1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
# Owner(s): ["module: unknown"]
from typing import Optional, List
import torch
from torch.testing._internal.common_utils import TestCase, run_tests, skipIfTorchDynamo
# End-to-end tests of features in native_functions.yaml
class FloatListWrapperModule(torch.nn.Module):
def forward(self, values, incr: Optional[List[float]]):
return torch._C._nn._test_optional_floatlist(values, incr)
class IntListWrapperModule(torch.nn.Module):
def forward(self, values, incr: Optional[List[int]]):
return torch._C._nn._test_optional_intlist(values, incr)
class TestNativeFunctions(TestCase):
def _lists_with_str(self):
return [
("foo",),
(2, "foo"),
("foo", 3),
["foo"],
[2, "foo"],
["foo", 3],
"foo",
]
def _test_raises_str_typeerror(self, fn):
for arg in self._lists_with_str():
self.assertRaisesRegex(TypeError, "str", lambda: fn(arg))
try:
fn(arg)
except TypeError as e:
print(e)
def test_symintlist_error(self):
x = torch.randn(1)
self._test_raises_str_typeerror(lambda arg: torch._C._nn.pad(x, arg))
def test_vararg_symintlist_error(self):
self._test_raises_str_typeerror(lambda arg: torch.rand(arg))
self._test_raises_str_typeerror(lambda arg: torch.rand(*arg))
def test_symintlist_error_with_overload_but_is_unique(self):
x = torch.randn(1)
y = torch.randn(1)
self._test_raises_str_typeerror(lambda arg: x.set_(y, 0, arg))
def test_symintlist_error_with_overload(self):
x = torch.randn(1)
self._test_raises_str_typeerror(lambda arg: x.view(arg))
def test_intlist_error_with_overload(self):
x = torch.randn(1)
self._test_raises_str_typeerror(lambda arg: torch._C._nn.pad(x, arg))
#
# optional float list
#
def do_test_optional_floatlist_with_module(self, module):
values = torch.tensor([1.5, 2.5], dtype=torch.float)
returned = module(values, None)
self.assertEqual(values, returned)
# Make sure that it's an alias, indicating that the operator saw a nullopt.
values[0] = 3.5
self.assertEqual(values, returned)
returned = module(values, [5.1, 4.1])
self.assertEqual(values, torch.tensor([3.5, 2.5], dtype=torch.float))
self.assertEqual(returned, torch.tensor([8.6, 6.6], dtype=torch.float))
def trace_optional_floatlist(self, const):
def wrapper(values):
return torch._C._nn._test_optional_floatlist(values, const)
return torch.jit.trace(wrapper, torch.tensor([1.5, 2.5], dtype=torch.float))
@skipIfTorchDynamo("Not a suitable test for TorchDynamo")
def test_optional_floatlist(self):
self.do_test_optional_floatlist_with_module(FloatListWrapperModule())
self.do_test_optional_floatlist_with_module(torch.jit.script(FloatListWrapperModule()))
traced_none = self.trace_optional_floatlist(None)
traced_list = self.trace_optional_floatlist([5.1, 4.1])
# Not really a module, just lets us use our two traced functions to handle
# the specific cases of passing None and [5.1, 4.1].
def fake_module(values, const):
if const is None:
return traced_none(values)
if const == [5.1, 4.1]:
return traced_list(values)
raise Exception("Invalid argument") # noqa: TRY002
self.do_test_optional_floatlist_with_module(fake_module)
def test_optional_floatlist_invalid(self):
with self.assertRaisesRegex(TypeError, "must be tuple of floats, not list"):
FloatListWrapperModule()(torch.zeros(1), ["hi"])
with self.assertRaisesRegex(RuntimeError, "value of type .* instead found type"):
torch.jit.script(FloatListWrapperModule())(torch.zeros(1), ["hi"])
with self.assertRaisesRegex(TypeError, "must be .* Tensor"):
FloatListWrapperModule()(torch.zeros(1), torch.zeros(1))
with self.assertRaisesRegex(RuntimeError, "value of type .* instead found type"):
torch.jit.script(FloatListWrapperModule())(torch.zeros(1), torch.zeros(1))
#
# optional int list
#
def do_test_optional_intlist_with_module(self, module):
values = torch.tensor([1, 2], dtype=torch.int)
returned = module(values, None)
self.assertEqual(values, returned)
# Make sure that it's an alias, indicating that the operator saw a nullopt.
values[0] = 3
self.assertEqual(values, returned)
returned = module(values, [5, 4])
self.assertEqual(values, torch.tensor([3, 2], dtype=torch.int))
self.assertEqual(returned, torch.tensor([8, 6], dtype=torch.int))
def trace_optional_intlist(self, const):
def wrapper(values):
return torch._C._nn._test_optional_intlist(values, const)
return torch.jit.trace(wrapper, torch.tensor([1, 2], dtype=torch.int))
@skipIfTorchDynamo("Not a suitable test for TorchDynamo")
def test_optional_intlist(self):
self.do_test_optional_intlist_with_module(IntListWrapperModule())
self.do_test_optional_intlist_with_module(torch.jit.script(IntListWrapperModule()))
traced_none = self.trace_optional_intlist(None)
traced_list = self.trace_optional_intlist([5, 4])
# Not really a module, just lets us use our two traced functions to handle
# the specific cases of passing None and [5, 4].
def fake_module(values, const):
if const is None:
return traced_none(values)
if const == [5, 4]:
return traced_list(values)
raise Exception("Invalid argument") # noqa: TRY002
self.do_test_optional_intlist_with_module(fake_module)
def test_optional_intlist_invalid(self):
with self.assertRaisesRegex(TypeError, "must be .* but found"):
IntListWrapperModule()(torch.zeros(1), [0.5])
with self.assertRaisesRegex(RuntimeError, "value of type .* instead found type"):
torch.jit.script(IntListWrapperModule())(torch.zeros(1), [0.5])
with self.assertRaisesRegex(TypeError, "must be .* Tensor"):
IntListWrapperModule()(torch.zeros(1), torch.zeros(1))
with self.assertRaisesRegex(RuntimeError, "value of type .* instead found type"):
torch.jit.script(IntListWrapperModule())(torch.zeros(1), torch.zeros(1))
#
# optional filled int list
#
def do_test_optional_filled_intlist_with_module(self, module):
values = torch.tensor([1, 2], dtype=torch.int)
returned = module(values, None)
self.assertEqual(values, returned)
# Make sure that it's an alias, indicating that the operator saw a nullopt.
values[0] = 3
self.assertEqual(values, returned)
returned = module(values, 10)
self.assertEqual(values, torch.tensor([3, 2], dtype=torch.int))
self.assertEqual(returned, torch.tensor([13, 12], dtype=torch.int))
def trace_optional_filled_intlist(self, const):
def wrapper(values):
return torch._C._nn._test_optional_filled_intlist(values, const)
return torch.jit.trace(wrapper, torch.tensor([1, 2], dtype=torch.int))
@skipIfTorchDynamo("Not a suitable test for TorchDynamo")
def test_optional_filled_intlist(self):
def f(n: int):
x = torch._C._nn._test_optional_filled_intlist(torch.tensor([1, 1], dtype=torch.int), (n, n))
y = torch._C._nn._test_optional_filled_intlist(torch.tensor([1, 1], dtype=torch.int), n)
return x, y
# eager
returned = f(10)
self.assertEqual(returned[0], returned[1])
# scripted
s = torch.jit.script(f)
returned = s(10)
self.assertEqual(returned[0], returned[1])
# traced
traced_none = self.trace_optional_filled_intlist(None)
traced_int = self.trace_optional_filled_intlist(10)
# Not really a module, just lets us use our two traced functions to handle
# the specific cases of passing None and 10.
def fake_module(values, const):
if const is None:
return traced_none(values)
if const == 10:
return traced_int(values)
raise Exception("Invalid argument") # noqa: TRY002
self.do_test_optional_filled_intlist_with_module(fake_module)
def test_string_defaults(self):
dummy = torch.rand(1)
fn = torch._C._nn._test_string_default
fn(dummy)
with self.assertRaisesRegex(RuntimeError, "A"):
fn(dummy, a="")
with self.assertRaisesRegex(RuntimeError, "B"):
fn(dummy, b="")
def f(x):
torch._C._nn._test_string_default(x)
scripted_fn = torch.jit.script(f)
scripted_fn(dummy)
if __name__ == '__main__':
run_tests()
|