1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
|
# Owner(s): ["oncall: pt2"]
import functools
import sys
import unittest
from unittest.mock import patch
import torch
import torch.utils.checkpoint
from functorch.compile import aot_function, min_cut_rematerialization_partition, nop
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
)
from torch.testing._internal.common_utils import IS_CI, IS_WINDOWS, run_tests, TestCase
if IS_WINDOWS and IS_CI:
sys.stderr.write("torch.compile not supported on windows")
if __name__ == "__main__":
sys.exit(0)
raise unittest.SkipTest("torch.compile not supported on windows")
def count_philox_rand(gm, args, freq):
assert [node.target for node in gm.graph.nodes].count(
torch.ops.rngprims.philox_rand.default
) == freq
return gm
class TestFunctionalizationRngOps(TestCase):
@dtypes(torch.float32)
@patch.object(torch._functorch.config, "functionalize_rng_ops", True)
def test_rand_like(self, dtype, device):
def fn(x):
a = torch.rand_like(x) * x
a = torch.rand_like(x) * a
return a
x = torch.rand(10, device=device, dtype=dtype)
for seed in range(10):
torch.cuda.manual_seed(seed)
ref = fn(x)
torch.cuda.manual_seed(seed)
aot_fn = aot_function(fn, functools.partial(count_philox_rand, freq=2))
res = aot_fn(x)
self.assertEqual(ref, res)
@dtypes(torch.float32)
@patch.object(torch._functorch.config, "functionalize_rng_ops", True)
def test_rand_like_dynamic(self, dtype, device):
def fn(x):
a = torch.rand_like(x) * x
a = torch.rand_like(x) * a
return a
for seed in range(1, 10):
shape = (seed, seed)
x = torch.rand(shape, device=device, dtype=dtype)
torch.cuda.manual_seed(seed)
ref = fn(x)
torch.cuda.manual_seed(seed)
opt_fn = torch.compile(fn, backend="aot_eager", dynamic=True)
res = opt_fn(x)
self.assertEqual(ref, res)
@dtypes(torch.float32)
@patch.object(torch._functorch.config, "functionalize_rng_ops", True)
def test_rand_like_dynamic_bwd(self, dtype, device):
def fn(x):
a = torch.rand_like(x) * x
a = torch.rand_like(x) * a
return a
for seed in range(1, 10):
shape = (seed, seed)
x = torch.rand(shape, device=device, dtype=dtype, requires_grad=True)
torch.cuda.manual_seed(seed)
ref = fn(x)
ref.sum().backward()
torch.cuda.manual_seed(seed)
opt_fn = torch.compile(fn, backend="aot_eager", dynamic=True)
res = opt_fn(x)
res.sum().backward()
self.assertEqual(ref, res)
@dtypes(torch.float32)
@patch.object(torch._functorch.config, "functionalize_rng_ops", True)
def test_rand(self, dtype, device):
shape = (10,)
def fn(x):
a = torch.rand(*shape, device=device, dtype=dtype) * x
a = torch.rand(*shape, device=device, dtype=dtype) * a
return a
x = torch.rand(*shape, device=device, dtype=dtype)
for seed in range(10):
torch.cuda.manual_seed(seed)
ref = fn(x)
torch.cuda.manual_seed(seed)
aot_fn = aot_function(fn, functools.partial(count_philox_rand, freq=2))
res = aot_fn(x)
self.assertEqual(ref, res)
@dtypes(torch.float32)
@patch.object(torch._functorch.config, "functionalize_rng_ops", True)
def test_autograd_function(self, dtype, device):
shape = (16, 16)
class Custom(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
a = torch.rand_like(x) * x
a = torch.rand_like(x) * a
return a
@staticmethod
def backward(ctx, grad_out):
(x,) = ctx.saved_tensors
return grad_out * torch.rand_like(grad_out) * torch.cos(x)
custom = Custom.apply
x = torch.rand(*shape, device=device, dtype=dtype, requires_grad=True)
x_clone = x.detach().clone().requires_grad_(True)
torch.cuda.manual_seed(123)
ref = custom(x)
ref.sum().backward()
torch.cuda.manual_seed(123)
fwd_compiler = functools.partial(count_philox_rand, freq=2)
bwd_compiler = functools.partial(count_philox_rand, freq=1)
aot_custom = aot_function(custom, fwd_compiler, bwd_compiler)
res = aot_custom(x_clone)
res.sum().backward()
self.assertEqual(ref, res)
self.assertEqual(x.grad, x_clone.grad)
@dtypes(torch.float32)
@patch.object(torch._functorch.config, "functionalize_rng_ops", True)
def test_multiple_subgraphs(self, dtype, device):
# Checks that rng state is maintained when there are multiple aot traced
# graphs.
shape = (16, 16)
class CustomOp1(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
a = torch.rand_like(x) * x
a = torch.rand_like(x) * a
return a
@staticmethod
def backward(ctx, grad_out):
(x,) = ctx.saved_tensors
return grad_out * torch.rand_like(grad_out) * torch.cos(x)
class CustomOp2(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
a = torch.rand_like(x) * x
return a
@staticmethod
def backward(ctx, grad_out):
(x,) = ctx.saved_tensors
return grad_out * torch.rand_like(grad_out) * torch.rand_like(x)
custom_op1 = CustomOp1.apply
custom_op2 = CustomOp2.apply
def fn(x):
a = custom_op1(x)
b = a.sin()
return custom_op2(b)
fwd_compiler = functools.partial(count_philox_rand, freq=2)
bwd_compiler = functools.partial(count_philox_rand, freq=1)
aot_custom_op1 = aot_function(custom_op1, fwd_compiler, bwd_compiler)
fwd_compiler = functools.partial(count_philox_rand, freq=1)
bwd_compiler = functools.partial(count_philox_rand, freq=2)
aot_custom_op2 = aot_function(custom_op2, fwd_compiler, bwd_compiler)
def aot_fn(x):
a = aot_custom_op1(x)
b = a.sin()
return aot_custom_op2(b)
for seed in range(10):
torch.cuda.manual_seed(seed)
x = torch.rand(*shape, device=device, dtype=dtype, requires_grad=True)
x_clone = x.detach().clone().requires_grad_(True)
torch.cuda.manual_seed(seed)
ref = fn(x)
ref.sum().backward()
torch.cuda.manual_seed(seed)
res = aot_fn(x_clone)
res.sum().backward()
self.assertEqual(ref, res)
self.assertEqual(x.grad, x_clone.grad)
@dtypes(torch.float32)
@patch.object(torch._functorch.config, "functionalize_rng_ops", True)
def test_set_get_rng_state(self, dtype, device):
def fn(x):
a = torch.rand_like(x) * x
state = torch.cuda.get_rng_state()
a = torch.rand_like(x) * a
torch.cuda.set_rng_state(state)
a = torch.rand_like(x) * a
return a
x = torch.rand(10, device=device, dtype=dtype)
for seed in range(10):
torch.cuda.manual_seed(seed)
ref = fn(x)
torch.cuda.manual_seed(seed)
fwd_compiler = functools.partial(count_philox_rand, freq=3)
aot_fn = aot_function(fn, fwd_compiler)
res = aot_fn(x)
self.assertEqual(ref, res)
@dtypes(torch.float32)
@patch.object(torch._functorch.config, "functionalize_rng_ops", True)
def test_min_cut_partitioner(self, dtype, device):
# Checks that the calling convention is maintained
shape = (16, 16)
def fn(x):
a = torch.rand_like(x) * x
a = torch.rand_like(x) * a
a = torch.sin(a)
a = torch.sin(a)
a = torch.sin(a)
return a
x = torch.rand(*shape, device=device, dtype=dtype, requires_grad=True)
x_clone = x.detach().clone().requires_grad_(True)
torch.cuda.manual_seed(123)
ref = fn(x)
ref.sum().backward()
torch.cuda.manual_seed(123)
fwd_compiler = functools.partial(count_philox_rand, freq=2)
bwd_compiler = functools.partial(count_philox_rand, freq=0)
aot_custom = aot_function(
fn,
fwd_compiler,
bwd_compiler,
partition_fn=min_cut_rematerialization_partition,
)
# aot_custom = aot_function(fn, fwd_compiler, bwd_compiler)
res = aot_custom(x_clone)
res.sum().backward()
self.assertEqual(ref, res)
self.assertEqual(x.grad, x_clone.grad)
# TODO - Dropout needs more work because of offset calculation
@patch.object(torch._functorch.config, "functionalize_rng_ops", True)
@dtypes(torch.float32)
def test_checkpoint(self, dtype, device):
def g(x, y):
return torch.nn.functional.dropout(x, 0.6)
def fn(x, y):
return torch.utils.checkpoint.checkpoint(g, x, y, use_reentrant=False)
# x = torch.rand(2, 2, device="cuda", requires_grad=True)
x = torch.ones(2, 2, device="cuda", requires_grad=True)
y = torch.rand(2, 2, device="cuda", requires_grad=True)
torch.cuda.manual_seed(123)
ref = fn(x, y)
# With checkpointing we should recompute dropout in bwd, and philox_rand is passed from fwd
fwd_compiler = functools.partial(count_philox_rand, freq=1)
bwd_compiler = functools.partial(count_philox_rand, freq=0)
aot_fn = aot_function(fn, fwd_compiler, bwd_compiler)
# We cant check accuracy here because rand_like generated different rand numbers than dropout
res = aot_fn(x, y)
res.sum().backward()
@dtypes(torch.float32)
@patch.object(torch._functorch.config, "functionalize_rng_ops", True)
def test_dropout_decomp(self, dtype, device):
def fn(x):
return torch.nn.functional.dropout(x, 0.6) * x
x = torch.rand(10, device=device, dtype=dtype)
# Ensure the decomp is happening
aot_fn = aot_function(fn, functools.partial(count_philox_rand, freq=1))
# We cant check accuracy here because rand_like generated different rand numbers than dropout
aot_fn(x)
only_for = ("cuda",)
instantiate_device_type_tests(TestFunctionalizationRngOps, globals(), only_for=only_for)
class NegativeTest(TestCase):
@dtypes(torch.float32)
@patch.object(torch._functorch.config, "functionalize_rng_ops", True)
def test_on_cpu(self, dtype, device):
def fn(x):
a = torch.rand_like(x) * x
a = torch.rand_like(x) * a
return a
x = torch.rand(10, device=device, dtype=dtype)
aot_fn = aot_function(fn, nop)
with self.assertRaises(RuntimeError):
aot_fn(x)
only_for = ("cpu",)
instantiate_device_type_tests(NegativeTest, globals(), only_for=only_for)
if __name__ == "__main__":
run_tests()
|