1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
|
# Owner(s): ["module: mkldnn"]
import sys
import torch
import unittest
import itertools
import torch.nn as nn
from functools import wraps
from concurrent import futures
import torch.nn.functional as F
import torch.fx.experimental.optimization as optimization
from torch.testing._internal.jit_utils import JitTestCase
from torch.testing._internal.common_utils import run_tests, TEST_SCIPY, IS_WINDOWS, IS_MACOS
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyCPU,
dtypes
)
# We use this wrapper to run UTs of TorchVision models because of a memory-leak
# issue with JIT tracing that causes traced model objects to persist in the
# memory. Ref: https://github.com/pytorch/pytorch/issues/35600
# Memory requirement for running these UTs was thus increasing cumulatively, and
# invoked the Linux kernel OOM killer on linux.2xlarge PyTorch CI runners, which
# only have 16 GB RAM. Cumulatively, these UTs had been using more than 14 GB
# memory (as per psutils). So now we run each TorchVision model UTs in separate processes.
def separate_process(func):
@wraps(func)
def wrapper(*args, **kwargs):
with futures.ProcessPoolExecutor() as executor:
future = executor.submit(func, *args, **kwargs)
futures.wait([future])
return wrapper
def is_avx512_supported():
if sys.platform != 'linux':
return False
with open("/proc/cpuinfo", encoding="ascii") as f:
lines = f.read()
return "avx512" in lines
IS_AVX512_UNSUPPORTED = not is_avx512_supported()
LLGA_FUSION_GROUP = 'prim::oneDNNFusionGroup'
LLGA_NOT_ENABLED = not torch.backends.mkldnn.is_available() or IS_WINDOWS or IS_MACOS
def warmup_forward(f, *args, profiling_count=3):
for i in range(profiling_count):
results = f(*args)
return results
class JitLlgaTestCase(JitTestCase):
def setUp(self):
# PyTorch has divergent op support for AMP in JIT & eager modes
# so we disable AMP for JIT & leverage eager-mode AMP.
# Ref: https://github.com/pytorch/pytorch/issues/75956
self.original_autocast_mode = torch._C._jit_set_autocast_mode(False)
torch.jit.enable_onednn_fusion(True)
def tearDown(self):
torch.jit.enable_onednn_fusion(False)
torch._C._jit_set_autocast_mode(self.original_autocast_mode)
def checkTrace(self, m, x, dtype=torch.float32, *args, **kwargs):
if isinstance(m, torch.nn.Module):
m.eval()
with torch.no_grad(), torch._jit_internal._disable_emit_hooks():
if dtype == torch.bfloat16:
# We rely upon eager-mode AMP support for BF16
with torch.autocast(device_type="cpu", cache_enabled=False, dtype=torch.bfloat16):
traced = torch.jit.trace(m, x)
if isinstance(m, torch.nn.Module):
traced = torch.jit.freeze(traced)
warmup_forward(traced, *x)
ref_o = m(*x)
fwd_graph = traced.graph_for(*x)
else:
traced = torch.jit.trace(m, x)
if isinstance(m, torch.nn.Module):
traced = torch.jit.freeze(traced)
warmup_forward(traced, *x)
ref_o = m(*x)
fwd_graph = traced.graph_for(*x)
jit_o = traced(*x)
self.assertEqual(jit_o, ref_o)
return traced, fwd_graph
def assertFused(self, graph, fused_patterns):
for pat in fused_patterns:
self.assertGraphContainsExactly(graph, pat, 0)
def findFusionGroups(self, graph):
result = []
for n in graph.nodes():
if n.kind() == LLGA_FUSION_GROUP:
result.append(n.g('Subgraph'))
continue
for block in n.blocks():
result += self.findFusionGroups(block)
return result
def checkPatterns(self, graph, patterns):
fusion_groups = self.findFusionGroups(graph)
assert len(fusion_groups) == len(patterns), "length of subgraphs not equal to length of given patterns"
for i in range(len(fusion_groups)):
for pattern in patterns[i]:
self.assertGraphContains(fusion_groups[i], pattern)
try:
import torchvision
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
except RuntimeError:
HAS_TORCHVISION = False
skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, 'no torchvision')
def get_eltwise_fn(name):
if hasattr(torch, name):
return getattr(torch, name)
elif hasattr(F, name):
return getattr(F, name)
elif name == 'hardswish_':
return torch.nn.Hardswish(inplace=True)
else:
raise NameError(f'Eltwise function {name} not found')
@unittest.skipIf(IS_AVX512_UNSUPPORTED, "This test fails for BF16 on machines without AVX512.")
@unittest.skipIf(LLGA_NOT_ENABLED, "MKL-DNN build is disabled")
class TestOp(JitLlgaTestCase):
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_conv2d(self, dtype):
for [spatial, in_channels, out_channels, kernel, padding, stride, dilation, g, bias] in itertools.product(
[7, 8],
[8, 15],
[7, 16],
[3, 4],
[0, 2],
[1, 2],
[1, 2],
[1, 2],
[True, False]):
m = nn.Conv2d(in_channels=in_channels * g,
out_channels=out_channels * g,
kernel_size=kernel,
padding=padding,
stride=stride,
dilation=dilation,
groups=g,
bias=bias)
x = torch.rand(1, in_channels * g, spatial, spatial)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_bn2d(self, dtype):
m = nn.BatchNorm2d(32).eval()
x = torch.rand(1, 32, 28, 28)
_, graph = self.checkTrace(m, [x], dtype)
# single-op partition shouldn't be created for softmax
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 0)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_eltwise(self, dtype):
class M(nn.Module):
def __init__(self, eltwise_fn):
super().__init__()
self.eltwise = eltwise_fn
def forward(self, x):
return self.eltwise(x)
for eltwise in ['relu', 'gelu']:
eltwise_fn = get_eltwise_fn(eltwise)
m = M(eltwise_fn)
x = torch.rand(1, 32, 28, 28)
_, graph = self.checkTrace(m, [x], dtype)
# single-op partition shouldn't be created.
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 0)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_max_pool2d(self, dtype):
for [spatial, kernel, padding, stride, dilation, ceil_mode] in itertools.product(
[15, 16, 17, 18, 19],
[4, 5],
[0, 1, 2],
[1, 2], # [1, 2, 4], TODO: fix issue in pad calculation
[1], # [1, 2], TODO: backend support for dilation
[True, False]):
m = nn.MaxPool2d(kernel_size=kernel,
stride=stride,
padding=padding,
dilation=dilation,
ceil_mode=ceil_mode)
x = torch.rand(1, 4, spatial, spatial)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_avg_pool2d(self, dtype):
for [spatial, kernel, padding, stride, ceil_mode, count_include_pad] in itertools.product(
[15, 16, 17, 18, 19],
[4, 5],
[0, 1, 2],
[1, 2, 4],
[False], # TODO: oneDNN Graph does not fully support ceil_mode=True
[True, False]):
m = nn.AvgPool2d(kernel_size=kernel,
stride=stride,
padding=padding,
ceil_mode=ceil_mode,
count_include_pad=count_include_pad)
x = torch.rand(1, 4, spatial, spatial)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_variable_kernel_avg_pool2d(self, dtype):
class M(nn.Module):
def forward(self, x):
x = F.avg_pool2d(x, kernel_size=(x.size(2), x.size(3)), padding=0, count_include_pad=False)
return x
x = torch.randn(1, 1000, 1, 1)
m = M()
_, graph = self.checkTrace(m, [x], dtype)
# kernel_size is not Constant, shouldn't have any LLGA_FUSION_GROUP
# TODO: with shape specialization, should have 1 LLGA_FUSION_GROUP
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 0)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_softmax(self, dtype):
for dim in [-4, -3, -2, -1, 0, 1, 2, 3]:
m = nn.Softmax(dim=dim)
x = torch.rand(8, 12, 12, 12)
_, graph = self.checkTrace(m, [x], dtype)
# single-op partition shouldn't be created for softmax
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 0)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_linear(self, dtype):
for bias in [True, False]:
x = torch.rand(32, 28)
m = torch.nn.Linear(in_features=28, out_features=64, bias=bias)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
self.assertFused(graph, ['aten::linear'])
def _gen_binary_inputs(self, gen_permute=True):
for xshape, yshape in [
[[1, 32, 28, 28], [1, 32, 28, 28]],
[[1, 32, 28, 28], [1, 1, 28, 28]],
[[1, 32, 28, 28], [28]],
[[1, 32, 28, 28], [1]],
]:
yield torch.rand(xshape), torch.rand(yshape)
if gen_permute and xshape != yshape:
yield torch.rand(yshape), torch.rand(xshape)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_add(self, dtype):
def forward_add(x, y):
return torch.add(x, y, alpha=2)
for x, y in self._gen_binary_inputs():
_, graph = self.checkTrace(forward_add, [x, y], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_add_scalar(self, dtype):
def add_scalar(x):
return 42 + x + 3.14
x = torch.rand(32, 32)
_, graph = self.checkTrace(add_scalar, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_addmm(self, dtype):
# Just a sidenote - comparison of eager-mode & oneDNN Graph JIT outputs of
# addmm (which entails matmul-bias-add fusion) might require higher tolerance
# bounds for BF16. This is subject to change in the near future.
def addmm(x, y, z):
# alpha and beta are 1, by default
return torch.addmm(z, x, y)
x = torch.rand(64, 32)
y = torch.rand(32, 32)
z = torch.rand(64, 32)
_, graph = self.checkTrace(addmm, [x, y, z], dtype)
# single-op partition should be created for matmul with bias.
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_mul(self, dtype):
def forward_mul(x, y):
return torch.mul(x, y) * 3
for x, y in self._gen_binary_inputs():
_, graph = self.checkTrace(forward_mul, [x, y], dtype)
# single-op partitions shouldn't be created
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_identity_binary(self, dtype):
def forward(x):
return x * 1 + 0.0
x = torch.rand(32)
_, graph = self.checkTrace(forward, [x], dtype)
self.assertFused(graph, ['aten::add', 'aten::mul'])
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_layer_norm(self, dtype):
# TODO: support more normalized_shape
m = torch.nn.LayerNorm(10)
x = torch.randn(2, 5, 10, 10)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_cat(self, dtype):
def cat_along_dim(d):
def forward_cat(*inputs):
return torch.cat(inputs, d)
return forward_cat
for xshape in [
[8, 8, 8, 8],
[64, 8, 32],
[2048, 64],
]:
for d in range(len(xshape)):
x = torch.rand(xshape)
_, graph = self.checkTrace(cat_along_dim(d), [x, x, x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_typecheck(self, dtype):
x = torch.rand(32, 28, dtype=dtype)
m = torch.nn.Linear(in_features=28, out_features=64, bias=True, dtype=dtype)
traced, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
self.assertFused(graph, ['aten::linear'])
# change the shape of the input, we should enter fallback graph
x = torch.rand(5, 28, dtype=dtype)
self.assertEqual(m(x), traced(x))
@unittest.skipIf(IS_AVX512_UNSUPPORTED, "This test fails for BF16 on machines without AVX512.")
@unittest.skipIf(LLGA_NOT_ENABLED, "MKL-DNN build is disabled")
class TestFusionPattern(JitLlgaTestCase):
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_conv2d_eltwise(self, dtype):
class M(nn.Module):
def __init__(self, eltwise_fn):
super().__init__()
self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv2 = nn.Conv2d(32, 32, 3, padding=1, bias=False)
self.eltwise = eltwise_fn
def forward(self, x):
x = self.conv1(x)
x = self.eltwise(x)
x = self.conv2(x)
x = self.eltwise(x)
return x
for eltwise in ['relu', 'leaky_relu', 'sigmoid', 'square',
'abs', 'exp', 'hardswish', 'tanh', 'hardtanh']:
for inplace in [True, False]:
eltwise_fn_name = eltwise + '_' if inplace else eltwise
eltwise_fn = get_eltwise_fn(eltwise_fn_name)
m = M(eltwise_fn)
x = torch.rand(1, 32, 28, 28)
_, graph = self.checkTrace(m, [x], dtype=dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 2)
# test if relu_ is replace with relu by mutation removal pass
self.assertFused(graph, ['aten::' + eltwise_fn_name])
# test if relu is fused into the fusion group
self.assertFused(graph, ['aten::' + eltwise])
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_conv2d_silu(self, dtype):
class M(nn.Module):
def __init__(self, inplace):
super().__init__()
self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv2 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.eltwise = nn.SiLU(inplace=inplace)
def forward(self, x):
x = self.conv1(x)
x = self.eltwise(x)
x = self.conv2(x)
return x
for inplace in [False, True]:
for memory_format in [torch.contiguous_format, torch.channels_last]:
m = M(inplace)
x = torch.rand(1, 32, 28, 28).to(memory_format=memory_format)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 2)
# oneDNN graph does not have silu OP. The bridge will convert silu to sigmoid - mul
# Inplace op will become outplace op on the JIT graph
patterns = [
["aten::_convolution", 'aten::sigmoid', 'aten::mul'],
["aten::_convolution"]
]
silu_op = 'aten::silu_' if inplace else 'aten::silu'
self.assertFused(graph, ['aten::_convolution', silu_op])
self.checkPatterns(graph, patterns)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_ensure_tensor_is_rewrapped(self, dtype):
class M(nn.Module):
def __init__(self, eltwise_fn):
super().__init__()
self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv2 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv3 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv4 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.eltwise = eltwise_fn
self.adaptive_avg_pool_2d = nn.AdaptiveAvgPool2d((5, 7))
def forward(self, x, y):
x = self.conv1(x)
x = self.eltwise(x)
x = self.conv2(x)
x = self.eltwise(x)
y = self.conv3(y)
y = self.eltwise(y)
y = self.conv4(y)
y = self.eltwise(y)
x = torch.add(x, y)
x = self.adaptive_avg_pool_2d(x)
return x
eltwise_fn_name = 'relu'
eltwise_fn = get_eltwise_fn(eltwise_fn_name)
m = M(eltwise_fn)
m = m.to(memory_format=torch.channels_last)
x = torch.rand(1, 32, 28, 28).to(memory_format=torch.channels_last)
y = torch.rand(1, 32, 28, 28).to(memory_format=torch.channels_last)
# Simply test if the output is accurate
# The output of the second partition is input to adaptive_avg_pool2d, which is
# unsupported by LLGA. In resnext101 32x16d, we encountered an accuracy issue.
_, graph = self.checkTrace(m, [x, y], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 4)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_conv2d_clamp(self, dtype):
class M(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv2 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv3 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv4 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv5 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
def forward(self, x):
x = self.conv1(x)
x = torch.clamp(x, min=float('-inf'))
x = self.conv2(x)
x = torch.clamp(x, min=-5)
x = self.conv3(x)
x = torch.clamp(x, min=0, max=float('inf'))
x = self.conv4(x)
x = torch.clamp(x, min=1, max=5)
x = self.conv5(x)
x = torch.clamp(x, max=2)
return x
for inplace in [False, True]:
for memory_format in [torch.contiguous_format, torch.channels_last]:
x = torch.rand(1, 32, 28, 28).to(memory_format=memory_format)
m = M()
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 5)
self.assertFused(graph, ['aten::_convolution', "aten::clamp"])
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_conv2d_bn(self, dtype):
class M(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.bn1 = nn.BatchNorm2d(32)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
return x
m = M().eval()
if dtype == torch.bfloat16:
m = optimization.fuse(m)
x = torch.rand(1, 32, 28, 28)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
self.assertFused(graph, ['aten::_convolution', 'aten::batch_norm'])
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_conv2d_bn_relu(self, dtype):
class M(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.bn1 = nn.BatchNorm2d(32)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = F.relu(x)
return x
m = M().eval()
if dtype == torch.bfloat16:
m = optimization.fuse(m)
x = torch.rand(1, 32, 28, 28)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
self.assertFused(graph, ['aten::_convolution', 'aten::batch_norm',
'aten::relu'])
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_bn2d_eltwise(self, dtype):
class M(nn.Module):
def __init__(self, eltwise_fn):
super().__init__()
self.eltwise = eltwise_fn
self.bn = nn.BatchNorm2d(32)
def forward(self, x):
x = self.bn(x)
x = self.eltwise(x)
return x
for eltwise in ['relu']:
eltwise_fn = get_eltwise_fn(eltwise)
m = M(eltwise_fn).eval()
x = torch.rand(1, 32, 28, 28)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
self.assertFused(graph, ['aten::' + eltwise])
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_linear_eltwise(self, dtype):
class M(nn.Module):
def __init__(self, eltwise_fn, bias):
super().__init__()
self.linear = nn.Linear(28, 64, bias)
self.eltwise = eltwise_fn
def forward(self, x):
x = self.linear(x)
x = self.eltwise(x)
return x
for [has_bias, eltwise] in itertools.product(
[True, False],
['relu', 'gelu', 'sigmoid', 'hardtanh', 'relu6', 'elu']):
eltwise_fn = get_eltwise_fn(eltwise)
m = M(eltwise_fn, has_bias)
x = torch.rand(32, 28, requires_grad=False)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
self.assertFused(graph, ['aten::' + eltwise])
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_conv2d_sum(self, dtype):
class M(nn.Module):
def __init__(self, bias=False):
super().__init__()
self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=bias)
self.bn1 = nn.BatchNorm2d(32)
self.conv2 = nn.Conv2d(32, 32, 3, padding=1, bias=bias)
self.bn2 = nn.BatchNorm2d(32)
self.relu = nn.ReLU()
self.conv3 = nn.Conv2d(32, 32, 3, padding=1, bias=bias)
self.bn3 = nn.BatchNorm2d(32)
def forward(self, x, y):
x = self.conv1(x)
x = self.bn1(x)
y = self.conv2(y)
y = self.bn2(y)
z = self.relu(x + y)
z = self.conv3(z)
z = self.bn3(z)
return z
for bias in [True, False]:
m = M(bias).eval()
if dtype == torch.bfloat16:
m = optimization.fuse(m)
x = torch.rand(1, 32, 16, 16, requires_grad=False)
y = torch.rand(1, 32, 16, 16, requires_grad=False)
_, graph = self.checkTrace(m, [x, y], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 3)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_wildcard(self, dtype):
class M(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.eltwise = nn.ReLU()
def forward(self, x):
x = self.conv1(x)
y = self.eltwise(x)
return [x, y]
# The pattern is as the following:
# conv
# | \
# eltwise \
# | \
# ListConstruct
#
# The output of conv is used by a wildcard op: ListConstruct.
# Thus conv-eltwise cannot be selected into the same Partition.
m = M()
x = torch.rand(1, 32, 28, 28)
_, graph = self.checkTrace(m, [x], dtype)
# conv can exist in a single-op oneDNN Graph partition but not relu
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
self.assertFused(graph, ['aten::_convolution'])
@onlyCPU
@dtypes(torch.int32)
def test_wildcard_unsupported_dtype(self, dtype):
class M(nn.Module):
def forward(self, x):
y = x // 2
return y
# In shufflenet_v2_x1_0, channels_per_groups is computed as:
# channels_per_group = num_channels // groups
# JIT IR converts groups to Long dtype, which is unsupported
# by oneDNN Graph, viz. Long(requires_grad=0, device=cpu) = prim::Constant[value={2}]()
# This test just ensures that the bridge code can handle
# unsupported dtypes for inputs to ops unsupported
# by oneDNN Graph. In this particular UT, aten::floor_divide
# would be added as a wildcard in graph-construction stage.
m = M()
x = torch.tensor([32], dtype=dtype)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 0)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_rewrap_tensor_input_to_pytorch(self, dtype):
class M(nn.Module):
def __init__(self, eltwise_fn):
super().__init__()
self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv2 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.eltwise = eltwise_fn
self.adaptive_avg_pool_2d = nn.AdaptiveAvgPool2d((5, 7))
def forward(self, x, y):
x = self.conv1(x)
x = self.eltwise(x)
x = self.conv2(x)
x = self.eltwise(x)
x = torch.add(x, y)
x = self.adaptive_avg_pool_2d(x)
return x
eltwise_fn_name = 'relu'
eltwise_fn = get_eltwise_fn(eltwise_fn_name)
m = M(eltwise_fn)
m = m.to(memory_format=torch.channels_last)
x = torch.rand(1, 32, 28, 28).to(memory_format=torch.channels_last)
y = torch.rand(1, 32, 28, 28).to(memory_format=torch.channels_last)
# Simply test if the output is accurate
# The output of the second partition is input to adaptive_avg_pool2d, which is
# unsupported by LLGA, so it must be handled by PyTorch, which should receive
# correct strides info of the channels-last tensor.
graph, _ = self.checkTrace(m, [x, y], dtype)
@unittest.skipIf(LLGA_NOT_ENABLED, "MKL-DNN build is disabled")
class TestEnableDisableLlgaFuser(JitTestCase):
def setUp(self):
super().setUp()
self.is_enabled = torch._C._jit_set_llga_enabled(False)
def tearDown(self):
torch._C._jit_set_llga_enabled(self.is_enabled)
super().tearDown()
def test_context_manager(self):
x = torch.randn(4, 8)
y = torch.randn(4, 8)
with torch.jit.fuser('fuser3'):
with torch.jit.fuser('fuser3'):
def t1(x, y):
o = x + y
o = o + 2.0
return o
t_jit = torch.jit.script(t1)
t_jit(x, y)
t_jit(x, y)
self.assertGraphContains(t_jit.graph_for(x, y), LLGA_FUSION_GROUP)
def t2(x, y):
o = x + y
o = o + 3.0
return o
t_jit_2 = torch.jit.script(t2)
t_jit_2(x, y)
t_jit_2(x, y)
self.assertGraphContains(t_jit_2.graph_for(x, y), LLGA_FUSION_GROUP)
def t3(x, y):
o = x + y
o = o + 4.0
return o
t_jit_3 = torch.jit.script(t3)
t_jit_3(x, y)
t_jit_3(x, y)
self.assertGraphContainsExactly(t_jit_3.graph_for(x, y), LLGA_FUSION_GROUP, 0)
@unittest.skipIf(LLGA_NOT_ENABLED, "MKL-DNN build is disabled")
@unittest.skip("Enable when integration with dynamo aot_autograd is more stable")
class TestDynamoAOT(JitTestCase):
def test_dynamo_aot_ts_onednn(self):
class Seq(nn.Module):
def __init__(self) -> None:
super().__init__()
self.layers = nn.Sequential(
nn.Linear(10, 10),
nn.ReLU(),
nn.Linear(10, 10),
nn.ReLU(),
)
def forward(self, x):
return self.layers(x)
mod = Seq()
import torch._dynamo
aot_mod = torch.compile(mod, backend="aot_ts", fullgraph=True)
for _ in range(10):
with torch.jit.fuser("fuser3"):
loss = aot_mod(torch.rand([10, 10])).sum()
loss.backward()
torch._dynamo.reset()
@unittest.skipIf(IS_AVX512_UNSUPPORTED, "This test fails for BF16 on machines without AVX512.")
@unittest.skipIf(LLGA_NOT_ENABLED, "MKL-DNN build is disabled")
class TestModel(JitLlgaTestCase):
@skipIfNoTorchVision
def _test_vision(self, model_name, dtype):
m = getattr(torchvision.models, model_name)().eval()
if dtype == torch.bfloat16:
m = optimization.fuse(m)
x = torch.rand(1, 3, 224, 224) / 10
_, graph = self.checkTrace(m, [x], dtype)
self.assertFused(graph, ['aten::_convolution', 'aten::batch_norm',
'aten::relu', 'aten::linear',
'aten::avg_pool2d', 'aten::max_pool2d'])
for model_name, enabled in [
['resnet50', True],
['resnext50_32x4d', True],
['resnext101_32x8d', True],
['densenet121', True],
['densenet161', True],
['densenet169', True],
['densenet201', True],
['efficientnet_b0', True],
['efficientnet_b1', True],
['efficientnet_b2', True],
['efficientnet_b3', True],
['efficientnet_b4', True],
['efficientnet_b5', True],
['efficientnet_b6', True],
['efficientnet_b7', True],
['regnet_y_400mf', True],
['googlenet', TEST_SCIPY],
['mobilenet_v2', True],
['mobilenet_v3_large', True],
['mnasnet1_0', True],
['squeezenet1_0', True],
['vgg16', True],
['alexnet', True],
['shufflenet_v2_x1_0', True],
['wide_resnet50_2', True],
]:
def _wrapper(mname, dtype):
@unittest.skipIf(not enabled, 'Disabled')
@separate_process
def test(self, dtype=dtype):
return self._test_vision(mname, dtype)
return test
for dtype in [torch.bfloat16, torch.float32]:
setattr(TestModel, 'test_vision_{}_{}'.format(model_name, str(dtype).split("torch.")[1]), _wrapper(model_name, dtype))
instantiate_device_type_tests(TestFusionPattern, globals())
instantiate_device_type_tests(TestOp, globals())
if __name__ == '__main__':
run_tests()
|