1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
# Owner(s): ["oncall: r2p"]
import sys
import tempfile
import time
import unittest
from datetime import datetime, timedelta
from torch.monitor import (
_WaitCounter,
Aggregation,
Event,
log_event,
register_event_handler,
Stat,
TensorboardEventHandler,
unregister_event_handler,
)
from torch.testing._internal.common_utils import run_tests, skipIfTorchDynamo, TestCase
class TestMonitor(TestCase):
def test_interval_stat(self) -> None:
events = []
def handler(event):
events.append(event)
handle = register_event_handler(handler)
s = Stat(
"asdf",
(Aggregation.SUM, Aggregation.COUNT),
timedelta(milliseconds=1),
)
self.assertEqual(s.name, "asdf")
s.add(2)
for _ in range(100):
# NOTE: different platforms sleep may be inaccurate so we loop
# instead (i.e. win)
time.sleep(1 / 1000) # ms
s.add(3)
if len(events) >= 1:
break
self.assertGreaterEqual(len(events), 1)
unregister_event_handler(handle)
def test_fixed_count_stat(self) -> None:
s = Stat(
"asdf",
(Aggregation.SUM, Aggregation.COUNT),
timedelta(hours=100),
3,
)
s.add(1)
s.add(2)
name = s.name
self.assertEqual(name, "asdf")
self.assertEqual(s.count, 2)
s.add(3)
self.assertEqual(s.count, 0)
self.assertEqual(s.get(), {Aggregation.SUM: 6.0, Aggregation.COUNT: 3})
def test_log_event(self) -> None:
e = Event(
name="torch.monitor.TestEvent",
timestamp=datetime.now(),
data={
"str": "a string",
"float": 1234.0,
"int": 1234,
},
)
self.assertEqual(e.name, "torch.monitor.TestEvent")
self.assertIsNotNone(e.timestamp)
self.assertIsNotNone(e.data)
log_event(e)
@skipIfTorchDynamo("Really weird error")
def test_event_handler(self) -> None:
events = []
def handler(event: Event) -> None:
events.append(event)
handle = register_event_handler(handler)
e = Event(
name="torch.monitor.TestEvent",
timestamp=datetime.now(),
data={},
)
log_event(e)
self.assertEqual(len(events), 1)
self.assertEqual(events[0], e)
log_event(e)
self.assertEqual(len(events), 2)
unregister_event_handler(handle)
log_event(e)
self.assertEqual(len(events), 2)
def test_wait_counter(self) -> None:
wait_counter = _WaitCounter(
"test_wait_counter",
)
with wait_counter.guard() as wcg:
pass
@skipIfTorchDynamo("Really weird error")
class TestMonitorTensorboard(TestCase):
def setUp(self):
global SummaryWriter, event_multiplexer
try:
from tensorboard.backend.event_processing import (
plugin_event_multiplexer as event_multiplexer,
)
from torch.utils.tensorboard import SummaryWriter
except ImportError:
return self.skipTest("Skip the test since TensorBoard is not installed")
self.temp_dirs = []
def create_summary_writer(self):
temp_dir = tempfile.TemporaryDirectory() # noqa: P201
self.temp_dirs.append(temp_dir)
return SummaryWriter(temp_dir.name)
def tearDown(self):
# Remove directories created by SummaryWriter
for temp_dir in self.temp_dirs:
temp_dir.cleanup()
@unittest.skipIf(
sys.version_info >= (3, 13),
"numpy failure, likely caused by old tensorboard version",
)
def test_event_handler(self):
with self.create_summary_writer() as w:
handle = register_event_handler(TensorboardEventHandler(w))
s = Stat(
"asdf",
(Aggregation.SUM, Aggregation.COUNT),
timedelta(hours=1),
5,
)
for i in range(10):
s.add(i)
self.assertEqual(s.count, 0)
unregister_event_handler(handle)
mul = event_multiplexer.EventMultiplexer()
mul.AddRunsFromDirectory(self.temp_dirs[-1].name)
mul.Reload()
scalar_dict = mul.PluginRunToTagToContent("scalars")
raw_result = {
tag: mul.Tensors(run, tag)
for run, run_dict in scalar_dict.items()
for tag in run_dict
}
scalars = {
tag: [e.tensor_proto.float_val[0] for e in events]
for tag, events in raw_result.items()
}
self.assertEqual(
scalars,
{
"asdf.sum": [10],
"asdf.count": [5],
},
)
if __name__ == "__main__":
run_tests()
|