1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
|
# Owner(s): ["module: mkldnn"]
import copy
import itertools
import functools
import unittest
from contextlib import nullcontext
try:
import torchvision
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")
import torch
import torch.nn.functional as F
import torch.jit
import torch.backends.mkldnn
from torch.utils import mkldnn as mkldnn_utils
from torch.testing._internal.common_utils import TestCase, \
run_tests, TemporaryFileName, gradcheck, gradgradcheck, IS_WINDOWS, \
skipIfTorchDynamo, xfailIfTorchDynamo
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
dtypes,
)
# batched grad doesn't support mkldnn
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
gradgradcheck = functools.partial(gradgradcheck, check_batched_grad=False)
types = [torch.float, torch.bfloat16, torch.half]
# Comment the line below to find out the CI machines having MKL-DNN build disabled
@unittest.skipIf(not torch.backends.mkldnn.is_available(), "MKL-DNN build is disabled")
class TestMkldnn(TestCase):
def test_conversion(self):
for cpu_tensor in [torch.randn((1, 2, 3, 4),
dtype=torch.float, device=torch.device('cpu')),
torch.randn((1, 2, 3, 4, 5),
dtype=torch.float, device=torch.device('cpu'))[:, :, :, :, 1]]:
cpu_tensor.requires_grad_()
convert_dtypes = {torch.half: [torch.half, torch.float],
torch.bfloat16: [torch.bfloat16, torch.float],
torch.float: [torch.bfloat16, torch.half]}
# float/bfloat16/half cpu tensor to mkldnn tensortensor.
for dtype1 in types:
mkldnn_tensor = cpu_tensor.to_mkldnn(dtype1)
self.assertEqual(mkldnn_tensor.dtype, dtype1)
cpu_tensor_1 = mkldnn_tensor.to_dense()
# not given dtype for to_dense, mkldnn tensor has same dtype with cpu tensor
self.assertEqual(mkldnn_tensor.dtype, cpu_tensor_1.dtype)
# mkldnn float/bfloat tensor to cpu float or bfloat tensor
for dtype2 in convert_dtypes[dtype1]:
cpu_tensor_2 = mkldnn_tensor.to_dense(dtype2)
self.assertEqual(cpu_tensor_2.dtype, dtype2)
atol = 1e-5 if dtype1 == torch.float and dtype2 == torch.float else 1e-2
self.assertEqual(cpu_tensor, cpu_tensor_2.float(), atol=atol, rtol=0)
self.assertEqual(mkldnn_tensor.device, torch.device('cpu'))
self.assertEqual(mkldnn_tensor.size(), torch.Size([1, 2, 3, 4]))
self.assertEqual(mkldnn_tensor.numel(), cpu_tensor.numel())
if dtype1 == torch.float:
self.assertEqual(mkldnn_tensor.element_size(), cpu_tensor.element_size())
else:
self.assertEqual(mkldnn_tensor.element_size(), cpu_tensor.element_size() / 2)
self.assertRaisesRegex(RuntimeError,
"Cannot access data pointer of Tensor that doesn't have storage",
lambda: mkldnn_tensor.data_ptr() != 0)
# bfloat cpu tensor to mkldnn float tensor or bfloat tensor.
for orig_dtype in [torch.half, torch.bfloat16]:
cpu_tensor_lower = cpu_tensor.to(dtype=orig_dtype)
for dtype1 in convert_dtypes[orig_dtype]:
mkldnn_tensor = cpu_tensor_lower.to_mkldnn(dtype1)
self.assertEqual(mkldnn_tensor.dtype, dtype1)
cpu_tensor_1 = mkldnn_tensor.to_dense()
# not given dtype for to_dense, mkldnn tensor has same dtype with cpu tensor
self.assertEqual(mkldnn_tensor.dtype, cpu_tensor_1.dtype)
# mkldnn float/bfloat/half tensor to cpu float/bfloat/half tensor
for dtype2 in convert_dtypes[cpu_tensor_lower.dtype]:
cpu_tensor_2 = mkldnn_tensor.to_dense(dtype2)
self.assertEqual(cpu_tensor_2.dtype, dtype2)
self.assertEqual(cpu_tensor_lower,
cpu_tensor_2.to(dtype=cpu_tensor_lower.dtype), atol=1e-5, rtol=0)
self.assertEqual(mkldnn_tensor.device, torch.device('cpu'))
self.assertEqual(mkldnn_tensor.size(), torch.Size([1, 2, 3, 4]))
self.assertEqual(mkldnn_tensor.numel(), cpu_tensor.numel())
if dtype1 in [torch.bfloat16, torch.half]:
self.assertEqual(mkldnn_tensor.element_size(), cpu_tensor_lower.element_size())
else:
self.assertEqual(mkldnn_tensor.element_size(), cpu_tensor_lower.element_size() * 2)
self.assertRaisesRegex(RuntimeError,
"Cannot access data pointer of Tensor that doesn't have storage",
lambda: mkldnn_tensor.data_ptr() != 0)
def test_conversion_byte_char(self):
int8_types = [torch.int8, torch.uint8]
for int8_type in int8_types:
low = -100 if int8_type is torch.int8 else 0
high = 100
for cpu_tensor in [torch.randint(
low=low,
high=high,
size=(1, 2, 3, 4),
dtype=torch.int64,
device=torch.device('cpu')),
torch.randint(
low=low,
high=high,
size=(1, 2, 3, 4, 5),
dtype=torch.int64,
device=torch.device('cpu'))[:, :, :, :, :]]:
cpu_tensor = cpu_tensor.to(dtype=int8_type)
mkldnn_tensor = cpu_tensor.to_mkldnn(int8_type)
self.assertEqual(mkldnn_tensor.dtype, int8_type)
cpu_tensor_1 = mkldnn_tensor.to_dense()
self.assertEqual(mkldnn_tensor.dtype, cpu_tensor_1.dtype)
self.assertEqual(cpu_tensor, cpu_tensor_1)
self.assertEqual(mkldnn_tensor.device, torch.device('cpu'))
self.assertEqual(mkldnn_tensor.size(), cpu_tensor.size())
self.assertEqual(mkldnn_tensor.numel(), cpu_tensor.numel())
self.assertEqual(mkldnn_tensor.element_size(), cpu_tensor.element_size())
self.assertRaisesRegex(RuntimeError,
"Cannot access data pointer of Tensor that doesn't have storage",
lambda: mkldnn_tensor.data_ptr() != 0)
def test_copy(self):
x = torch.randn(4, 5, dtype=torch.float32)
mkldnn_x = x.to_mkldnn()
mkldnn_y = torch.randn(4, 5, dtype=torch.float32).to_mkldnn()
mkldnn_z = torch.randn(4, 10, dtype=torch.float32).to_mkldnn()
mkldnn_y.copy_(mkldnn_x)
self.assertEqual(x, mkldnn_y.to_dense())
self.assertRaisesRegex(RuntimeError,
"copy_mkldnn_: only support same size tensor.",
lambda: mkldnn_z.copy_(mkldnn_x))
self.assertRaisesRegex(RuntimeError,
"copy_mkldnn_: between mkldnn layout and dense Tensors is not implemented! "
"Found self type = torch.FloatTensor and src type = Mkldnntorch.FloatTensor",
lambda: x.copy_(mkldnn_x))
self.assertRaisesRegex(RuntimeError,
"copy_mkldnn_: between mkldnn layout and dense Tensors is not implemented! "
"Found self type = Mkldnntorch.FloatTensor and src type = torch.FloatTensor",
lambda: mkldnn_x.copy_(x))
def test_unsupported(self):
# unsupported types and unsupported types with gpu
for dtype in [torch.double, torch.uint8, torch.int8,
torch.short, torch.int, torch.long]:
with self.assertRaises(RuntimeError) as context:
torch.randn(1, 2, 3, 4, dtype=dtype, device=torch.device('cpu')).to_mkldnn()
if torch.cuda.is_available():
with self.assertRaises(RuntimeError) as context:
torch.randn(1, 2, 3, 4, dtype=dtype, device=torch.device('cuda')).to_mkldnn()
# supported type with gpu
if torch.cuda.is_available():
with self.assertRaises(RuntimeError) as context:
torch.randn(1, 2, 3, 4, dtype=torch.float, device=torch.device('cuda')).to_mkldnn()
# some factory functions
for creator in [torch.ones, torch.randn, torch.rand]:
with self.assertRaises(RuntimeError) as context:
creator(1, 2, 3, 4, dtype=torch.float, device=torch.device('cpu'), layout=torch._mkldnn)
def test_mkldnn_conv_shapecheck(self):
input = torch.full((1, 1, 1, 24,), 1, dtype=torch.float32)
w1 = torch.full((1, 1, 1, 24,), 1, dtype=torch.float32)
b1 = torch.full((1,), 1, dtype=torch.float32)
w2 = torch.full((1, 1, 2, 24,), 1, dtype=torch.float32)
b2 = torch.full((2,), 1, dtype=torch.float32)
options = zip([-1, 0, 0, 0, 0, 0, 0], # padding
[1, 0, 1, 1, 1, 1, 1], # stride
[1, 1, 0, 1, 1, 1, 1], # dilation
[1, 1, 1, 0, 2, 1, 1], # groups
[w1, w1, w1, w1, w1, w1, w2], # weight
[b1, b1, b1, b1, b1, b2, b1]) # bias
for pad, st, dil, gr, w, b in options:
with self.assertRaises(RuntimeError) as _:
torch.mkldnn_convolution(input, w, b, [pad] * 2, [st] * 2, [dil] * 2, gr)
def test_autograd_to_mkldnn(self):
# MKLDNN only supports float32
root = torch.randn(4, 5, dtype=torch.float32, requires_grad=True)
def func(root):
return root.to_mkldnn().to_dense()
# because MKLDNN only supports float32, we need to lessen the precision.
# these numbers are just empirical results that seem to work.
self.assertWarnsRegex(UserWarning,
'double precision floating point',
lambda: gradcheck(func, [root], atol=4e-2, rtol=1e-2))
self.assertWarnsRegex(UserWarning,
'double precision floating point',
lambda: gradgradcheck(func, [root], atol=4e-2, rtol=1e-2))
def test_autograd_from_mkldnn(self):
# MKLDNN only supports float32
root = torch.randn(4, 5, dtype=torch.float32).to_mkldnn().requires_grad_()
def func(root):
return root.to_dense()
# because MKLDNN only supports float32, we need to lessen the precision.
# these numbers are just empirical results that seem to work.
self.assertWarnsRegex(UserWarning,
'double precision floating point',
lambda: gradcheck(func, [root], atol=4e-2, rtol=1e-2))
def test_detach(self):
root = torch.randn(4, 5, dtype=torch.float32).to_mkldnn().requires_grad_()
detach = root.detach()
self.assertEqual((4, 5), detach.size())
self.assertFalse(detach.requires_grad)
self.assertTrue(root.requires_grad)
detach_ = root.detach_()
self.assertEqual((4, 5), detach_.size())
self.assertFalse(detach_.requires_grad)
self.assertFalse(root.requires_grad)
def test_repr(self):
self.assertTrue("layout=torch._mkldnn" in str(torch.randn((1, 2, 3, 4),
dtype=torch.float, device=torch.device('cpu')).to_mkldnn()))
def _test_conv_base(self, dim):
conv_module = {1: torch.nn.Conv1d, 2: torch.nn.Conv2d, 3: torch.nn.Conv3d}
input_shapes = {1: (224,), 2: (224, 224), 3: (55, 55, 55)}
options = itertools.product([True, False], [True, False], [1, 2], [1, 4])
for train, bias, dilation, groups in options:
N = torch.randint(3, 10, (1,)).item()
M = torch.randint(1, 3, (1,)).item() * groups
C = torch.randint(1, 3, (1,)).item() * groups
x_shape = (N, C) + input_shapes[dim]
x = torch.randn(x_shape, dtype=torch.float32)
conv = conv_module[dim](in_channels=C,
out_channels=M,
kernel_size=3,
stride=2,
padding=1,
dilation=dilation,
bias=bias,
groups=groups).float()
x1 = x.clone()
x2 = x.clone().to_mkldnn()
if not train:
mkldnn_conv = mkldnn_utils.to_mkldnn(copy.deepcopy(conv))
elif train and dim != 1:
# TODO: enable conv1d training.
x1.requires_grad_()
x2.requires_grad_()
mkldnn_conv = copy.deepcopy(conv)
with torch.backends.mkldnn.flags(enabled=False):
y_aten = conv(x1)
if train and dim != 1:
loss1 = y_aten.sum()
loss1.backward()
if not train or (train and dim != 1):
y_mkldnn = mkldnn_conv(x2).to_dense()
self.assertEqual(y_aten, y_mkldnn)
if not train:
self._test_serialization(mkldnn_conv, (x.to_mkldnn(),))
self._test_tracing(mkldnn_conv, (x.to_mkldnn(),))
elif dim != 1:
loss2 = y_mkldnn.sum()
loss2.backward()
self.assertTrue(x2.grad.is_mkldnn)
self.assertEqual(x1.grad, x2.grad.to_dense())
self.assertEqual(conv.weight.grad,
mkldnn_conv.weight.grad,
atol=1e-3,
rtol=1e-3)
if bias:
self.assertEqual(conv.bias.grad, mkldnn_conv.bias.grad)
def test_conv1d(self):
self._test_conv_base(dim=1)
def test_conv2d(self):
self._test_conv_base(dim=2)
def test_conv3d(self):
self._test_conv_base(dim=3)
def _test_conv_deconv_lower_precision_base(self, dim, conv_module, dtype):
input_shapes = {1: (224,), 2: (224, 224), 3: (55, 55, 55)}
options = itertools.product([True, False], [1, 2], [1, 4])
for bias, dilation, groups in options:
N = torch.randint(1, 3, (1,)).item()
M = torch.randint(1, 3, (1,)).item() * groups
C = torch.randint(1, 3, (1,)).item() * groups
x_shape = (N, C) + input_shapes[dim]
x = torch.randn(x_shape, dtype=torch.float32)
# TODO: remove this when group depthwise is supported:
if conv_module in [torch.nn.ConvTranspose1d, torch.nn.ConvTranspose2d,
torch.nn.ConvTranspose3d] and groups > 1 and C == groups:
continue
conv = conv_module(in_channels=C,
out_channels=M,
kernel_size=3,
stride=2,
padding=1,
dilation=dilation,
bias=bias,
groups=groups).float()
x_lower = x.to(dtype=dtype)
if (dtype == torch.bfloat16 and torch.ops.mkldnn._is_mkldnn_bf16_supported()) or \
(dtype == torch.half and torch.ops.mkldnn._is_mkldnn_fp16_supported()):
mkldnn_conv = mkldnn_utils.to_mkldnn(copy.deepcopy(conv))
mkldnn_conv_lower = mkldnn_utils.to_mkldnn(copy.deepcopy(conv), dtype)
y = mkldnn_conv(x.to_mkldnn()).to_dense()
y_lower = mkldnn_conv_lower(x_lower.to_mkldnn()).to_dense(torch.float32)
self.assertEqual(y, y_lower, atol=1e-1, rtol=1e-3)
else:
msg = {
torch.bfloat16: r"bf16 path needs the cpu support avx_ne_convert or avx512bw, avx512vl and avx512dq",
torch.half: r"fp16 path needs the cpu support avx_ne_convert or avx512_fp16",
}
with self.assertRaisesRegex(RuntimeError, msg[dtype]):
mkldnn_conv_lower = mkldnn_utils.to_mkldnn(copy.deepcopy(conv), dtype)
y_lower = mkldnn_conv_lower(x_lower.to_mkldnn()).to_dense(torch.float32)
# test thnn impl
conv_lower = copy.deepcopy(conv).to(dtype=dtype)
conv_ref = copy.deepcopy(conv_lower).float()
with torch.backends.mkldnn.flags(enabled=False):
x_ref = x_lower.clone().float().detach().requires_grad_()
x_lower.requires_grad_()
y = conv_ref(x_ref)
y_lower = conv_lower(x_lower).float()
self.assertEqual(y, y_lower, atol=5e-2, rtol=5e-3)
@dtypes(torch.float16, torch.bfloat16)
def test_conv_deconv_1d_lower_precision(self, dtype):
self._test_conv_deconv_lower_precision_base(1, torch.nn.Conv1d, dtype=dtype)
self._test_conv_deconv_lower_precision_base(1, torch.nn.ConvTranspose1d, dtype=dtype)
@dtypes(torch.float16, torch.bfloat16)
def test_conv_deconv_2d_lower_precision(self, dtype):
self._test_conv_deconv_lower_precision_base(2, torch.nn.Conv2d, dtype=dtype)
self._test_conv_deconv_lower_precision_base(2, torch.nn.ConvTranspose2d, dtype=dtype)
@dtypes(torch.float16, torch.bfloat16)
def test_conv_deconv_3d_lower_precision(self, dtype):
self._test_conv_deconv_lower_precision_base(3, torch.nn.Conv3d, dtype=dtype)
self._test_conv_deconv_lower_precision_base(3, torch.nn.ConvTranspose3d, dtype=dtype)
def _test_conv_deconv_nhwc_base(self, conv_module, weight_memory_format, dtype, prec=None):
input_shapes = {2: (55, 55), 3: (14, 14, 14)}
options = itertools.product([True, False], [True, False], [1, 2], [1, 4])
if conv_module in [torch.nn.Conv2d, torch.nn.ConvTranspose2d]:
cl_format = torch.channels_last
input_shape = input_shapes[2]
elif conv_module in [torch.nn.Conv3d, torch.nn.ConvTranspose3d]:
cl_format = torch.channels_last_3d
input_shape = input_shapes[3]
for train, bias, dilation, groups in options:
N = torch.randint(3, 10, (1,)).item()
M = torch.randint(1, 3, (1,)).item() * groups
C = torch.randint(1, 3, (1,)).item() * groups
x_shape = (N, C) + input_shape
x = torch.randn(x_shape, dtype=dtype)
# conv1: mkldnn conv/deconv in contiguous memory format (nchw)
# conv2: mkldnn conv/deconv in channels last memory format (nhwc)
conv1 = conv_module(in_channels=C,
out_channels=M,
kernel_size=3,
stride=2,
padding=1,
dilation=dilation,
bias=bias,
groups=groups).to(dtype=dtype)
conv2 = copy.deepcopy(conv1).to(memory_format=weight_memory_format)
x1 = x.clone()
x2 = x.clone().to(memory_format=cl_format)
if train:
x1.requires_grad_()
x2.requires_grad_()
y1 = conv1(x1)
y2 = conv2(x2)
self.assertEqual(y1, y2, atol=prec, rtol=prec)
if train:
y1.sum().backward()
y2.sum().backward()
self.assertTrue(x2.grad.is_contiguous(memory_format=cl_format))
self.assertEqual(conv1.weight.grad,
conv2.weight.grad,
atol=1e-3,
rtol=1e-3)
if bias:
self.assertEqual(conv1.bias.grad, conv2.bias.grad, atol=prec, rtol=prec)
self.assertEqual(x1.grad, x2.grad, atol=prec, rtol=prec)
def test_conv_nhwc_fp32(self):
self._test_conv_deconv_nhwc_base(torch.nn.Conv2d, torch.contiguous_format, dtype=torch.float32)
self._test_conv_deconv_nhwc_base(torch.nn.Conv2d, torch.channels_last, dtype=torch.float32)
self._test_conv_deconv_nhwc_base(torch.nn.Conv3d, torch.contiguous_format, dtype=torch.float32)
self._test_conv_deconv_nhwc_base(torch.nn.Conv3d, torch.channels_last_3d, dtype=torch.float32)
@dtypes(torch.float16, torch.bfloat16)
def test_conv_nhwc_lower_precision(self, dtype):
# when torch.ops.mkldnn._is_mkldnn_bf16_supported() or torch.ops.mkldnn._is_mkldnn_fp16_supported()
# returns false, bf16/fp16 CPU conv will fall back to thnn impl
support_checks = {
torch.bfloat16: torch.ops.mkldnn._is_mkldnn_bf16_supported,
torch.float16: torch.ops.mkldnn._is_mkldnn_fp16_supported
}
if support_checks[dtype]():
self._test_conv_deconv_nhwc_base(torch.nn.Conv2d, torch.contiguous_format, dtype=dtype)
self._test_conv_deconv_nhwc_base(torch.nn.Conv2d, torch.channels_last, dtype=dtype)
self._test_conv_deconv_nhwc_base(torch.nn.Conv3d, torch.contiguous_format, dtype=dtype)
self._test_conv_deconv_nhwc_base(torch.nn.Conv3d, torch.channels_last_3d, dtype=dtype)
# BF16/FP16 fallback implementations are divided into two parts im2col+gemm,
# and the number of data type conversions in the middle is more than that of onednn's direct conv,
# resulting in additional accuracy loss.
precisions = {
torch.bfloat16: 1e-2,
torch.float16: 2e-3,
}
prec = precisions[dtype]
with torch.backends.mkldnn.flags(enabled=False):
self._test_conv_deconv_nhwc_base(torch.nn.Conv2d, torch.contiguous_format, dtype=dtype, prec=prec)
self._test_conv_deconv_nhwc_base(torch.nn.Conv2d, torch.channels_last, dtype=dtype, prec=prec)
self._test_conv_deconv_nhwc_base(torch.nn.Conv3d, torch.contiguous_format, dtype=dtype, prec=prec)
self._test_conv_deconv_nhwc_base(torch.nn.Conv3d, torch.channels_last_3d, dtype=dtype, prec=prec)
def test_conv_transpose_nhwc_fp32(self):
self._test_conv_deconv_nhwc_base(torch.nn.ConvTranspose2d, torch.contiguous_format, dtype=torch.float32)
self._test_conv_deconv_nhwc_base(torch.nn.ConvTranspose2d, torch.channels_last, dtype=torch.float32)
self._test_conv_deconv_nhwc_base(torch.nn.ConvTranspose3d, torch.contiguous_format, dtype=torch.float32)
self._test_conv_deconv_nhwc_base(torch.nn.ConvTranspose3d, torch.channels_last_3d, dtype=torch.float32)
@dtypes(torch.float16, torch.bfloat16)
def test_conv_transpose_nhwc_lower_precision(self, dtype):
# when torch.ops.mkldnn._is_mkldnn_bf16_supported() or torch.ops.mkldnn._is_mkldnn_fp16_supported()
# returns false, bf16/fp16 CPU conv will fall back to thnn impl
support_checks = {
torch.bfloat16: torch.ops.mkldnn._is_mkldnn_bf16_supported,
torch.float16: torch.ops.mkldnn._is_mkldnn_fp16_supported
}
if support_checks[dtype]():
self._test_conv_deconv_nhwc_base(torch.nn.ConvTranspose2d, torch.contiguous_format, dtype=dtype)
self._test_conv_deconv_nhwc_base(torch.nn.ConvTranspose2d, torch.channels_last, dtype=dtype)
self._test_conv_deconv_nhwc_base(torch.nn.ConvTranspose3d, torch.contiguous_format, dtype=dtype)
self._test_conv_deconv_nhwc_base(torch.nn.ConvTranspose3d, torch.channels_last_3d, dtype=dtype)
# BF16/FP16 fallback implementations are divided into two parts col2im+gemm,
# and the number of data type conversions in the middle is more than that of onednn's direct conv,
# resulting in additional accuracy loss.
precisions = {
torch.bfloat16: 2e-2,
torch.float16: 3e-3,
}
prec = precisions[dtype]
with torch.backends.mkldnn.flags(enabled=False):
self._test_conv_deconv_nhwc_base(torch.nn.ConvTranspose2d, torch.contiguous_format, dtype=dtype, prec=prec)
self._test_conv_deconv_nhwc_base(torch.nn.ConvTranspose2d, torch.channels_last, dtype=dtype, prec=prec)
self._test_conv_deconv_nhwc_base(torch.nn.ConvTranspose3d, torch.contiguous_format, dtype=dtype, prec=prec)
self._test_conv_deconv_nhwc_base(torch.nn.ConvTranspose3d, torch.channels_last_3d, dtype=dtype, prec=prec)
def _test_conv_transpose_base(self, dim):
conv_module = {
1: torch.nn.ConvTranspose1d,
2: torch.nn.ConvTranspose2d,
3: torch.nn.ConvTranspose3d
}
input_shapes = {1: (55,), 2: (28, 28), 3: (14, 14, 14)}
options = itertools.product([True, False], [True, False], [1, 2], [1, 4])
for train, bias, dilation, groups in options:
N = torch.randint(3, 10, (1,)).item()
M = torch.randint(1, 3, (1,)).item() * groups
C = torch.randint(1, 3, (1,)).item() * groups
x_shape = (N, C) + input_shapes[dim]
data = torch.randn(x_shape, dtype=torch.float32)
# conv: mkldnn tranpose conv fp32
# conv_ref: thnn transpose conv fp32
conv = conv_module[dim](in_channels=C,
out_channels=M,
kernel_size=3,
stride=1,
padding=1,
dilation=dilation,
bias=bias,
groups=groups).to(dtype=torch.float32)
x = data.clone()
x_ref = x.clone()
if train:
x.requires_grad_()
x_ref.requires_grad_()
conv_ref = copy.deepcopy(conv)
with torch.backends.mkldnn.flags(enabled=False):
y_ref = conv_ref(x_ref)
if train:
y_ref.sum().backward()
y = conv(x)
if train:
y.sum().backward()
self.assertEqual(y, y_ref)
if train:
self.assertEqual(x.grad, x_ref.grad)
self.assertEqual(conv.weight.grad,
conv_ref.weight.grad,
atol=1e-3,
rtol=1e-3)
if bias:
self.assertEqual(conv.bias.grad, conv_ref.bias.grad)
def test_conv_transpose1d(self):
self._test_conv_transpose_base(dim=1)
def test_conv_transpose2d(self):
self._test_conv_transpose_base(dim=2)
def test_conv_transpose3d(self):
self._test_conv_transpose_base(dim=3)
def test_conv2d_legacy_jit_model(self):
"""
MKLDNN integration used to serialize models with 5d weight for grouped
convolutions, we'd like to preserve this behavior
"""
g = 4
conv2d = torch.nn.Conv2d(16, 16, 3, groups=g)
conv2d_mkldnn = torch.utils.mkldnn.to_mkldnn(conv2d)
# contrive legacy conv2d module with a 5-d weight
o, i, h, w = conv2d.weight.shape
weight_5d = conv2d.weight.reshape((g, o // g, i, h, w))
conv2d_mkldnn.weight = weight_5d.to_mkldnn()
x = torch.randn(1, 16, 8, 8)
with TemporaryFileName() as fname:
torch.jit.save(conv2d_mkldnn, fname)
conv2d_loaded = torch.jit.load(fname)
self.assertEqual(conv2d_mkldnn.weight.ndimension(), 5)
self.assertEqual(conv2d_loaded.weight.ndimension(), 4)
self.assertEqual(
conv2d(x),
conv2d_loaded(x.to_mkldnn()).to_dense())
# This test is to check whether 1D conv is supported for mkldnn tensor,
# which is exposed by Issue https://github.com/pytorch/pytorch/issues/68034.
def test_conv1d_functional(self):
input = torch.randn(2, 3, 10).to_mkldnn()
weight = torch.randn(3, 3, 3).to_mkldnn()
bias = torch.randn(3).to_mkldnn()
output = torch.nn.functional.conv1d(input, weight, bias)
self.assertEqual(output.size(), torch.Size([2, 3, 8]))
def test_relu(self):
x = torch.randn((4, 5), dtype=torch.float32) * 10
x1 = x.clone().requires_grad_()
x2 = x.clone().to_mkldnn().requires_grad_()
y1 = torch.relu(x1)
y2 = torch.relu(x2).to_dense()
loss1 = y1.sum()
loss2 = y2.sum()
loss1.backward()
loss2.backward()
self.assertEqual(y1, y2)
self.assertEqual(x1.grad, x2.grad.to_dense())
def test_relu_(self):
x = torch.randn((4, 5), dtype=torch.float32) * 10
x1 = x.clone().requires_grad_()
x2 = x.clone().to_mkldnn().requires_grad_()
y1 = torch.relu_(x1.clone())
y2 = torch.relu_(x2.clone()).to_dense()
loss1 = y1.sum()
loss2 = y2.sum()
loss1.backward()
loss2.backward()
self.assertEqual(y1, y2)
self.assertEqual(x1.grad, x2.grad.to_dense())
@unittest.skipIf(IS_WINDOWS, "Limit support for bf16 path")
def _test_relu_bf16_base(self, name):
x = torch.randn((4, 5), dtype=torch.float32) * 10
x_bf16 = x.bfloat16()
fn = getattr(torch, name)
if torch.ops.mkldnn._is_mkldnn_bf16_supported():
y = fn(x.to_mkldnn()).to_dense()
y_bf16 = fn(x_bf16.to_mkldnn()).to_dense(torch.float32)
self.assertEqual(y, y_bf16, atol=1e-1, rtol=1e-3)
else:
msg = r"bf16 path needs the cpu support avx512bw, avx512vl and avx512dq"
self.assertRaisesRegex(RuntimeError,
msg,
lambda: fn(x_bf16.to_mkldnn()))
def test_relu_bf16(self):
self._test_relu_bf16_base("relu")
def test_relu_inplace_bf16(self):
self._test_relu_bf16_base("relu_")
def test_gelu(self):
m = torch.nn.GELU()
x = torch.randn((4, 5), dtype=torch.float32) * 10
x1 = x.clone().requires_grad_()
x2 = x.clone().to_mkldnn().requires_grad_()
y1 = m(x1)
y2 = m(x2).to_dense()
loss1 = y1.sum()
loss2 = y2.sum()
loss1.backward()
loss2.backward()
self.assertEqual(y1, y2)
self.assertEqual(x1.grad, x2.grad.to_dense())
@unittest.skipIf(IS_WINDOWS, "Limit support for bf16 path")
def test_gelu_bf16(self):
m = torch.nn.GELU()
x = torch.randn((4, 5), dtype=torch.float32) * 10
x1 = x.clone().to_mkldnn().requires_grad_()
x2 = x.clone().to_mkldnn(torch.bfloat16).requires_grad_()
if torch.ops.mkldnn._is_mkldnn_bf16_supported():
y1 = m(x1).to_dense()
y2 = m(x2).to_dense()
loss1 = y1.sum()
loss2 = y2.sum()
loss1.backward()
loss2.backward()
self.assertEqual(y1, y2.to(torch.float32), atol=1e-1, rtol=0)
self.assertEqual(x1.grad.to_dense(), x2.grad.to_dense(torch.float32), atol=1e-2, rtol=0)
else:
msg = r"bf16 path needs the cpu support avx512bw, avx512vl and avx512dq"
self.assertRaisesRegex(RuntimeError,
msg,
lambda: m(x2))
def _test_prelu_base(self, size, num_channels):
x = torch.randn(size, dtype=torch.float32)
x1 = x.clone().requires_grad_()
x2 = x.clone().to_mkldnn().requires_grad_()
x3 = x.clone().to_mkldnn().requires_grad_()
m1 = torch.nn.PReLU(num_channels)
m2 = mkldnn_utils.to_mkldnn(copy.deepcopy(m1))
m3 = copy.deepcopy(m1)
y1 = m1(x1)
y2 = m2(x2).to_dense()
y3 = m3(x3).to_dense() # Only convert data to mkldnn, weight is Aten tensor
loss1 = y1.sum()
loss1.backward()
loss2 = y2.sum()
loss2.backward()
loss3 = y3.sum()
loss3.backward()
self.assertEqual(y1, y2)
self.assertEqual(y1, y3)
self.assertEqual(x1.grad, x2.grad.to_dense())
self.assertEqual(x1.grad, x3.grad.to_dense())
def test_prelu(self):
self._test_prelu_base(torch.Size([16]), 1)
self._test_prelu_base(torch.Size([16, 64]), 1)
self._test_prelu_base(torch.Size([16, 64]), 64)
self._test_prelu_base(torch.Size([16, 64, 112]), 1)
self._test_prelu_base(torch.Size([16, 64, 112]), 64)
self._test_prelu_base(torch.Size([16, 64, 112, 112]), 1)
self._test_prelu_base(torch.Size([16, 64, 112, 112]), 64)
self._test_prelu_base(torch.Size([16, 64, 112, 112, 1]), 1)
self._test_prelu_base(torch.Size([16, 64, 112, 112, 1]), 64)
@unittest.skipIf(IS_WINDOWS, "Limit support for bf16 path")
def _test_prelu_bf16_base(self, size, num_channels):
if torch.ops.mkldnn._is_mkldnn_bf16_supported():
x = torch.randn(size, dtype=torch.float32)
x_fp32 = x.clone().to_mkldnn().requires_grad_()
x_bf16 = x.clone().to_mkldnn(torch.bfloat16).requires_grad_()
m = mkldnn_utils.to_mkldnn(torch.nn.PReLU())
m_bf16 = mkldnn_utils.to_mkldnn(torch.nn.PReLU(), torch.bfloat16)
y = m(x_fp32).to_dense()
y_bf16 = m_bf16(x_bf16).to_dense()
self.assertEqual(y, y_bf16.to(torch.float32), atol=1e-1, rtol=1e-3)
loss = y.sum()
loss.backward()
loss_bf16 = y_bf16.sum()
loss_bf16.backward()
self.assertEqual(x_fp32.grad.to_dense(), x_bf16.grad.to_dense(torch.float32))
else:
x_bf16 = torch.randn(size, dtype=torch.bfloat16).requires_grad_()
m_bf16 = mkldnn_utils.to_mkldnn(torch.nn.PReLU(), torch.bfloat16)
msg = r"bf16 path needs the cpu support avx512bw, avx512vl and avx512dq"
self.assertRaisesRegex(RuntimeError,
msg,
lambda: m_bf16(x_bf16))
def test_prelu_bf16(self):
self._test_prelu_bf16_base(torch.Size([16]), 1)
self._test_prelu_bf16_base(torch.Size([16, 64]), 1)
self._test_prelu_bf16_base(torch.Size([16, 64]), 64)
self._test_prelu_bf16_base(torch.Size([16, 64, 112]), 1)
self._test_prelu_bf16_base(torch.Size([16, 64, 112]), 64)
self._test_prelu_bf16_base(torch.Size([16, 64, 112, 112, 1]), 1)
self._test_prelu_bf16_base(torch.Size([16, 64, 112, 112, 1]), 64)
def _test_max_pool_base(self, dim, input):
pool_module = {2: torch.nn.MaxPool2d, 3: torch.nn.MaxPool3d}
for stride in [1, 2, 3]:
for ceil_mode in [False, True]:
max_pool = pool_module[dim](
kernel_size=3 if not ceil_mode else 7,
stride=stride,
padding=1,
ceil_mode=ceil_mode)
x1 = input.clone().requires_grad_()
x2 = input.clone().to_mkldnn().requires_grad_()
y1 = max_pool(x1)
y2 = max_pool(x2).to_dense()
loss1 = y1.sum()
loss2 = y2.sum()
loss1.backward()
loss2.backward()
self.assertEqual(y1, y2)
self.assertEqual(x1.grad, x2.grad.to_dense())
def test_max_pool2d(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
for H, W in [(64, 64), (35, 39), (16, 19), [7, 8]]:
x = torch.randn(N, C, H, W, dtype=torch.float32) * 10
self._test_max_pool_base(dim=2, input=x)
def test_max_pool3d(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
for D, H, W in [(64, 64, 64), (35, 39, 35), (16, 19, 20), [7, 8, 9]]:
x = torch.randn(N, C, D, H, W, dtype=torch.float32) * 10
self._test_max_pool_base(dim=3, input=x)
@unittest.skipIf(IS_WINDOWS, "Limit support for bf16 path")
def _test_max_pool_bf16_base(self, dim, input):
pool_module = {2: torch.nn.MaxPool2d, 3: torch.nn.MaxPool3d}
x_bf16 = input.bfloat16()
for stride in [1, 2, 3]:
for ceil_mode in [False, True]:
max_pool = pool_module[dim](
kernel_size=3 if not ceil_mode else 7,
stride=stride,
padding=1,
ceil_mode=ceil_mode)
if torch.ops.mkldnn._is_mkldnn_bf16_supported():
y = max_pool(input.to_mkldnn()).to_dense()
y_bf16 = max_pool(x_bf16.to_mkldnn()).to_dense(torch.float32)
self.assertEqual(y, y_bf16, atol=0.1, rtol=1e-3)
else:
msg = "mkldnn_max_pool%dd: bf16 path needs the cpu support avx512bw, avx512vl and avx512dq" % dim
self.assertRaisesRegex(RuntimeError,
msg,
lambda: max_pool(x_bf16.to_mkldnn()))
def test_max_pool2d_bf16(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
for H, W in [(64, 64), (35, 39), (16, 19), [7, 8]]:
x = torch.randn(N, C, H, W, dtype=torch.float32) * 10
self._test_max_pool_bf16_base(dim=2, input=x)
def test_max_pool3d_bf16(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
for D, H, W in [(64, 64, 64), (35, 39, 35), (16, 19, 20), [7, 8, 9]]:
x = torch.randn(N, C, D, H, W, dtype=torch.float32) * 10
self._test_max_pool_bf16_base(dim=3, input=x)
def test_max_pool2d_stride_none(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
for H, W in [(64, 64), (35, 39), (16, 19), [7, 8]]:
x = torch.randn(N, C, H, W, dtype=torch.float32) * 10
for ceil_mode in [False, True]:
y1 = F.max_pool2d(
x,
kernel_size=3 if not ceil_mode else 7,
stride=None,
padding=1,
ceil_mode=ceil_mode)
y2 = F.max_pool2d(
x.to_mkldnn(),
kernel_size=3 if not ceil_mode else 7,
stride=None,
padding=1,
ceil_mode=ceil_mode)
self.assertEqual(y1, y2.to_dense())
# https://github.com/pytorch/pytorch/issues/127111
@xfailIfTorchDynamo
def test_max_pool_unsupported(self):
# OneDNN not support dilation max_pooling, will be avilabled in v2.0.
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
# 2d dilation case
x = torch.randn(N, C, 7, 7, dtype=torch.float32).to_mkldnn()
max_pool2d = torch.nn.MaxPool2d(
kernel_size=3,
stride=3,
padding=1,
dilation=2)
self.assertRaisesRegex(RuntimeError,
'mkldnn_max_pool2d does not support dilation case',
lambda: max_pool2d(x))
# 3d dilation case
x = torch.randn(N, C, 7, 7, 7, dtype=torch.float32).to_mkldnn()
max_pool3d = torch.nn.MaxPool3d(
kernel_size=3,
stride=3,
padding=1,
dilation=2)
self.assertRaisesRegex(RuntimeError,
'mkldnn_max_pool3d does not support dilation case',
lambda: max_pool3d(x))
def _test_avg_pool_base(self, dim, input):
avg_module = {2: torch.nn.AvgPool2d, 3: torch.nn.AvgPool3d}
for count_include_pad in [True, False]:
avg_pool = avg_module[dim](
kernel_size=3,
stride=2,
padding=1,
count_include_pad=count_include_pad)
x1 = input.clone().requires_grad_()
x2 = input.clone().to_mkldnn().requires_grad_()
y1 = avg_pool(x1)
y2 = avg_pool(x2).to_dense()
loss1 = y1.sum()
loss2 = y2.sum()
loss1.backward()
loss2.backward()
self.assertEqual(y1, y2)
self.assertEqual(x1.grad, x2.grad.to_dense())
def test_avg_pool2d(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
x = torch.randn(N, C, 64, 64, dtype=torch.float32) * 10
self._test_avg_pool_base(dim=2, input=x)
def test_avg_pool3d(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
x = torch.randn(N, C, 64, 64, 64, dtype=torch.float32) * 10
self._test_avg_pool_base(dim=3, input=x)
@unittest.skipIf(IS_WINDOWS, "Limit support for bf16 path")
def _test_avg_pool_bf16_base(self, dim, input):
avg_module = {2: torch.nn.AvgPool2d, 3: torch.nn.AvgPool3d}
x_bf16 = input.bfloat16()
for count_include_pad in [True, False]:
avg_pool = avg_module[dim](
kernel_size=3,
stride=2,
padding=1,
count_include_pad=count_include_pad)
if torch.ops.mkldnn._is_mkldnn_bf16_supported():
y = avg_pool(input.to_mkldnn()).to_dense()
y_bf16 = avg_pool(x_bf16.to_mkldnn()).to_dense(torch.float)
self.assertEqual(y, y_bf16, atol=1e-1, rtol=1e-3)
else:
msg = "mkldnn_avg_pool%dd: bf16 path needs the cpu support avx512bw, avx512vl and avx512dq" % dim
self.assertRaisesRegex(RuntimeError,
msg,
lambda: avg_pool(x_bf16.to_mkldnn()))
def test_avg_pool2d_bf16(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
x = torch.randn(N, C, 64, 64, dtype=torch.float32) * 10
self._test_avg_pool_bf16_base(dim=2, input=x)
def test_avg_pool3d_bf16(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
x = torch.randn(N, C, 64, 64, 64, dtype=torch.float32) * 10
self._test_avg_pool_bf16_base(dim=3, input=x)
def test_avg_pool2d_stride_none(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
x = torch.randn(N, C, 64, 64, dtype=torch.float32) * 10
for count_include_pad in [True, False]:
y1 = F.avg_pool2d(
x,
kernel_size=3,
stride=None,
padding=1,
count_include_pad=count_include_pad)
y2 = F.avg_pool2d(
x.to_mkldnn(),
kernel_size=3,
stride=None,
padding=1,
count_include_pad=count_include_pad)
self.assertEqual(y1, y2.to_dense())
def test_adaptive_avg_pool2d(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
x = torch.randn(N, C, 224, 224, dtype=torch.float32) * 100
adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d(7)
x1 = x.clone().requires_grad_()
x2 = x.clone().to_mkldnn().requires_grad_()
y1 = adaptive_avg_pool2d(x1)
y2 = adaptive_avg_pool2d(x2).to_dense()
loss1 = y1.sum()
loss2 = y2.sum()
loss1.backward()
loss2.backward()
self.assertEqual(y1, y2)
self.assertEqual(x1.grad, x2.grad.to_dense())
@unittest.skipIf(IS_WINDOWS, "Limit support for bf16 path")
def test_adaptive_avg_pool2d_bf16(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
x = torch.randn(N, C, 224, 224, dtype=torch.float32) * 100
x_bf16 = x.bfloat16()
adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d(7)
if torch.ops.mkldnn._is_mkldnn_bf16_supported():
y = adaptive_avg_pool2d(x.to_mkldnn()).to_dense()
y_bf16 = adaptive_avg_pool2d(x.to_mkldnn()).to_dense(torch.float32)
self.assertEqual(y, y_bf16, atol=1e-1, rtol=1e-3)
else:
msg = "mkldnn_adaptive_avg_pool2d: bf16 path needs the cpu support avx512bw, avx512vl and avx512dq"
self.assertRaisesRegex(RuntimeError,
msg,
lambda: adaptive_avg_pool2d(x_bf16.to_mkldnn()))
def _test_batch_norm_base(self, dim, channels, input):
bn_module = {2 : torch.nn.BatchNorm2d, 3 : torch.nn.BatchNorm3d}
bn = bn_module[dim](channels).float().train(False)
mkldnn_bn = mkldnn_utils.to_mkldnn(copy.deepcopy(bn))
self.assertEqual(
bn(input),
mkldnn_bn(input.to_mkldnn()).to_dense())
self._test_serialization(mkldnn_bn, (input.to_mkldnn(),))
self._test_tracing(mkldnn_bn, (input.to_mkldnn(),))
def _test_batch_norm_train_base(self, dim, channels, input):
# TODO: support 3d batchnorm training.
bn_module = {2 : torch.nn.BatchNorm2d}
# TODO: support none affine.
options = itertools.product([True], [True, False])
for affine, track_running_stats in options:
bn = bn_module[dim](
num_features=channels,
affine=affine,
track_running_stats=track_running_stats).float().train(True)
mkldnn_bn = copy.deepcopy(bn)
x1 = input.clone().requires_grad_()
x2 = input.clone().to_mkldnn().requires_grad_()
y1 = bn(x1)
y2 = mkldnn_bn(x2).to_dense()
loss1 = y1.sum()
loss2 = y2.sum()
loss1.backward()
loss2.backward()
self.assertEqual(y1, y2)
self.assertEqual(x1.grad, x2.grad.to_dense())
self.assertEqual(bn.weight.grad, mkldnn_bn.weight.grad, rtol=1e-3, atol=1e-3)
if track_running_stats:
self.assertEqual(bn.running_mean, mkldnn_bn.running_mean)
self.assertEqual(bn.running_var, mkldnn_bn.running_var, rtol=1e-5, atol=1e-5)
def test_batch_norm_2d(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 100, (1,)).item()
x = torch.randn(N, C, 35, 45, dtype=torch.float32) * 10
self._test_batch_norm_base(dim=2, channels=C, input=x)
self._test_batch_norm_train_base(dim=2, channels=C, input=x)
def test_batch_norm_3d(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 100, (1,)).item()
x = torch.randn(N, C, 30, 30, 30, dtype=torch.float32) * 10
self._test_batch_norm_base(dim=3, channels=C, input=x)
@unittest.skipIf(IS_WINDOWS, "Limit support for bf16 path")
def _test_batch_norm_bf16_base(self, dim, channels, input):
bn_module = {2 : torch.nn.BatchNorm2d, 3 : torch.nn.BatchNorm3d}
x_bf16 = input.bfloat16()
# TODO: support training
for train in [False]:
bn = bn_module[dim](channels).float().train(train)
mkldnn_bn = mkldnn_utils.to_mkldnn(copy.deepcopy(bn))
if torch.ops.mkldnn._is_mkldnn_bf16_supported():
y = bn(input.to_mkldnn().to_dense())
y_bf16 = bn(input.to_mkldnn().to_dense(torch.float))
self.assertEqual(y, y_bf16, atol=1e-1, rtol=1e-3)
else:
msg = "mkldnn_batch_norm: bf16 path needs the cpu support avx512bw, avx512vl and avx512dq"
self.assertRaisesRegex(RuntimeError,
msg,
lambda: bn(x_bf16.to_mkldnn()))
def test_batch_norm_2d_bf16(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 100, (1,)).item()
x = torch.randn(N, C, 35, 45, dtype=torch.float32) * 10
self._test_batch_norm_bf16_base(dim=2, channels=C, input=x)
def test_batch_norm_3d_bf16(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 100, (1,)).item()
x = torch.randn(N, C, 30, 30, 30, dtype=torch.float32) * 10
self._test_batch_norm_bf16_base(dim=3, channels=C, input=x)
def test_add(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 100, (1,)).item()
alpha = torch.randn(1, dtype=torch.float32).item()
x = torch.randn(N, C, 35, 45, dtype=torch.float32) * 10
y = torch.randn(N, C, 35, 45, dtype=torch.float32) * 10
mx = x.to_mkldnn()
my = y.to_mkldnn()
# add
self.assertEqual(
x + y,
(mx + my).to_dense())
self.assertEqual(
torch.add(x, y, alpha=alpha),
torch.add(mx, my, alpha=alpha).to_dense())
# add_
x += y
mx += my
self.assertEqual(x, mx.to_dense())
# add_out
out = x.clone()
mkldnn_out = out.to_mkldnn()
torch.add(x, y, alpha=alpha, out=out)
torch.add(mx, my, alpha=alpha, out=mkldnn_out)
self.assertEqual(out, mkldnn_out.to_dense())
# add_out inplace case: first input
torch.add(x, y, alpha=alpha, out=x)
torch.add(mx, my, alpha=alpha, out=mx)
self.assertEqual(x, mx.to_dense())
# add_out inplace case: second input
torch.add(x, y, alpha=alpha, out=y)
torch.add(mx, my, alpha=alpha, out=my)
self.assertEqual(y, my.to_dense())
def test_mul(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 100, (1,)).item()
value = torch.randn(1, dtype=torch.float32).item()
x = torch.randn(N, C, 35, 45, dtype=torch.float32) * 10
y = torch.randn(N, C, 35, 45, dtype=torch.float32) * 10
mx = x.to_mkldnn()
my = y.to_mkldnn()
# mul
self.assertEqual(
x * y,
(mx * my).to_dense())
self.assertEqual(
x * value,
(mx * value).to_dense())
self.assertEqual(
torch.mul(x, y),
torch.mul(mx, my).to_dense())
self.assertEqual(
torch.mul(x, value),
torch.mul(mx, value).to_dense())
# mul_
x *= y
mx *= my
self.assertEqual(x, mx.to_dense())
x *= value
mx *= value
self.assertEqual(x, mx.to_dense())
# mul_out
out = x.clone()
mkldnn_out = out.to_mkldnn()
torch.mul(x, y, out=out)
torch.mul(mx, my, out=mkldnn_out)
self.assertEqual(out, mkldnn_out.to_dense())
out = x.clone()
mkldnn_out = out.to_mkldnn()
torch.mul(x, value, out=out)
torch.mul(mx, value, out=mkldnn_out)
self.assertEqual(out, mkldnn_out.to_dense())
def test_0_dimension_tensor(self):
x = torch.rand([20, 20, 1, 1], dtype=torch.float)
y = torch.rand([20, 20, 0, 1], dtype=torch.float)
# unary ops work without modification
out_relu = torch.relu(y)
out_relu_mkldnn = torch.relu(y.to_mkldnn()).to_dense()
self.assertEqual(out_relu, out_relu_mkldnn)
out_mul = x * y
out_mul_mkldnn = (x.to_mkldnn() * y.to_mkldnn()).to_dense()
self.assertEqual(out_mul, out_mul_mkldnn)
out_add = x + y
out_add_mkldnn = (x.to_mkldnn() + y.to_mkldnn()).to_dense()
self.assertEqual(out_add, out_add_mkldnn)
x.requires_grad_(True)
y.requires_grad_(True)
with self.assertRaisesRegex(RuntimeError, "0-dimension Tensor in training"):
x.to_mkldnn() + y.to_mkldnn()
with self.assertRaisesRegex(RuntimeError, "must match"):
torch.rand([5]).to_mkldnn() + torch.rand([0]).to_mkldnn()
C = 7
m = torch.nn.Conv2d(C, C, 3)
x = torch.randn(0, C, C, 8, dtype=torch.float)
out_eager = m(x)
out_mkldnn = mkldnn_utils.to_mkldnn(m)(x)
self.assertEqual(out_eager, out_mkldnn)
# https://github.com/pytorch/pytorch/issues/127111
@xfailIfTorchDynamo
def test_view(self):
x = torch.randn(3, 4, 5, dtype=torch.float32).to_mkldnn()
self.assertRaisesRegex(RuntimeError,
"Change to use reshape",
lambda: x.view(x.size(0), -1))
def test_reshape(self):
x = torch.randn(3, 4, 5, dtype=torch.float32) * 10
size = (x.size(0), -1)
self.assertEqual(
x.reshape(size),
x.to_mkldnn().reshape(size).to_dense(),
)
# test whether share same memory for plain format tensor
y = x.to_mkldnn()
z = y.reshape(size).add_(y.reshape(size))
self.assertEqual(
y.reshape(size).to_dense(),
z.to_dense(),
)
def test_reshape_blocked_format(self):
# construct an mkldnn blocked tensor with mkldnn conv2d
C = 7
m = mkldnn_utils.to_mkldnn(torch.nn.Conv2d(C, C, 3))
x = torch.randn(1, C, 8, 8).to_mkldnn()
# mkldnn tensor w/ blocked format
y_block = m(x)
# aten tensor w/ plain format
y_plain = y_block.to_dense()
y_block_reshape = y_block.reshape(C, -1)
y_plain_reshape = y_plain.reshape(C, -1)
self.assertEqual(y_plain_reshape, y_block_reshape.to_dense())
def test_reshape_backward(self):
x = torch.randn(3, 4, 5, dtype=torch.float32) * 10
size = (x.size(0), -1)
x1 = x.clone().requires_grad_()
x2 = x.clone().to_mkldnn().requires_grad_()
in_features = 20
out_features = torch.randint(3, 100, (1,)).item()
linear = torch.nn.Linear(in_features, out_features).float()
y1 = linear(x1.reshape(size)).sum()
y2 = linear(x2.reshape(size).to_dense()).sum()
y1.backward()
y2.backward()
self.assertEqual(x1.grad, x2.grad.to_dense())
def test_clone(self):
x = torch.randn(4, 5, dtype=torch.float32) * 10
self.assertEqual(
x.clone(),
x.to_mkldnn().clone().to_dense(),
)
# test whether share same memory
y = x.to_mkldnn()
z = y.clone().add_(y)
self.assertNotEqual(
y.to_dense(),
z.to_dense(),
)
def test_transpose(self):
x = torch.randn(3, 4, 5, dtype=torch.float32) * 10
for dim1 in range(x.ndim):
for dim2 in range(x.ndim):
self.assertEqual(
x.transpose(dim1, dim2),
x.to_mkldnn().transpose(dim1, dim2).to_dense(),
)
def test_transpose_invalid_dime(self):
x = torch.randn(3, 4, 5, dtype=torch.float32).to_mkldnn()
with self.assertRaisesRegex(IndexError, "Dimension out of range"):
torch._mkldnn_transpose(x, 0, 12)
def test_linear_non_contiguous_weight(self):
in_features = torch.randint(3, 10, (1,)).item()
out_features = torch.randint(3, 100, (1,)).item()
x = torch.randn(3, in_features, dtype=torch.float32) * 10
w = torch.randn(in_features, out_features, dtype=torch.float32)
for bias in [True, False]:
x1 = x.clone().requires_grad_()
x2 = x.clone().to_mkldnn().requires_grad_()
linear = torch.nn.Linear(in_features, out_features).float()
linear.weight = torch.nn.Parameter(w.t())
mkldnn_linear = copy.deepcopy(linear)
y1 = linear(x1).sum()
y2 = mkldnn_linear(x2).to_dense().sum()
y1.backward()
y2.backward()
self.assertEqual(x1.grad, x2.grad.to_dense())
self.assertEqual(linear.weight.grad, mkldnn_linear.weight.grad)
if bias:
self.assertEqual(linear.bias.grad, mkldnn_linear.bias.grad)
def test_linear(self):
in_features = torch.randint(3, 10, (1,)).item()
out_features = torch.randint(3, 100, (1,)).item()
x = torch.randn(3, in_features, dtype=torch.float32) * 10
for bias in [True, False]:
linear = torch.nn.Linear(in_features, out_features, bias=bias).float()
mkldnn_linear = mkldnn_utils.to_mkldnn(copy.deepcopy(linear))
self.assertEqual(
linear(x),
mkldnn_linear(x.to_mkldnn()).to_dense())
self._test_serialization(mkldnn_linear, (x.to_mkldnn(),))
self._test_tracing(mkldnn_linear, (x.to_mkldnn(),))
def test_linear_backward(self):
in_features = torch.randint(3, 10, (1,)).item()
out_features = torch.randint(3, 100, (1,)).item()
x = torch.randn(3, in_features, dtype=torch.float32) * 10
for bias in [True, False]:
x1 = x.clone().requires_grad_()
x2 = x.clone().to_mkldnn().requires_grad_()
linear = torch.nn.Linear(in_features, out_features).float()
mkldnn_linear = copy.deepcopy(linear)
y1 = linear(x1).sum()
y2 = mkldnn_linear(x2).to_dense().sum()
y1.backward()
y2.backward()
self.assertEqual(x1.grad, x2.grad.to_dense())
self.assertEqual(linear.weight.grad, mkldnn_linear.weight.grad)
if bias:
self.assertEqual(linear.bias.grad, mkldnn_linear.bias.grad)
@dtypes(torch.float16, torch.bfloat16)
def test_linear_lowp(self, dtype):
in_features = torch.randint(3, 10, (1,)).item()
out_features = torch.randint(3, 100, (1,)).item()
x = torch.randn(3, in_features, dtype=torch.float32) * 10
x_lowp = x.to(dtype=dtype)
for bias in [True, False]:
linear = torch.nn.Linear(in_features, out_features, bias=bias).float()
mkldnn_linear = mkldnn_utils.to_mkldnn(copy.deepcopy(linear))
mkldnn_linear_lowp = mkldnn_utils.to_mkldnn(
copy.deepcopy(linear), dtype
)
lowp_support = {
torch.bfloat16: torch.ops.mkldnn._is_mkldnn_bf16_supported,
torch.half: torch.ops.mkldnn._is_mkldnn_fp16_supported,
}
if lowp_support[dtype]():
y = mkldnn_linear(x.to_mkldnn()).to_dense()
y_lowp = mkldnn_linear_lowp(x_lowp.to_mkldnn()).to_dense(
torch.float32
)
if dtype == torch.bfloat16:
self.assertEqual(y, y_lowp, atol=1e-1, rtol=1e-3)
else:
self.assertEqual(y, y_lowp, atol=5e-3, rtol=1e-3)
else:
msg = {
torch.bfloat16: r"bf16 path needs the cpu support avx_ne_convert or avx512bw, avx512vl and avx512dq",
torch.half: r"fp16 path needs the cpu support avx_ne_convert or avx512_fp16",
}
self.assertRaisesRegex(
RuntimeError,
msg[dtype],
lambda: mkldnn_linear_lowp(x_lowp.to_mkldnn()),
)
def test_softmax(self):
x = torch.randn(3, 4, 5, dtype=torch.float32) * 10
for dim in range(x.ndim):
softmax = torch.nn.Softmax(dim=dim)
self.assertEqual(
softmax(x),
softmax(x.to_mkldnn()).to_dense())
def test_sigmoid(self):
x = torch.randn(4, 5, dtype=torch.float32) * 10
mkldnn_x = x.to_mkldnn()
self.assertEqual(
torch.sigmoid(x),
torch.sigmoid(mkldnn_x).to_dense(),
)
# inplace
torch.sigmoid_(x)
torch.sigmoid_(mkldnn_x)
self.assertEqual(x, mkldnn_x.to_dense())
def test_tanh(self):
x = torch.randn(4, 5, dtype=torch.float32) * 10
mkldnn_x = x.to_mkldnn()
self.assertEqual(
torch.tanh(x),
torch.tanh(mkldnn_x).to_dense(),
)
# inplace
torch.tanh_(x)
torch.tanh_(mkldnn_x)
self.assertEqual(x, mkldnn_x.to_dense())
def _test_serialization(self, module, inputs):
with TemporaryFileName() as fname:
torch.jit.save(module, fname)
loaded = torch.jit.load(fname)
self.assertEqual(
module(*inputs).to_dense(),
loaded(*inputs).to_dense())
def _test_tracing(self, module, inputs):
traced = torch.jit.trace(module, inputs)
self.assertEqual(
module(*inputs).to_dense(),
traced(*inputs).to_dense())
def test_set_data_tensorimpl_type(self):
# Dense tensor has impl of type `TensorImpl`, while MKL-DNN tensor has impl
# of type `OpaqueTensorImpl<IDeepTensorWrapperPtr>`.
x = torch.randn((1, 2), dtype=torch.float, device=torch.device('cpu'))
x_mkldnn = x.to_mkldnn()
with self.assertRaisesRegex(RuntimeError, 'incompatible tensor type'):
x.data = x_mkldnn
def test_empty(self):
x1 = torch.empty(4, 5, 2, 3, dtype=torch.float32)
x2 = torch.empty(4, 5, 2, 3, dtype=torch.float32, layout=torch._mkldnn)
self.assertEqual(x1.size(), x2.to_dense().size())
self.assertEqual(x1.dtype, x2.to_dense().dtype)
def test_zero_(self):
x1 = torch.randn(4, 5, dtype=torch.float32) * 10
x2 = x1.clone().to_mkldnn()
self.assertEqual(
x1.zero_(),
x2.zero_().to_dense(),
)
def test_is_mkldnn(self):
x = torch.randn(1, dtype=torch.float32)
self.assertFalse(x.is_mkldnn)
self.assertTrue(x.to_mkldnn().is_mkldnn)
# legacy constructor/new doesn't support mkldnn tensors
@skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1992")
def test_legacy_new_failure(self):
x = torch.randn(1, dtype=torch.float32)
x_mkldnn = x.to_mkldnn()
self.assertRaises(RuntimeError, lambda: x_mkldnn.new(device='cpu'))
self.assertRaises(RuntimeError, lambda: x_mkldnn.new(x.storage()))
self.assertRaises(RuntimeError, lambda: x_mkldnn.new(x))
self.assertRaises(RuntimeError, lambda: x_mkldnn.new(torch.Size([2, 3])))
self.assertRaises(RuntimeError, lambda: x_mkldnn.new([6]))
def test_is_mkldnn_jit(self):
class EnsureMkldnn(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, x):
if not x.is_mkldnn:
x = x.to_mkldnn()
return x
m = EnsureMkldnn()
x = torch.randn(1, dtype=torch.float32)
self.assertTrue(m(x).is_mkldnn)
self.assertTrue(m(x.to_mkldnn()).is_mkldnn)
def _test_imagenet_model(self, model):
model = model.train(False).float()
mkldnn_model = mkldnn_utils.to_mkldnn(copy.deepcopy(model))
x = torch.randn(1, 3, 224, 224, dtype=torch.float32)
with torch.no_grad():
self.assertEqual(
model(x),
mkldnn_model(x.to_mkldnn()).to_dense(),
)
@skipIfNoTorchVision
def test_resnet18(self):
model = torchvision.models.resnet.resnet18(weights=None)
self._test_imagenet_model(model)
@skipIfNoTorchVision
def test_resnext50_32x4d(self):
model = torchvision.models.resnet.resnext50_32x4d(weights=None)
self._test_imagenet_model(model)
def _lstm_params_list(self):
params_dict = {
"input_size": [1, 5],
"hidden_size": [5, 16],
"num_layers": [1, 3],
"bidirectional": [False, True],
"bias": [False, True],
"batch_first": [False, True],
"dropout": [0, 0.4, 0.7, 1],
"batch_size": [1, 2],
"seq_len": [1, 3],
"training": [False, True]
}
params_list = list(params_dict.values())
return params_list
def _cast_dtype(self, input, dtype):
if dtype == torch.bfloat16:
input = input.to(torch.bfloat16)
elif dtype == torch.half:
input = input.to(torch.half)
return input
def test_lstm(self):
seed = 2023
torch.manual_seed(seed)
params_list = self._lstm_params_list()
for dtype in types:
bf16 = dtype == torch.bfloat16
fp16 = dtype == torch.half
rtol = 1.3e-6
atol = 1e-5
if bf16:
rtol = 0.02
atol = 0.02
if fp16:
rtol = 1e-3
atol = 1e-3
for input_size, hidden_size, num_layers, bidirectional, bias, batch_first, dropout, batch_size, seq_len, training \
in itertools.product(*params_list):
num_directions = 2 if bidirectional else 1
if batch_first:
input = torch.randn(batch_size, seq_len, input_size, dtype=torch.float32)
else:
input = torch.randn(seq_len, batch_size, input_size, dtype=torch.float32)
h = torch.randn(num_layers * num_directions, batch_size, hidden_size, dtype=torch.float32)
c = torch.randn(num_layers * num_directions, batch_size, hidden_size, dtype=torch.float32)
if fp16:
# TODO add traing support when oneDNN support lstm FP16 training
training = False
model = torch.nn.LSTM(input_size, hidden_size, num_layers, bidirectional=bidirectional,
bias=bias, dropout=dropout, batch_first=batch_first).float()
model.train() if training else model.eval()
input1 = input.clone().requires_grad_(training)
input2 = input.clone().requires_grad_(training)
h1 = h.clone().requires_grad_(training)
h2 = h.clone().requires_grad_(training)
c1 = c.clone().requires_grad_(training)
c2 = c.clone().requires_grad_(training)
model1 = copy.deepcopy(model)
model2 = copy.deepcopy(model)
with torch.no_grad() if not training else nullcontext():
with torch.backends.mkldnn.flags(enabled=False):
torch.manual_seed(seed)
output1, (hn1, cn1) = self._cast_dtype(model1, dtype)(
self._cast_dtype(input1, dtype),
(
self._cast_dtype(h1, dtype),
self._cast_dtype(c1, dtype),
),
)
torch.manual_seed(seed)
output2, (hn2, cn2) = self._cast_dtype(model2, dtype)(
self._cast_dtype(input2, dtype),
(
self._cast_dtype(h2, dtype),
self._cast_dtype(c2, dtype),
),
)
self.assertEqual(output1, output2, rtol=rtol, atol=atol)
self.assertEqual(hn1, hn2, rtol=rtol, atol=atol)
self.assertEqual(cn1, cn2, rtol=rtol, atol=atol)
if training:
with torch.backends.mkldnn.flags(enabled=False):
torch.manual_seed(seed)
output1.sum().backward(retain_graph=True)
torch.manual_seed(seed)
output2.sum().backward(retain_graph=True)
self.assertEqual(input1.grad, input2.grad, rtol=rtol, atol=atol)
for name, para in model1.named_parameters():
self.assertEqual(para, getattr(model2, name))
self.assertEqual(
para.grad,
getattr(model2, name).grad,
rtol=rtol,
atol=atol,
)
with torch.backends.mkldnn.flags(enabled=False):
torch.manual_seed(seed)
hn1.sum().backward(retain_graph=True)
torch.manual_seed(seed)
hn2.sum().backward(retain_graph=True)
self.assertEqual(h1.grad, h2.grad, rtol=rtol, atol=atol)
with torch.backends.mkldnn.flags(enabled=False):
torch.manual_seed(seed)
cn1.sum().backward(retain_graph=True)
torch.manual_seed(seed)
cn2.sum().backward(retain_graph=True)
self.assertEqual(c1.grad, c2.grad, rtol=rtol, atol=atol)
@dtypes(torch.float16, torch.bfloat16)
def test_matmul_lower_precision(self, dtype):
support_check = {
torch.bfloat16: torch.ops.mkldnn._is_mkldnn_bf16_supported,
torch.float16: torch.ops.mkldnn._is_mkldnn_fp16_supported,
}
def common(self, shape1, shape2, op, dtype):
a = torch.randn(shape1, dtype=dtype)
a_ref = a.float()
b = torch.randn(shape2, dtype=dtype)
b_ref = b.float()
y = op(a, b)
y_ref = op(a_ref, b_ref)
self.assertEqual(y, y_ref, exact_dtype=False)
if support_check[dtype]():
a1 = torch.randn([64, 1, 33], dtype=dtype)
# a2 is contiguous tensor but it's strides
# is not default contiguous strides.
a2 = torch.as_strided(a1.clone(), [64, 1, 33], [33, 3, 1])
self.assertTrue(a2.is_contiguous())
b = torch.randn(64, 33, 256).to(dtype=dtype)
y1 = torch.ops.aten.bmm(a1, b)
y2 = torch.bmm(a2, b)
self.assertEqual(y1, y2)
for shape1, shape2, op in [
((33, 77), (77, 22), torch.matmul),
((128, 256), (256, 10), torch.matmul),
((7, 300), (300, 3), torch.matmul),
((1, 100), (100, 60), torch.matmul),
((100, 1), (1, 100), torch.matmul),
((20, 54, 78), (20, 78, 10), torch.bmm),
((1, 300, 1), (1, 1, 300), torch.bmm),
]:
common(self, shape1, shape2, op, dtype)
instantiate_device_type_tests(TestMkldnn, globals(), only_for=('cpu',))
if __name__ == '__main__':
run_tests()
|