():
gradcheck(
func,
sample.input,
raise_exception=True,
check_forward_ad=op.supports_forward_ad,
check_batched_forward_grad=False,
check_backward_ad=op.supports_autograd,
check_batched_grad=False,
)
if not working_sample:
if not err_msg_pattern:
# lhs of float64 and rhs of complex.
continue
with self.assertRaisesRegex(RuntimeError, re.escape(err_msg_pattern)):
call_gradcheck()
continue
call_gradcheck()
# Test per-tensor `grad_fn` behavior.
if inplace and op.supports_inplace_autograd:
# per-tensor `grad_fn` check.
hook_buffer = []
def get_grad_fn_hook(i):
def hook(grad_inputs, grad_outputs) -> None:
hook_buffer.append(i)
return hook
_inputs = [t.detach().clone().requires_grad_() for t in sample.input]
inputs = [t.clone() for t in _inputs]
kwargs = (
{"alpha": sample.kwargs["alpha"]}
if "alpha" in sample.kwargs
else {}
)
op.inplace_variant(inputs, *sample.args, **kwargs)
self.assertEqual(len({t.grad_fn for t in inputs}), len(inputs))
for i, t in enumerate(inputs):
t.grad_fn.register_hook(get_grad_fn_hook(i))
torch.autograd.grad(
inputs[0],
inputs=(_inputs[0],),
grad_outputs=(torch.rand_like(inputs[0]),),
retain_graph=True,
)
self.assertEqual(hook_buffer, [0])
hook_buffer.clear()
# tensors have different shapes.
sum_of_cloned_tensors = torch.cat([t.view(-1) for t in inputs]).sum()
grad_output = torch.rand_like(sum_of_cloned_tensors)
torch.autograd.grad(
sum_of_cloned_tensors,
inputs=tuple(_inputs),
grad_outputs=(grad_output,),
retain_graph=False,
)
self.assertEqual(hook_buffer, list(reversed(range(len(inputs)))))
# TODO(crcrpar): Hide this inside torch/testing/_internal.
# would end up adding another layer to `foreach_inputs_sample_func.__call__`
# so that we can use this function as something like the first argument of `filter` function.
# Even after moving this function to testing, I personally think it'd be better to check the error message.
def check_autodiff_sample(op, sample, dtype, is_inplace):
if op.name == "_foreach_abs" and is_inplace and dtype == torch.complex128:
return False, "In-place abs is not supported for complex tensors."
if op.name == "_foreach_sub" and (
(
isinstance(sample.args[-1], list)
and any(isinstance(a, bool) for a in sample.args[-1])
)
or isinstance(sample.args[-1], bool)
):
return False, _BOOL_SUB_ERR_MSG
if op.name == "_foreach_norm" and (not is_inplace):
return (
False,
"Trying to set a forward gradient that has a different size than that of the original Tensor, "
"this is not supported. Tensor is of size [] while the given forward gradient is of size [1",
)
rhs_arg_has_complex_number = sample.args and (
(
isinstance(sample.args[-1], list)
and any(isinstance(a, complex) for a in sample.args[-1])
)
or (isinstance(sample.args[-1], complex))
)
if rhs_arg_has_complex_number and dtype == torch.float64:
if op.name == "_foreach_lerp":
return False, "value cannot be converted to type double without overflow"
if op.name in (
"_foreach_clamp_max",
"_foreach_clamp_min",
"_foreach_maximum",
"_foreach_minimum",
):
return False, "clamp is not supported for complex types"
if op.name == "_foreach_lerp" and is_inplace:
return False, "value cannot be converted to type double without overflow"
if not is_inplace:
return False, ""
elif op.name in (
"_foreach_add",
"_foreach_sub",
"_foreach_mul",
"_foreach_div",
"_foreach_pow",
):
return (
False,
"result type ComplexDouble can't be cast to the desired output type Double",
)
return True, ""
instantiate_device_type_tests(TestForeach, globals())
if __name__ == "__main__":
run_tests()
|