File: test_ops.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (2837 lines) | stat: -rw-r--r-- 116,694 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
# Owner(s): ["module: unknown"]

import contextlib
import copy
import inspect
import itertools
import os
import re
import unittest
import warnings
from collections import defaultdict
from collections.abc import Sequence
from functools import partial
from importlib import import_module
from typing import Dict, List

import torch
import torch._prims as prims
import torch.utils._pytree as pytree
from torch._prims.context import TorchRefsMode
from torch._prims_common.wrappers import _maybe_remove_out_wrapper
from torch._subclasses.fake_tensor import FakeTensor, FakeTensorMode
from torch._subclasses.fake_utils import outputs_alias_inputs
from torch.testing import make_tensor
from torch.testing._internal import composite_compliance, opinfo
from torch.testing._internal.common_cuda import with_tf32_off
from torch.testing._internal.common_device_type import (
    deviceCountAtLeast,
    instantiate_device_type_tests,
    onlyCPU,
    onlyCUDA,
    onlyNativeDeviceTypesAnd,
    OpDTypes,
    ops,
    skipMeta,
)
from torch.testing._internal.common_dtype import (
    all_types_and_complex_and,
    floating_and_complex_types_and,
    integral_types_and,
)
from torch.testing._internal.common_methods_invocations import (
    BinaryUfuncInfo,
    op_db,
    ops_and_refs,
    python_ref_db,
    ReductionOpInfo,
    ReductionPythonRefInfo,
    skip,
    skipOps,
    SpectralFuncInfo,
    UnaryUfuncInfo,
    xfail,
)
from torch.testing._internal.common_utils import (
    clone_input_helper,
    first_sample,
    IS_CI,
    IS_FBCODE,
    is_iterable_of_tensors,
    IS_SANDCASTLE,
    noncontiguous_like,
    parametrize,
    run_tests,
    set_default_dtype,
    skipIfTorchDynamo,
    skipIfTorchInductor,
    slowTest,
    suppress_warnings,
    TEST_WITH_ASAN,
    TEST_WITH_ROCM,
    TEST_WITH_TORCHDYNAMO,
    TEST_WITH_TORCHINDUCTOR,
    TestCase,
    unMarkDynamoStrictTest,
)
from torch.utils._python_dispatch import TorchDispatchMode
from torch.utils._pytree import tree_map


assert torch.get_default_dtype() == torch.float32

# variant testing is only done with torch.float and torch.cfloat to avoid
#   excessive test times and maximize signal to noise ratio
_variant_ops = partial(
    ops, dtypes=OpDTypes.supported, allowed_dtypes=(torch.float, torch.cfloat)
)

# Get names of all the operators which have ref in their entry in OpInfo (testing infra)
#   except for elementwise unary operators (separately implemented in test/test_unary_ufuncs.py),
#   elementwise binary operators (separately implemented in test_binary_ufuncs.py),
#   reduction operations (separately impelemented in test_reductions.py),
#   and Spectral Functions (separately implemented for only 1D as of now, in test/test_spectral_ops.py)
_ref_test_ops = tuple(
    filter(
        lambda op: not isinstance(
            op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo)
        )
        and op.ref is not None,
        op_db,
    )
)


def reduction_dtype_filter(op):
    if (
        not isinstance(op, ReductionPythonRefInfo)
        or not op.supports_out
        or torch.int16 not in op.dtypes
    ):
        return False
    return "dtype" in inspect.getfullargspec(op.op).kwonlyargs


# Create a list of operators that are a subset of _ref_test_ops but don't have a
# numpy ref to compare them too, If both CPU and CUDA are compared to numpy
# then they do not need to be compared to each other
_ops_and_refs_with_no_numpy_ref = [op for op in ops_and_refs if op.ref is None]

aten = torch.ops.aten

meta_consistency_out_dtype_mismatch_xfails = {
    xfail("addbmm"),
    xfail("addmv"),
    xfail("alias_copy"),
    xfail("all"),
    xfail("amax"),
    xfail("amin"),
    xfail("aminmax"),
    xfail("any"),
    xfail("as_strided_copy"),
    xfail("baddbmm"),
    xfail("bucketize"),
    xfail("conj_physical"),
    xfail("cross"),
    xfail("cummax"),
    xfail("cummin"),
    xfail("diag"),
    xfail("diagonal_copy"),
    xfail("dot"),
    xfail("expand_copy"),
    xfail("fft.ihfft2"),
    xfail("fft.ihfftn"),
    xfail("frexp"),
    xfail("geqrf"),
    xfail("heaviside"),
    xfail("histc"),
    xfail("index_add"),
    xfail("index_copy"),
    xfail("index_select"),
    xfail("isin"),
    xfail("kthvalue"),
    xfail("lerp"),
    xfail("linalg.cross"),
    xfail("linalg.eigh"),
    xfail("linalg.eigvalsh"),
    xfail("linalg.ldl_factor"),
    xfail("linalg.ldl_factor_ex"),
    xfail("linalg.ldl_solve"),
    xfail("linalg.lu"),
    xfail("linalg.lu_factor"),
    xfail("linalg.lu_factor_ex"),
    xfail("linalg.lu_solve"),
    xfail("linalg.matrix_power"),
    xfail("linalg.qr"),
    xfail("linalg.slogdet"),
    xfail("linalg.solve"),
    xfail("linalg.solve_ex"),
    xfail("linalg.solve_triangular"),
    xfail("logcumsumexp"),
    xfail("lu_solve"),
    xfail("lu_unpack"),
    xfail("matmul"),
    xfail("mean"),
    xfail("mm"),
    xfail("mode"),
    xfail("msort"),
    xfail("multinomial"),
    xfail("mv"),
    xfail("nan_to_num"),
    xfail("nanmean"),
    xfail("narrow_copy"),
    xfail("native_batch_norm"),
    xfail("neg"),
    xfail("nn.functional.avg_pool3d"),
    xfail("nn.functional.gelu"),
    xfail("nn.functional.hardshrink"),
    xfail("nn.functional.linear"),
    xfail("nn.functional.logsigmoid"),
    xfail("nn.functional.softplus"),
    xfail("nn.functional.softshrink"),
    xfail("ormqr"),
    xfail("permute_copy"),
    xfail("qr"),
    xfail("renorm"),
    xfail("round"),
    xfail("round", "decimals_0"),
    xfail("scatter_reduce", "amax"),
    xfail("scatter_reduce", "amin"),
    xfail("scatter_reduce", "mean"),
    xfail("scatter_reduce", "prod"),
    xfail("scatter_reduce", "sum"),
    xfail("searchsorted"),
    xfail("slice_scatter"),
    xfail("softmax"),
    xfail("sort"),
    xfail("sparse.sampled_addmm"),
    xfail("squeeze_copy"),
    xfail("t_copy"),
    xfail("take"),
    xfail("transpose_copy"),
    xfail("tril"),
    xfail("triu"),
    xfail("unfold_copy"),
    xfail("unsqueeze_copy"),
    xfail("vdot"),
    xfail("view_copy"),
    xfail("where"),
    # Output has dynamic shape.
    # Does not have a meta kernel implementation.
    skip("linalg.lstsq"),
}


# Tests that apply to all operators and aren't related to any particular
#   system
@unMarkDynamoStrictTest
class TestCommon(TestCase):
    exact_dtype = True

    # Verifies, on teardown, that no OpInfo is still using dynamic dtypes in CI
    @classmethod
    def tearDownClass(cls):
        super().tearDownClass()

        if IS_CI:
            err_msg = (
                "The operator(s) below is(are) using dynamic_dtypes in the OpInfo entries."
                "This is OK for testing, but be sure to set the dtypes manually before landing your PR!"
            )
            # Assure no opinfo entry has dynamic_dtypes
            filtered_ops = list(filter(opinfo.utils.is_dynamic_dtype_set, op_db))
            for op in filtered_ops:
                fmt_str = opinfo.utils.str_format_dynamic_dtype(op)
                err_msg += "\n" + fmt_str

            assert len(filtered_ops) == 0, err_msg

    # Validates that each OpInfo works correctly on different CUDA devices
    @onlyCUDA
    @deviceCountAtLeast(2)
    @ops(op_db, allowed_dtypes=(torch.float32, torch.long))
    def test_multiple_devices(self, devices, dtype, op):
        for cuda_device_str in devices:
            cuda_device = torch.device(cuda_device_str)
            # NOTE: only tests on first sample
            samples = op.sample_inputs(cuda_device, dtype)
            sample = first_sample(self, samples)
            result = op(sample.input, *sample.args, **sample.kwargs)

            if isinstance(result, torch.Tensor):
                self.assertTrue(result.device == cuda_device)
            elif is_iterable_of_tensors(result):
                self.assertTrue(all(t.device == cuda_device for t in result))
            else:
                self.skipTest(
                    "Skipped! Only supports single tensor or iterable of tensor outputs."
                )

    def test_pointwise_tag_coverage(self):
        pytorch_dir = os.path.abspath(__file__ + "/../../")
        files = [
            "aten/src/ATen/native/UnaryOps.cpp",
            "aten/src/ATen/native/BinaryOps.cpp",
            "aten/src/ATen/native/PointwiseOps.cpp",
            "aten/src/ATen/native/TensorCompare.cpp",
        ]

        allowed_functions = (
            # reduction version of these operators
            "aten.max.default",
            "aten.max.dim",
            "aten.max.dim_max",
            "aten.max.names_dim",
            "aten.max.names_dim_max",
            "aten.max.unary_out",
            "aten.min.default",
            "aten.min.dim",
            "aten.min.dim_min",
            "aten.min.names_dim",
            "aten.min.names_dim_min",
            "aten.min.unary_out",
            # not pointwise
            "aten.isin.Tensor_Tensor",
            "aten.isin.Tensor_Tensor_out",
            "aten.isin.Tensor_Scalar",
            "aten.isin.Tensor_Scalar_out",
            "aten.isin.Scalar_Tensor",
            "aten.isin.Scalar_Tensor_out",
            "aten.mode.default",
            "aten.mode.dimname",
            "aten.mode.dimname_out",
            "aten.mode.values",
        )

        regex = re.compile(r"DEFINE_DISPATCH\(.*_stub")

        def get_opoverloadpacket_from_dispatch(kernel):
            if hasattr(torch.ops.aten, kernel):
                return kernel
            if hasattr(torch.ops.aten, f"__{kernel}__"):
                return f"__{kernel}__"
            if hasattr(torch.ops.aten, f"special_{kernel}"):
                return f"special_{kernel}"
            if "_" in kernel:
                kernel_split = kernel.split("_")
                new_kernel = "_".join(kernel_split[:-1])
                if hasattr(torch.ops.aten, new_kernel):
                    return new_kernel

            # could not find op from kernel dispatch string
            self.assertTrue(False)

        for file_name in files:
            with open(os.path.join(pytorch_dir, file_name)) as f:
                lines = f.read()
                matches = regex.findall(lines)
                for match in matches:
                    kernel = match[len("DEFINE_DISPATCH(") : -len("_stub")]

                    # no op definition for it, but defined with DEFINE_DISPATCH ?
                    if kernel == "trigamma":
                        continue

                    kernel = get_opoverloadpacket_from_dispatch(kernel)
                    overloadpacket = getattr(torch.ops.aten, kernel)

                    for overload_name in overloadpacket.overloads():
                        overload = getattr(overloadpacket, overload_name)

                        if not torch._C._dispatch_has_kernel(overload.name()):
                            continue

                        # TODO: tags are not propagated to generated overload,
                        # and there's no way of specifying them
                        if torch.Tag.generated in overload.tags:
                            continue

                        if str(overload) in allowed_functions:
                            continue

                        self.assertTrue(torch.Tag.pointwise in overload.tags)

    # Tests that the function and its (ndarray-accepting) reference produce the same
    #   values on the tensors from sample_inputs func for the corresponding op.
    # This test runs in double and complex double precision because
    # NumPy does computation internally using double precision for many functions
    # resulting in possible equality check failures.
    # skip windows case on CPU due to https://github.com/pytorch/pytorch/issues/129947
    @onlyNativeDeviceTypesAnd(["hpu"])
    @suppress_warnings
    @ops(_ref_test_ops, allowed_dtypes=(torch.float64, torch.long, torch.complex128))
    def test_numpy_ref(self, device, dtype, op):
        if (
            TEST_WITH_TORCHINDUCTOR
            and op.formatted_name
            in ("signal_windows_exponential", "signal_windows_bartlett")
            and dtype == torch.float64
            and "cuda" in device
            or "cpu" in device
        ):  # noqa: E121
            raise unittest.SkipTest("XXX: raises tensor-likes are not close.")

        # Sets the default dtype to NumPy's default dtype of double
        with set_default_dtype(torch.double):
            for sample_input in op.reference_inputs(device, dtype):
                self.compare_with_reference(
                    op, op.ref, sample_input, exact_dtype=(dtype is not torch.long)
                )

    # Tests that the cpu and gpu results are consistent
    @onlyCUDA
    @suppress_warnings
    @slowTest
    @ops(_ops_and_refs_with_no_numpy_ref, dtypes=OpDTypes.any_common_cpu_cuda_one)
    def test_compare_cpu(self, device, dtype, op):
        def to_cpu(arg):
            if isinstance(arg, torch.Tensor):
                return arg.to(device="cpu")
            return arg

        samples = op.reference_inputs(device, dtype)

        for sample in samples:
            cpu_sample = sample.transform(to_cpu)
            cuda_results = op(sample.input, *sample.args, **sample.kwargs)
            cpu_results = op(cpu_sample.input, *cpu_sample.args, **cpu_sample.kwargs)

            # output_process_fn_grad has a very unfortunate name
            # We use this function in linalg extensively to postprocess the inputs of functions
            # that are not completely well-defined. Think svd and muliplying the singular vectors by -1.
            # CPU and CUDA implementations of the SVD can return valid SVDs that are different.
            # We use this function to compare them.
            cuda_results = sample.output_process_fn_grad(cuda_results)
            cpu_results = cpu_sample.output_process_fn_grad(cpu_results)

            # Lower tolerance because we are running this as a `@slowTest`
            # Don't want the periodic tests to fail frequently
            self.assertEqual(cuda_results, cpu_results, atol=1e-3, rtol=1e-3)

    # Tests that experimental Python References can propagate shape, dtype,
    # and device metadata properly.
    # See https://github.com/pytorch/pytorch/issues/78050 for a discussion of stride propagation.
    @onlyNativeDeviceTypesAnd(["hpu"])
    @ops(python_ref_db)
    @skipIfTorchInductor("Takes too long for inductor")
    def test_python_ref_meta(self, device, dtype, op):
        CHECK_CONJ_SKIPS = {
            torch._refs.linalg.svd,
        }

        with FakeTensorMode() as mode:
            pass

        def _to_tensormeta(x):
            if isinstance(x, torch.Tensor):
                out = FakeTensor.from_tensor(x, mode)
                return out
            return x

        # TODO: iterate over requires_grad true/false
        for sample in op.reference_inputs(device, dtype, requires_grad=False):
            result = op(sample.input, *sample.args, **sample.kwargs)

            meta_sample = sample.transform(_to_tensormeta)
            try:
                with mode:
                    meta_result = op(
                        meta_sample.input, *meta_sample.args, **meta_sample.kwargs
                    )
            except torch._subclasses.fake_tensor.UnsupportedFakeTensorException:
                continue
            except torch._subclasses.fake_tensor.DataDependentOutputException:
                continue
            except torch._subclasses.fake_tensor.UnsupportedOperatorException:
                continue

            if isinstance(result, torch.Tensor):
                self.assertTrue(isinstance(meta_result, FakeTensor))
                prims.utils.compare_tensor_meta(
                    result, meta_result, check_conj=op.op not in CHECK_CONJ_SKIPS
                )
            elif isinstance(result, Sequence):
                for a, b in zip(result, meta_result):
                    if isinstance(a, torch.Tensor) or isinstance(b, torch.Tensor):
                        self.assertTrue(isinstance(b, FakeTensor))
                        prims.utils.compare_tensor_meta(
                            a, b, check_conj=op.op not in CHECK_CONJ_SKIPS
                        )

    def _ref_test_helper(
        self,
        ctx,
        device,
        dtype,
        op,
        skip_zero_numel=False,
        skip_zero_dim=False,
        skip_bfloat=False,
        skip_view_consistency=False,
    ):
        # NOTE: this test works by comparing the reference
        ex = None
        for sample in op.reference_inputs(device, dtype, requires_grad=False):
            if (
                isinstance(sample.input, torch.Tensor)
                and sample.input.numel() == 0
                and skip_zero_numel
            ):
                continue
            if (
                isinstance(sample.input, torch.Tensor)
                and sample.input.ndim == 0
                and skip_zero_dim
            ):
                continue

            if skip_bfloat and (
                (
                    isinstance(sample.input, torch.Tensor)
                    and sample.input.dtype == torch.bfloat16
                )
                or any(
                    isinstance(arg, torch.Tensor) and arg.dtype == torch.bfloat16
                    for arg in sample.args
                )
            ):
                continue
            with ctx():
                ref_result = op(sample.input, *sample.args, **sample.kwargs)
            torch_result = op.torch_opinfo(sample.input, *sample.args, **sample.kwargs)

            for a, b in zip(
                pytree.tree_leaves(ref_result), pytree.tree_leaves(torch_result)
            ):
                if isinstance(a, torch.Tensor) or isinstance(b, torch.Tensor):
                    prims.utils.compare_tensor_meta(a, b)
                    if (
                        getattr(op, "validate_view_consistency", True)
                        and not skip_view_consistency
                    ):
                        msg = (
                            f"The torch implementation {'returns' if b._is_view() else 'does not return'} "
                            f"a view, while the reference {'does' if a._is_view() else 'does not'}"
                        )
                        self.assertEqual(a._is_view(), b._is_view(), msg)

            # Computes the dtype the more precise computatino would occur in
            precise_dtype = torch.bool
            if prims.utils.is_integer_dtype(dtype):
                # Note: bool and integer dtypes do not have more
                # precise dtypes -- they simply must be close
                precise_dtype = dtype
            if prims.utils.is_float_dtype(dtype):
                precise_dtype = torch.double
            if prims.utils.is_complex_dtype(dtype):
                precise_dtype = torch.cdouble

            # Checks if the results are close
            try:
                self.assertEqual(
                    ref_result,
                    torch_result,
                    exact_stride=False,
                    exact_device=True,
                    exact_layout=True,
                    exact_is_coalesced=True,
                )
            except AssertionError as e:
                # Raises the error if the precise dtype comparison wouldn't be
                # different
                if dtype is precise_dtype:
                    raise e

                ex = e

            # Goes to next sample if these results are close
            if not ex:
                continue

            # If the results are not close, checks that the
            # reference is more accurate than the torch op
            def _make_precise(x):
                if isinstance(x, torch.dtype):
                    return precise_dtype
                if isinstance(x, torch.Tensor) and x.dtype is dtype:
                    return x.to(precise_dtype)
                return x

            precise_sample = sample.transform(_make_precise)
            precise_result = op.torch_opinfo(
                precise_sample.input, *precise_sample.args, **precise_sample.kwargs
            )

            def _distance(a, b):
                # Special-cases boolean comparisons
                if prims.utils.is_boolean_dtype(a.dtype):
                    assert b.dtype is torch.bool
                    return (a ^ b).sum()

                same = a == b
                if prims.utils.is_float_dtype(a.dtype) or prims.utils.is_complex_dtype(
                    a.dtype
                ):
                    same = torch.logical_or(
                        same, torch.logical_and(torch.isnan(a), torch.isnan(b))
                    )

                actual_error = torch.where(same, 0, torch.abs(a - b)).sum()
                return actual_error

            ref_distance = 0
            for a, b in zip(
                pytree.tree_leaves(ref_result), pytree.tree_leaves(precise_result)
            ):
                ref_distance = ref_distance + _distance(a, b)

            torch_distance = 0
            for a, b in zip(
                pytree.tree_leaves(torch_result), pytree.tree_leaves(precise_result)
            ):
                torch_distance = torch_distance + _distance(a, b)

            # TODO: consider adding some tolerance to this comparison
            msg = (
                f"Reference result was farther ({ref_distance}) from the precise "
                f"computation than the torch result was ({torch_distance})!"
            )
            self.assertTrue(ref_distance <= torch_distance, msg=msg)

        # Reports numerical accuracy discrepancies
        if ex is not None:
            msg = "Test passed because the reference was more accurate than the torch operator."
            warnings.warn(msg)

    # Tests that experimental Python References perform the same computation
    # as the operators they reference, when operator calls in the torch
    # namesapce are remapped to the refs namespace (torch.foo becomes refs.foo).
    @onlyNativeDeviceTypesAnd(["hpu"])
    @ops(python_ref_db)
    @skipIfTorchInductor("Takes too long for inductor")
    def test_python_ref(self, device, dtype, op):
        # In this test, primTorch refs call into the refs namespace
        # For example, a ref with torch.foo in it will calls refs.foo instead
        # Direct calls to refs and prims are not affected
        if (
            TEST_WITH_ROCM
            and (op.name == "_refs.fft.ihfftn" or op.name == "_refs.fft.ihfft2")
            and dtype == torch.float16
        ):
            self.skipTest("Skipped on ROCm")
        self._ref_test_helper(lambda: TorchRefsMode(strict=True), device, dtype, op)

    # Tests that experimental Python References perform the same computation
    # as the operators they reference, when operator calls in the torch
    # namespace are preserved (torch.foo remains torch.foo).
    @onlyNativeDeviceTypesAnd(["hpu"])
    @ops(python_ref_db)
    @skipIfTorchInductor("Takes too long for inductor")
    def test_python_ref_torch_fallback(self, device, dtype, op):
        # In this test, refs call into the torch namespace (after the initial invocation)
        # For example, a ref with torch.foo in it will call torch.foo instead of refs.foo
        # Direct calls to refs and prims are not translated
        if TEST_WITH_ROCM and op.name == "_refs.fft.ihfftn" and dtype == torch.float16:
            self.skipTest("Skipped on ROCm")
        if op.full_name == "_refs.div.floor_rounding" and dtype == torch.bfloat16:
            self.skipTest(
                "Skipped _refs.div.floor_rounding with bfloat16"
                "Divide by 0: _refs produces NaN, torch produces +/-inf"
            )
        self._ref_test_helper(contextlib.nullcontext, device, dtype, op)

    @unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
    @onlyCUDA
    @ops(python_ref_db)
    @parametrize("executor", ["aten"])
    @skipIfTorchInductor("Takes too long for inductor")
    def test_python_ref_executor(self, device, dtype, op, executor):
        if (
            TEST_WITH_ROCM
            and (op.name == "_refs.fft.ihfftn" or op.name == "_refs.fft.ihfft2")
            and dtype == torch.float16
        ):
            self.skipTest("Skipped on ROCm")
        from copy import copy

        from torch._prims.executor import make_traced

        op = copy(op)
        op.op = partial(make_traced(op.op), executor=executor)
        self._ref_test_helper(contextlib.nullcontext, device, dtype, op)

    @skipMeta
    @onlyNativeDeviceTypesAnd(["hpu"])
    @ops([op for op in op_db if op.error_inputs_func is not None], dtypes=OpDTypes.none)
    def test_errors(self, device, op):
        error_inputs = op.error_inputs(device)
        for ei in error_inputs:
            si = ei.sample_input
            with self.assertRaisesRegex(ei.error_type, ei.error_regex):
                out = op(si.input, *si.args, **si.kwargs)
                self.assertFalse(isinstance(out, type(NotImplemented)))

    @skipMeta
    @onlyNativeDeviceTypesAnd(["hpu"])
    @ops(
        [op for op in op_db if op.error_inputs_sparse_func is not None],
        dtypes=OpDTypes.none,
    )
    @parametrize(
        "layout",
        (
            torch.sparse_csr,
            torch.sparse_csc,
            torch.sparse_bsr,
            torch.sparse_bsc,
            torch.sparse_coo,
        ),
    )
    def test_errors_sparse(self, device, op, layout):
        for ei in op.error_inputs_sparse(device, layout):
            si = ei.sample_input
            with self.assertRaisesRegex(ei.error_type, ei.error_regex):
                out = op(si.input, *si.args, **si.kwargs)
                self.assertFalse(isinstance(out, type(NotImplemented)))

    @skipMeta
    @onlyNativeDeviceTypesAnd(["hpu"])
    @ops(
        [op for op in python_ref_db if op.error_inputs_func is not None],
        dtypes=OpDTypes.none,
    )
    @skipIfTorchInductor("Takes too long for inductor")
    def test_python_ref_errors(self, device, op):
        mode = FakeTensorMode()
        with mode:
            pass

        def _to_tensormeta(x):
            if isinstance(x, torch.Tensor):
                return FakeTensor.from_tensor(x, mode)
            return x

        error_inputs = op.error_inputs(device)
        for ei in error_inputs:
            si = ei.sample_input
            meta_sample = si.transform(_to_tensormeta)
            with self.assertRaisesRegex(ei.error_type, ei.error_regex):
                op(meta_sample.input, *meta_sample.args, **meta_sample.kwargs)

    # Tests that the function produces the same result when called with
    #   noncontiguous tensors.
    @with_tf32_off
    @onlyNativeDeviceTypesAnd(["hpu"])
    @suppress_warnings
    @ops(op_db, allowed_dtypes=(torch.float32, torch.long, torch.complex64))
    def test_noncontiguous_samples(self, device, dtype, op):
        test_grad = dtype in op.supported_backward_dtypes(torch.device(device).type)
        sample_inputs = op.sample_inputs(device, dtype, requires_grad=test_grad)
        for sample_input in sample_inputs:
            t_inp, t_args, t_kwargs = (
                sample_input.input,
                sample_input.args,
                sample_input.kwargs,
            )
            noncontig_sample = sample_input.noncontiguous()
            n_inp, n_args, n_kwargs = (
                noncontig_sample.input,
                noncontig_sample.args,
                noncontig_sample.kwargs,
            )

            # validates forward
            expected = op(t_inp, *t_args, **t_kwargs)
            actual = op(n_inp, *n_args, **n_kwargs)

            self.assertEqual(actual, expected)

            # Validate backward
            # Short-circuits if the op doesn't support grad in this device x dtype
            if not test_grad:
                continue

            expected = sample_input.output_process_fn_grad(expected)
            actual = sample_input.output_process_fn_grad(actual)

            if isinstance(expected, torch.Tensor):
                grad_for_expected = torch.randn_like(expected)
                grad_for_actual = noncontiguous_like(grad_for_expected)
            elif isinstance(expected, Sequence):
                # Filter output elements that do not require grad
                expected = [
                    t
                    for t in expected
                    if isinstance(t, torch.Tensor) and t.requires_grad
                ]
                actual = [
                    n for n in actual if isinstance(n, torch.Tensor) and n.requires_grad
                ]
                grad_for_expected = [torch.randn_like(t) for t in expected]
                grad_for_actual = [noncontiguous_like(n) for n in grad_for_expected]
            else:
                # Nothing to do if it returns a scalar or things like that
                continue

            # Concatenate inputs into a tuple
            t_inputs = (
                (t_inp,) + t_args
                if isinstance(t_inp, torch.Tensor)
                else tuple(t_inp) + t_args
            )
            n_inputs = (
                (n_inp,) + n_args
                if isinstance(n_inp, torch.Tensor)
                else tuple(n_inp) + n_args
            )

            # Filter the elemnts that are tensors that require grad
            t_input_tensors = [
                t for t in t_inputs if isinstance(t, torch.Tensor) and t.requires_grad
            ]
            n_input_tensors = [
                n for n in n_inputs if isinstance(n, torch.Tensor) and n.requires_grad
            ]

            self.assertEqual(len(t_input_tensors), len(n_input_tensors))

            # Some functions may not use all the inputs to generate gradients. One of the
            # few examples of this "odd" behaviour is F.hinge_embedding_loss
            t_grads = torch.autograd.grad(
                expected, t_input_tensors, grad_for_expected, allow_unused=True
            )
            n_grads = torch.autograd.grad(
                actual, n_input_tensors, grad_for_actual, allow_unused=True
            )

            msg = "Got different gradients for contiguous / non-contiguous inputs wrt input {}."
            for i, (t, n) in enumerate(zip(t_grads, n_grads)):
                self.assertEqual(t, n, msg=msg.format(i))

    # Separates one case from the following test_out because many ops don't properly implement the
    #   incorrectly sized out parameter warning properly yet
    # Cases test here:
    #   - out= with the correct dtype and device, but the wrong shape
    @ops(ops_and_refs, dtypes=OpDTypes.none)
    def test_out_warning(self, device, op):
        if TEST_WITH_TORCHDYNAMO and op.name == "_refs.clamp":
            self.skipTest("flaky")
        # Prefers running in float32 but has a fallback for the first listed supported dtype
        supported_dtypes = op.supported_dtypes(self.device_type)
        if len(supported_dtypes) == 0:
            self.skipTest("Skipped! Op has not supported dtypes on this device.")
        dtype = (
            torch.float32
            if torch.float32 in supported_dtypes
            else next(iter(supported_dtypes))
        )

        # Ops from python_ref_db point to python decomps that are potentially
        # wrapped with `torch._prims_common.wrappers.out_wrapper`. Unwrap these
        # ops before testing to avoid clashing with OpInfo.supports_out
        if not op.supports_out:
            op = copy.copy(op)
            op.op = _maybe_remove_out_wrapper(op.op)

        samples = op.sample_inputs(device, dtype)
        for sample in samples:
            # calls it normally to get the expected result
            expected = op(sample.input, *sample.args, **sample.kwargs)
            op_out = partial(op, sample.input, *sample.args, **sample.kwargs)

            # Short-circuits if output is not a single tensor or an
            #   iterable of tensors
            if not isinstance(expected, torch.Tensor) and not is_iterable_of_tensors(
                expected, include_empty=True
            ):
                self.skipTest(
                    "Skipped! Only supports single tensor or iterable of tensor outputs."
                )

            # Validates the op doesn't support out if it claims not to
            if not op.supports_out:
                with self.assertRaises(Exception):
                    assert op_out(out=expected) != NotImplemented
                return

            # A wrapper around map that works with single tensors and always
            #   instantiates the map. Used below to apply transforms to
            #   single tensor and iterable tensor outputs.
            def _apply_out_transform(fn, out):
                if isinstance(out, torch.Tensor):
                    return fn(out)

                # assumes (see above) that out is an iterable of tensors
                return tuple(map(fn, out))

            # Extracts strides from a tensor or iterable of tensors into a tuple
            def _extract_strides(out):
                if isinstance(out, torch.Tensor):
                    return (out.stride(),)

                # assumes (see above) that out is an iterable of tensors
                return tuple(t.stride() for t in out)

            # Extracts data pointers from a tensor or iterable of tensors into a tuple
            # NOTE: only extracts on the CPU and CUDA device types since some
            #   device types don't have storage
            def _extract_data_ptrs(out):
                if self.device_type != "cpu" and self.device_type != "cuda":
                    return ()

                if isinstance(out, torch.Tensor):
                    return (out.data_ptr(),)

                # assumes (see above) that out is an iterable of tensors
                return tuple(t.data_ptr() for t in out)

            @suppress_warnings
            def _compare_out(transform, *, compare_strides_and_data_ptrs=True):
                out = _apply_out_transform(transform, expected)
                original_strides = _extract_strides(out)
                original_ptrs = _extract_data_ptrs(out)

                op_out(out=out)
                final_strides = _extract_strides(out)
                final_ptrs = _extract_data_ptrs(out)

                self.assertEqual(expected, out)

                if compare_strides_and_data_ptrs:
                    stride_msg = (
                        f"Strides are not the same! Original strides were {original_strides} "
                        f"and strides are now {final_strides}"
                    )
                    self.assertEqual(original_strides, final_strides, msg=stride_msg)
                    self.assertEqual(original_ptrs, final_ptrs)

            # Case Zero: out= with the correct dtype and device, but the wrong shape
            #   Expected behavior: if nonempty, resize with a warning.
            def _case_zero_transform(t):
                wrong_shape = list(t.shape)

                if len(wrong_shape) == 0:
                    # Handles scalar tensor case (empty list)
                    wrong_shape = [2]
                else:
                    wrong_shape[-1] = wrong_shape[-1] + 1
                return make_tensor(wrong_shape, dtype=t.dtype, device=t.device)

            # Verifies the out values are correct
            _compare_out(_case_zero_transform, compare_strides_and_data_ptrs=False)

            # Additionally validates that the appropriate warning is thrown if a nonempty
            #   tensor is resized.
            def _any_nonempty(out):
                if isinstance(out, torch.Tensor):
                    return out.numel() > 0

                return any(x.numel() > 0 for x in out)

            out = _apply_out_transform(_case_zero_transform, expected)
            msg_fail = "Resized a non-empty tensor but did not warn about it."
            if _any_nonempty(out):
                with self.assertWarnsRegex(
                    UserWarning, "An output with one or more elements", msg=msg_fail
                ):
                    op_out(out=out)

    # Validates ops implement the correct out= behavior
    # See https://github.com/pytorch/pytorch/wiki/Developer-FAQ#how-does-out-work-in-pytorch
    #   for a description of the correct behavior
    # Validates the following cases:
    #   - Case 0: out has the correct shape, dtype, and device but is full of extremal values
    #   - Case 1: out has the correct shape, dtype, and device but is noncontiguous
    #   - Case 2: out has the correct dtype and device, but is zero elements
    #   - Case 3: out has the correct shape and dtype, but is on a different device type
    #   - Case 4: out has the correct shape and device, but a dtype that cannot
    #       "safely" cast to
    #
    # Case 3 and 4 are slightly different when the op is a factory function:
    #   - if device, dtype are NOT passed, any combination of dtype/device should be OK for out
    #   - if device, dtype are passed, device and dtype should match
    @ops(ops_and_refs, dtypes=OpDTypes.any_one)
    def test_out(self, device, dtype, op):
        # Prefers running in float32 but has a fallback for the first listed supported dtype
        samples = op.sample_inputs(device, dtype)

        # Ops from python_ref_db point to python decomps that are potentially
        # wrapped with `torch._prims_common.wrappers.out_wrapper`. Unwrap these
        # ops before testing to avoid clashing with OpInfo.supports_out
        if not op.supports_out:
            op = copy.copy(op)
            op.op = _maybe_remove_out_wrapper(op.op)

        for sample in samples:
            # calls it normally to get the expected result
            expected = op(sample.input, *sample.args, **sample.kwargs)
            op_out = partial(op, sample.input, *sample.args, **sample.kwargs)

            # Short-circuits if output is not a single tensor or an
            #   iterable of tensors
            if not isinstance(expected, torch.Tensor) and not is_iterable_of_tensors(
                expected, include_empty=True
            ):
                self.skipTest(
                    "Skipped! Only supports single tensor or iterable of tensor outputs."
                )

            # Validates the op doesn't support out if it claims not to
            if not op.supports_out:
                with self.assertRaises(Exception):
                    assert op_out(out=expected) != NotImplemented
                return

            # A wrapper around map that works with single tensors and always
            #   instantiates the map. Used below to apply transforms to
            #   single tensor and iterable tensor outputs.
            def _apply_out_transform(fn, out):
                if isinstance(out, torch.Tensor):
                    return fn(out)

                # assumes (see above) that out is an iterable of tensors
                return tuple(map(fn, out))

            # Extracts strides from a tensor or iterable of tensors into a tuple
            def _extract_strides(out):
                if isinstance(out, torch.Tensor):
                    return (out.stride(),)

                # assumes (see above) that out is an iterable of tensors
                return tuple(t.stride() for t in out)

            # Extracts data pointers from a tensor or iterable of tensors into a tuple
            # NOTE: only extracts on the CPU and CUDA device types since some
            #   device types don't have storage
            def _extract_data_ptrs(out):
                if self.device_type != "cpu" and self.device_type != "cuda":
                    return ()

                if isinstance(out, torch.Tensor):
                    return (out.data_ptr(),)

                # assumes (see above) that out is an iterable of tensors
                return tuple(t.data_ptr() for t in out)

            def _compare_out(transform, *, compare_strides_and_data_ptrs=True):
                out = _apply_out_transform(transform, expected)
                original_strides = _extract_strides(out)
                original_ptrs = _extract_data_ptrs(out)

                op_out(out=out)
                final_strides = _extract_strides(out)
                final_ptrs = _extract_data_ptrs(out)
                self.assertEqual(expected, out)

                if compare_strides_and_data_ptrs:
                    stride_msg = (
                        "Strides are not the same! "
                        f"Original strides were {original_strides} and strides are now {final_strides}"
                    )
                    self.assertEqual(original_strides, final_strides, msg=stride_msg)
                    self.assertEqual(original_ptrs, final_ptrs)

            # Case 0: out= with the correct shape, dtype, and device
            #   but NaN values for floating point and complex tensors, and
            #   maximum values for integer tensors.
            #   Expected behavior: out= values have no effect on the computation.
            def _case_zero_transform(t):
                try:
                    info = torch.iinfo(t.dtype)
                    return torch.full_like(t, info.max)
                except TypeError:
                    # for non-integer types fills with NaN
                    return torch.full_like(t, float("nan"))

            _compare_out(_case_zero_transform)

            # Case 1: out= with the correct shape, dtype, and device,
            #   but noncontiguous.
            #   Expected behavior: strides are respected and `out` storage is not changed.
            def _case_one_transform(t):
                return make_tensor(
                    t.shape, dtype=t.dtype, device=t.device, noncontiguous=True
                )

            _compare_out(_case_one_transform)

            # Case 2: out= with the correct dtype and device, but has no elements.
            #   Expected behavior: resize without warning.
            def _case_two_transform(t):
                return make_tensor((0,), dtype=t.dtype, device=t.device)

            _compare_out(_case_two_transform, compare_strides_and_data_ptrs=False)

            # Also validates that no warning is thrown when this out is resized
            out = _apply_out_transform(_case_two_transform, expected)
            with warnings.catch_warnings(record=True) as caught:
                warnings.simplefilter("always")
                op_out(out=out)

            # Verifies no warning is a resize warning
            for w in caught:
                if "An output with one or more elements" in str(w.message):
                    self.fail(
                        "Resizing an out= argument with no elements threw a resize warning!"
                    )

            # Case 3: out= with correct shape and dtype, but wrong device.
            #   Expected behavior: throws an error.
            #   This case is ignored on CPU to allow some scalar operations to succeed.
            factory_fn_msg = (
                "\n\nNOTE: If your op is a factory function (i.e., it accepts TensorOptions) you should mark its "
                "OpInfo with `is_factory_function=True`."
            )

            if torch.device(device).type != "cpu":
                wrong_device = "cpu"

                def _case_three_transform(t):
                    return make_tensor(t.shape, dtype=t.dtype, device=wrong_device)

                out = _apply_out_transform(_case_three_transform, expected)

                if op.is_factory_function and sample.kwargs.get("device", None) is None:
                    op_out(out=out)
                else:
                    msg_fail = (
                        f"Expected RuntimeError when calling with input.device={device} and out.device={wrong_device}."
                    ) + factory_fn_msg
                    with self.assertRaises(RuntimeError, msg=msg_fail):
                        op_out(out=out)

            # Case 4: out= with correct shape and device, but a dtype
            #   that output cannot be "safely" cast to (long).
            #   Expected behavior: error.
            # NOTE: this case is filtered by dtype since some ops produce
            #   bool tensors, for example, which can be safely cast to any
            #   dtype. It is applied when single tensors are floating point or complex
            #   dtypes, or if an op returns multiple tensors when at least one such
            #   tensor is a floating point or complex dtype.
            _dtypes = floating_and_complex_types_and(torch.float16, torch.bfloat16)
            if (
                isinstance(expected, torch.Tensor)
                and expected.dtype in _dtypes
                or (
                    not isinstance(expected, torch.Tensor)
                    and any(t.dtype in _dtypes for t in expected)
                )
            ):

                def _case_four_transform(t):
                    return make_tensor(t.shape, dtype=torch.long, device=t.device)

                out = _apply_out_transform(_case_four_transform, expected)
                msg_fail = "Expected RuntimeError when doing an unsafe cast!"
                msg_fail = (
                    msg_fail
                    if not isinstance(expected, torch.Tensor)
                    else (
                        "Expected RuntimeError when doing an unsafe cast from a result of dtype "
                        f"{expected.dtype} into an out= with dtype torch.long"
                    )
                ) + factory_fn_msg

                if op.is_factory_function and sample.kwargs.get("dtype", None) is None:
                    op_out(out=out)
                else:
                    with self.assertRaises(RuntimeError, msg=msg_fail):
                        op_out(out=out)

    @ops(
        [
            op
            for op in op_db
            if op.supports_out and (op.supports_autograd or op.is_factory_function)
        ],
        dtypes=OpDTypes.supported,
        allowed_dtypes=[torch.float, torch.cfloat],
    )
    def test_out_requires_grad_error(self, device, dtype, op):
        sample = first_sample(self, op.sample_inputs(device, dtype))

        # Call op to get prototype for out arguments
        expect = op(sample.input, *sample.args, **sample.kwargs)
        any_requires_grad = False

        def set_requires_grad(x):
            nonlocal any_requires_grad
            if isinstance(x, torch.Tensor) and (
                x.is_floating_point() or x.is_complex()
            ):
                any_requires_grad = True
                x.requires_grad_(True)
            return x

        out = pytree.tree_map_(set_requires_grad, expect)
        if not any_requires_grad:
            # Skip ops without any floating point outputs, e.g. isnan
            return

        msg = (
            "functions with out=... arguments don't support automatic "
            "differentiation, but one of the arguments requires grad."
        )
        with self.assertRaises(RuntimeError, msg=msg):
            op(sample.input, *sample.args, **sample.kwargs, out=out)

    @ops(filter(reduction_dtype_filter, ops_and_refs), dtypes=(torch.int16,))
    def test_out_integral_dtype(self, device, dtype, op):
        def helper(with_out, expectFail, op_to_test, inputs, *args, **kwargs):
            out = None
            try:
                if with_out:
                    out = torch.empty(0, dtype=torch.int32, device=device)
                    op_to_test(inputs, *args, out=out, **kwargs)
                else:
                    out = op_to_test(inputs, *args, **kwargs)
                self.assertFalse(expectFail)
            except RuntimeError as err:
                self.assertEqual(
                    str(err), "dtype argument and out dtype must match in reduction"
                )
                self.assertTrue(expectFail)
            return out

        samples = op.sample_inputs(device, dtype)
        for sample in samples:
            if "dtype" not in sample.kwargs:
                helper(False, False, op, sample.input, *sample.args, **sample.kwargs)
                helper(True, False, op, sample.input, *sample.args, **sample.kwargs)
                sample.kwargs["dtype"] = torch.int16
                helper(False, False, op, sample.input, *sample.args, **sample.kwargs)
                helper(True, True, op, sample.input, *sample.args, **sample.kwargs)
                sample.kwargs["dtype"] = torch.int32
                helper(False, False, op, sample.input, *sample.args, **sample.kwargs)
                helper(True, False, op, sample.input, *sample.args, **sample.kwargs)
            else:
                helper(False, False, op, sample.input, *sample.args, **sample.kwargs)
                helper(
                    True,
                    sample.kwargs["dtype"] != torch.int32,
                    op,
                    sample.input,
                    *sample.args,
                    **sample.kwargs,
                )

    # Tests that the forward and backward passes of operations produce the
    #   same values for the cross-product of op variants (method, inplace)
    #   against eager's gold standard op function variant
    @_variant_ops(op_db)
    def test_variant_consistency_eager(self, device, dtype, op):
        # Acquires variants (method variant, inplace variant, operator variant, inplace_operator variant, aliases)

        method = op.method_variant
        inplace = op.inplace_variant
        operator = op.operator_variant
        inplace_operator = op.inplace_operator_variant

        # list of all inplace ops: inplace variant + alias inplace variants if exist
        inplace_ops = [inplace, inplace_operator]
        variants = [method, inplace, operator, inplace_operator]
        operators = [operator, inplace_operator]

        for a_op in op.aliases:
            variants.append(a_op.op)
            variants.append(a_op.method_variant)
            variants.append(a_op.inplace_variant)
            inplace_ops.append(a_op.inplace_variant)

        inplace_variants = tuple(filter(None, inplace_ops))
        variants = tuple(filter(None, variants))
        operators = tuple(filter(None, operators))

        _requires_grad = dtype in op.supported_backward_dtypes(
            torch.device(device).type
        )

        include_conjugated_inputs = op.test_conjugated_samples and dtype.is_complex
        samples = op.sample_inputs(
            device,
            dtype,
            requires_grad=_requires_grad,
            include_conjugated_inputs=include_conjugated_inputs,
        )
        samples = list(samples)

        def _test_consistency_helper(samples, variants):
            for sample in samples:
                # TODO: Check grad for all Tensors requiring grad if sample.input is TensorList
                tensor = (
                    sample.input
                    if isinstance(sample.input, torch.Tensor)
                    else sample.input[0]
                )

                # Computes function forward and backward values
                tensor.grad = None
                expected_forward = op(sample.input, *sample.args, **sample.kwargs)
                expected_grad = None

                output_process_fn_grad = (
                    sample.output_process_fn_grad
                    if sample.output_process_fn_grad
                    else lambda x: x
                )

                # Skips inplace variants if the output dtype is not the same as
                #   the input dtype
                skip_inplace = False
                if (
                    isinstance(expected_forward, torch.Tensor)
                    and expected_forward.dtype is not tensor.dtype
                ):
                    skip_inplace = True

                # TODO: backward consistency only supported for single tensor outputs
                # TODO: backward consistency only checked on sample.input, not all
                #   tensor inputs
                # TODO: update to handle checking grads of all tensor inputs as
                #   derived from each tensor output
                if isinstance(
                    expected_forward, torch.Tensor
                ) and dtype in op.supported_backward_dtypes(torch.device(device).type):
                    out = output_process_fn_grad(expected_forward).sum()
                    if out.dtype.is_complex:
                        out = out.abs()
                    out.backward()
                    expected_grad = tensor.grad

                # Test eager consistency
                for variant in variants:
                    # Skips inplace ops
                    if variant in inplace_ops and skip_inplace:
                        continue

                    # Compares variant's forward
                    # Note: copies the to-be-modified input when testing the inplace variant
                    tensor.grad = None
                    cloned = (
                        clone_input_helper(sample.input)
                        if variant in inplace_ops
                        else sample.input
                    )

                    if variant in inplace_ops and sample.broadcasts_input:
                        with self.assertRaises(
                            RuntimeError,
                            msg=(
                                "inplace variant either incorrectly allowed "
                                f"resizing or you have marked the sample {sample.summary()}"
                                " incorrectly with `broadcasts_self=True"
                            ),
                        ):
                            variant_forward = variant(
                                cloned, *sample.args, **sample.kwargs
                            )
                        continue

                    if variant in operators and sample.kwargs:
                        # skip samples with kwargs for operator variants
                        continue

                    variant_forward = variant(cloned, *sample.args, **sample.kwargs)
                    self.assertEqual(expected_forward, variant_forward)

                    # Compares variant's backward
                    if expected_grad is not None and (
                        variant not in inplace_ops or op.supports_inplace_autograd
                    ):
                        out = output_process_fn_grad(variant_forward).sum()
                        if out.dtype.is_complex:
                            out = out.abs()
                        out.backward()
                        self.assertEqual(expected_grad, tensor.grad)

        _test_consistency_helper(samples, variants)

        def _test_inplace_preserve_storage(samples, variants):
            for sample in samples:
                # Skips inplace variants if the output dtype is not the same as
                #   the input dtype
                expected_forward = op(sample.input, *sample.args, **sample.kwargs)
                tensor = (
                    sample.input
                    if isinstance(sample.input, torch.Tensor)
                    else sample.input[0]
                )
                skip_inplace = False
                if (
                    isinstance(expected_forward, torch.Tensor)
                    and expected_forward.dtype is not tensor.dtype
                ):
                    skip_inplace = True
                if skip_inplace:
                    return
                for variant in variants:
                    cloned = (
                        clone_input_helper(sample.input)
                        if variant in inplace_ops
                        else sample.input
                    )
                    inp_tensor = (
                        cloned if isinstance(cloned, torch.Tensor) else cloned[0]
                    )
                    data_ptr = inp_tensor.data_ptr()
                    if variant in operators and sample.kwargs:
                        # skip samples with kwargs for operator variants
                        continue

                    variant_forward = variant(cloned, *sample.args, **sample.kwargs)
                    # TODO Support non-tensor outputs if they exist for inplace ops
                    if isinstance(variant_forward, torch.Tensor):
                        self.assertEqual(
                            data_ptr, variant_forward.data_ptr(), atol=0, rtol=0
                        )
                    else:
                        self.assertTrue(
                            False,
                            "Non-tensor outputs for inplace ops are not supported",
                        )

        if len(inplace_ops) > 0:
            inplace_samples = list(
                filter(lambda sample: not sample.broadcasts_input, samples)
            )
            _test_inplace_preserve_storage(inplace_samples, inplace_variants)

    # Reference testing for operations in complex32 against complex64.
    # NOTE: We test against complex64 as NumPy doesn't have a complex32 equivalent dtype.
    @ops(op_db, allowed_dtypes=(torch.complex32,))
    def test_complex_half_reference_testing(self, device, dtype, op):
        if not op.supports_dtype(torch.complex32, device):
            unittest.skip("Does not support complex32")

        for sample in op.sample_inputs(device, dtype):
            actual = op(sample.input, *sample.args, **sample.kwargs)
            # sample.transform applies the lambda to torch.Tensor and torch.dtype.
            # However, we only want to apply it to Tensors with dtype `torch.complex32`..
            transformed_sample = sample.transform(
                lambda x: x.to(torch.complex64)
                if isinstance(x, torch.Tensor) and x.dtype is torch.complex32
                else x
            )
            expected = op(
                transformed_sample.input,
                *transformed_sample.args,
                **transformed_sample.kwargs,
            )
            # Since range of chalf is much less compared to cfloat,
            # we get `inf`s easily (eg. with `pow`, `exp`),
            # so we cast `cfloat` back to `chalf`.
            expected = tree_map(
                lambda x: x.to(torch.complex32)
                if isinstance(x, torch.Tensor) and x.dtype is torch.complex64
                else x,
                expected,
            )

            # `exact_dtype` is False because for ops like real, imag
            # we get different dtypes for `actual` and `expected`
            # `chalf` input -> `half` output
            # `cfloat` input -> `float` output
            self.assertEqual(actual, expected, exact_dtype=False)

    @ops(op_db, allowed_dtypes=(torch.bool,))
    def test_non_standard_bool_values(self, device, dtype, op):
        # Test boolean values other than 0x00 and 0x01 (gh-54789)
        def convert_boolean_tensors(x):
            if not isinstance(x, torch.Tensor) or x.dtype != torch.bool:
                return x

            # Map False -> 0 and True -> Random value in [2, 255]
            true_vals = torch.randint(
                2, 255, x.shape, dtype=torch.uint8, device=x.device
            )
            false_vals = torch.zeros((), dtype=torch.uint8, device=x.device)
            x_int = torch.where(x, true_vals, false_vals)

            ret = x_int.view(torch.bool)
            self.assertEqual(ret, x)
            return ret

        for sample in op.sample_inputs(device, dtype):
            expect = op(sample.input, *sample.args, **sample.kwargs)

            transformed = sample.transform(convert_boolean_tensors)
            actual = op(transformed.input, *transformed.args, **transformed.kwargs)

            self.assertEqual(expect, actual)

    # Validates that each OpInfo specifies its forward and backward dtypes
    #   correctly for CPU and CUDA devices
    @skipMeta
    @onlyNativeDeviceTypesAnd(["hpu"])
    @ops(ops_and_refs, dtypes=OpDTypes.none)
    def test_dtypes(self, device, op):
        # Check complex32 support only if the op claims.
        # TODO: Once the complex32 support is better, we should add check for complex32 unconditionally.
        device_type = torch.device(device).type
        include_complex32 = (
            (torch.complex32,)
            if op.supports_dtype(torch.complex32, device_type)
            else ()
        )

        # dtypes to try to backward in
        allowed_backward_dtypes = floating_and_complex_types_and(
            *((torch.half, torch.bfloat16) + include_complex32)
        )

        # lists for (un)supported dtypes
        supported_dtypes = set()
        unsupported_dtypes = set()
        supported_backward_dtypes = set()
        unsupported_backward_dtypes = set()
        dtype_error: Dict[torch.dtype, Exception] = {}

        def unsupported(dtype, e):
            dtype_error[dtype] = e
            unsupported_dtypes.add(dtype)
            if dtype in allowed_backward_dtypes:
                unsupported_backward_dtypes.add(dtype)

        for dtype in all_types_and_complex_and(
            *((torch.half, torch.bfloat16, torch.bool) + include_complex32)
        ):
            # tries to acquire samples - failure indicates lack of support
            requires_grad = dtype in allowed_backward_dtypes
            try:
                samples = tuple(
                    op.sample_inputs(device, dtype, requires_grad=requires_grad)
                )
            except Exception as e:
                unsupported(dtype, e)
                continue

            for sample in samples:
                # tries to call operator with the sample - failure indicates
                #   lack of support
                try:
                    result = op(sample.input, *sample.args, **sample.kwargs)
                    supported_dtypes.add(dtype)
                except Exception as e:
                    # NOTE: some ops will fail in forward if their inputs
                    #   require grad but they don't support computing the gradient
                    #   in that type! This is a bug in the op!
                    unsupported(dtype, e)
                    continue

                # Checks for backward support in the same dtype, if the input has
                # one or more tensors requiring grad
                def _tensor_requires_grad(x):
                    if isinstance(x, dict):
                        for v in x.values():
                            if _tensor_requires_grad(v):
                                return True
                    if isinstance(x, (list, tuple)):
                        for a in x:
                            if _tensor_requires_grad(a):
                                return True
                    if isinstance(x, torch.Tensor) and x.requires_grad:
                        return True

                    return False

                requires_grad = (
                    _tensor_requires_grad(sample.input)
                    or _tensor_requires_grad(sample.args)
                    or _tensor_requires_grad(sample.kwargs)
                )
                if not requires_grad:
                    continue

                try:
                    result = sample.output_process_fn_grad(result)
                    if isinstance(result, torch.Tensor):
                        backward_tensor = result
                    elif isinstance(result, Sequence) and isinstance(
                        result[0], torch.Tensor
                    ):
                        backward_tensor = result[0]
                    else:
                        continue

                    # Note: this grad may not have the same dtype as dtype
                    # For functions like complex (float -> complex) or abs
                    #   (complex -> float) the grad tensor will have a
                    #   different dtype than the input.
                    #   For simplicity, this is still modeled as these ops
                    #   supporting grad in the input dtype.
                    grad = torch.randn_like(backward_tensor)
                    backward_tensor.backward(grad)
                    supported_backward_dtypes.add(dtype)
                except Exception as e:
                    dtype_error[dtype] = e
                    unsupported_backward_dtypes.add(dtype)

        # Checks that dtypes are listed correctly and generates an informative
        #   error message

        supported_forward = supported_dtypes - unsupported_dtypes
        partially_supported_forward = supported_dtypes & unsupported_dtypes
        unsupported_forward = unsupported_dtypes - supported_dtypes
        supported_backward = supported_backward_dtypes - unsupported_backward_dtypes
        partially_supported_backward = (
            supported_backward_dtypes & unsupported_backward_dtypes
        )
        unsupported_backward = unsupported_backward_dtypes - supported_backward_dtypes

        device_type = torch.device(device).type

        claimed_forward = set(op.supported_dtypes(device_type))
        supported_but_unclaimed_forward = supported_forward - claimed_forward
        claimed_but_unsupported_forward = claimed_forward & unsupported_forward

        claimed_backward = set(op.supported_backward_dtypes(device_type))
        supported_but_unclaimed_backward = supported_backward - claimed_backward
        claimed_but_unsupported_backward = claimed_backward & unsupported_backward

        # Partially supporting a dtype is not an error, but we print a warning
        if (len(partially_supported_forward) + len(partially_supported_backward)) > 0:
            msg = f"Some dtypes for {op.name} on device type {device_type} are only partially supported!\n"
            if len(partially_supported_forward) > 0:
                msg = (
                    msg
                    + f"The following dtypes only worked on some samples during forward: {partially_supported_forward}.\n"
                )
            if len(partially_supported_backward) > 0:
                msg = (
                    msg
                    + f"The following dtypes only worked on some samples during backward: {partially_supported_backward}.\n"
                )
            print(msg)

        if (
            len(supported_but_unclaimed_forward)
            + len(claimed_but_unsupported_forward)
            + len(supported_but_unclaimed_backward)
            + len(claimed_but_unsupported_backward)
        ) == 0:
            return

        # Reference operators often support additional dtypes, and that's OK
        if op in python_ref_db:
            if (
                len(claimed_but_unsupported_forward)
                + len(claimed_but_unsupported_backward)
            ) == 0:
                return

        # Generates error msg
        msg = f"The supported dtypes for {op.name} on device type {device_type} are incorrect!\n"
        if len(supported_but_unclaimed_forward) > 0:
            msg = (
                msg
                + "The following dtypes worked in forward but are not listed by the OpInfo: "
                + f"{supported_but_unclaimed_forward}.\n"
            )
        if len(supported_but_unclaimed_backward) > 0:
            msg = (
                msg
                + "The following dtypes worked in backward but are not listed by the OpInfo: "
                + f"{supported_but_unclaimed_backward}.\n"
            )
        if len(claimed_but_unsupported_forward) > 0:
            msg = (
                msg
                + "The following dtypes did not work in forward but are listed by the OpInfo: "
                + f"{claimed_but_unsupported_forward}.\n"
            )
        if len(claimed_but_unsupported_backward) > 0:
            msg = (
                msg
                + "The following dtypes did not work in backward "
                + f"but are listed by the OpInfo: {claimed_but_unsupported_backward}.\n"
            )

        all_claimed_but_unsupported = set.union(
            claimed_but_unsupported_backward, claimed_but_unsupported_forward
        )
        if all_claimed_but_unsupported:
            msg += "Unexpected failures raised the following errors:\n"
            for dtype in all_claimed_but_unsupported:
                msg += f"{dtype} - {dtype_error[dtype]}\n"

        self.fail(msg)

    # Validates that each OpInfo that sets promotes_int_to_float=True does as it says
    @skipMeta
    @onlyNativeDeviceTypesAnd(["hpu"])
    @ops(
        (op for op in op_db if op.promotes_int_to_float),
        allowed_dtypes=integral_types_and(torch.bool),
    )
    def test_promotes_int_to_float(self, device, dtype, op):
        for sample in op.sample_inputs(device, dtype):
            output = op(sample.input, *sample.args, **sample.kwargs)
            if not output.dtype.is_floating_point:
                self.fail(
                    f"The OpInfo sets `promotes_int_to_float=True`, but {dtype} was promoted to {output.dtype}."
                )

    # Checks whether running the operations on both CPU and meta devices raise errors
    # when the output tensors have mismatching data-types (i.e. data-types that are
    # different from the expected one).
    #
    # The idea is that the meta implementations should correctly reflect on the behavior
    # of other concrete devices (e.g. CPU and CUDA).
    @onlyCPU
    @ops([op for op in op_db if op.supports_out], allowed_dtypes=(torch.float32,))
    @skipOps(
        "TestCommon",
        "test_meta_consistency_out_dtype_mismatch",
        meta_consistency_out_dtype_mismatch_xfails,
    )
    @skipIfTorchDynamo("meta device runs only on eager")
    def test_meta_consistency_out_dtype_mismatch(self, device, dtype, op):
        samples = op.sample_inputs(device, dtype)

        for i, sample in enumerate(samples):
            input, args, kwargs = (sample.input, sample.args, sample.kwargs)

            try:
                # Call the functional version of the operation, using a real device, so that
                # we get the actual expected result.
                expected = op(input, *args, **kwargs)

                if isinstance(expected, tuple):
                    # Some operations return named tuples. However, pytree does not work well
                    # with that, so we turn it into a plain tuple.
                    expected = tuple(expected)
            except Exception:
                # If that doesn't work out, go to the next sample.
                continue

            def run_on(dev):
                # Create new outputs in the desired device, with a mismatching data type of
                # the same kind.
                out = pytree.tree_map_only(
                    torch.Tensor,
                    lambda t: torch.empty_like(t, device=dev, dtype=torch.float64),
                    expected,
                )

                # Move inputs to the desired device.
                arguments = (input, args, kwargs)
                arguments = pytree.tree_map_only(
                    torch.Tensor, lambda t: t.to(dev), arguments
                )
                # Also, replace every instance of 'cpu' arguments by whatever the desired
                # device really should be.
                arguments = pytree.tree_map_only(
                    torch.device, lambda d: torch.device(dev), arguments
                )
                arguments = pytree.tree_map_only(
                    str, lambda v: dev if v == device else v, arguments
                )
                input_, args_, kwargs_ = arguments

                # Try running the operation, and return the raised error, if any.
                try:
                    op(input_, *args_, **kwargs_, out=out)
                except Exception as e:
                    return e

            # Run the operation with the sample arguments on both CPU and meta devices, capturing
            # the raised error, if any.
            device_err = run_on(device)
            meta_err = run_on("meta")

            # Check whether they disagree on the result.
            #
            # In case there is an inconsistency of whether an error was raised using the real device,
            # but not when using the meta device, we raise a RuntimeError, chaining with the captured
            # one.
            #
            # We could just assertEquals here, but chaining the errors is more informative.
            if device_err is None and meta_err is not None:
                raise RuntimeError(f"{device} didn't fail, but meta did.") from meta_err
            elif device_err is not None and meta_err is None:
                raise RuntimeError(f"{device} failed, but meta didn't.") from device_err


@unMarkDynamoStrictTest
class TestCompositeCompliance(TestCase):
    # Checks if the operator (if it is composite) is written to support most
    # backends and Tensor subclasses. See "CompositeImplicitAutograd Compliance"
    # in aten/src/ATen/native/README.md for more details
    @unittest.skipIf(
        IS_FBCODE or IS_SANDCASTLE, "__torch_dispatch__ does not work in fbcode"
    )
    @ops(op_db, allowed_dtypes=(torch.float,))
    def test_operator(self, device, dtype, op):
        samples = op.sample_inputs(device, dtype, requires_grad=False)

        for sample in samples:
            args = [sample.input] + list(sample.args)
            kwargs = sample.kwargs
            composite_compliance.check_with_mode(op, args, kwargs, self.assertEqual)
            composite_compliance.check_all_permutations(
                op, args, kwargs, self.assertEqual
            )

    @unittest.skipIf(
        IS_FBCODE or IS_SANDCASTLE, "__torch_dispatch__ does not work in fbcode"
    )
    @ops([op for op in op_db if op.supports_autograd], allowed_dtypes=(torch.float,))
    def test_backward(self, device, dtype, op):
        samples = op.sample_inputs(device, dtype, requires_grad=True)

        for sample in samples:
            args = [sample.input] + list(sample.args)
            kwargs = sample.kwargs
            # We pass assertEqual so that decorators like `toleranceOverride`
            # actually work (otherwise they silently do nothing!)
            composite_compliance.check_backward_formula(
                op.get_op(),
                args,
                kwargs,
                sample.output_process_fn_grad,
                op.gradcheck_wrapper,
                self.assertEqual,
            )

    @unittest.skipIf(
        IS_FBCODE or IS_SANDCASTLE, "__torch_dispatch__ does not work in fbcode"
    )
    @ops(op_db, allowed_dtypes=(torch.float,))
    def test_forward_ad(self, device, dtype, op):
        if torch.float not in op.supported_backward_dtypes(device):
            raise unittest.SkipTest("Does not support autograd")

        if not op.supports_forward_ad:
            raise unittest.SkipTest("Does not support forward_ad")

        samples = op.sample_inputs(device, dtype, requires_grad=True)

        for sample in samples:
            args = [sample.input] + list(sample.args)
            kwargs = sample.kwargs
            # We pass assertEqual so that decorators like `toleranceOverride`
            # actually work (otherwise they silently do nothing!)
            composite_compliance.check_forward_ad_formula(
                op.get_op(), args, kwargs, op.gradcheck_wrapper, self.assertEqual
            )

    @ops(op_db, allowed_dtypes=(torch.float,))
    def test_cow_input(self, device, dtype, op):
        samples = op.sample_inputs(device, dtype, requires_grad=op.supports_autograd)

        def is_strided_tensor(arg):
            return torch.is_tensor(arg) and arg.layout == torch.strided

        def check_ignore_materialize(idx_or_kw, allow_list):
            return (allow_list is not None) and (idx_or_kw in allow_list)

        def check_cow_input(
            arg,
            arg_copy,
            idx_or_kw,
            backward_or_forward="forward",
            supports_cow_input_no_materialize=op.supports_cow_input_no_materialize_forward,
            allow_list=op.allow_cow_input_materialize_forward,
        ):
            arg_name = (
                f"Argument {idx_or_kw}"
                if isinstance(idx_or_kw, int)
                else f"Keyword argument '{idx_or_kw}'"
            ) + f" during {backward_or_forward} call"

            if is_strided_tensor(arg):
                is_cow = torch._C._is_cow_tensor(arg)

                if supports_cow_input_no_materialize and not check_ignore_materialize(
                    idx_or_kw, allow_list
                ):
                    self.assertTrue(
                        is_cow,
                        msg=(
                            f"{arg_name} unexpectedly materializes. "
                            f"Either set `supports_cow_input_no_materialize_{backward_or_forward}=False` "
                            "in this operation's OpInfo, add the arg to the OpInfo's "
                            f"`allow_cow_input_materialize_{backward_or_forward}` list, or change the "
                            "implementation to avoid materialization."
                        ),
                    )

                if is_cow:
                    self.assertTrue(
                        torch.allclose(arg, arg_copy, rtol=0, atol=0, equal_nan=True),
                        msg=(
                            f"{arg_name} avoided materialization, "
                            "but the operation mutated its data."
                        ),
                    )

        for sample in samples:
            args_raw = [sample.input] + list(sample.args)
            kwargs_raw = sample.kwargs
            args_copy = []
            args = []
            kwargs_copy = {}
            kwargs = {}

            # Convert strided tensor inputs to COW tensors and make copies of
            # all inputs
            for idx, arg in enumerate(args_raw):
                if is_strided_tensor(arg):
                    args_copy.append(arg.detach().clone())
                    args.append(torch._lazy_clone(arg))
                else:
                    if torch.is_tensor(arg):
                        args_copy.append(arg.detach().clone())
                    else:
                        args_copy.append(copy.deepcopy(arg))
                    args.append(arg)

            for kw, arg in kwargs_raw.items():
                if is_strided_tensor(arg):
                    kwargs_copy[kw] = arg.detach().clone()
                    kwargs[kw] = torch._lazy_clone(arg)
                else:
                    if torch.is_tensor(arg):
                        kwargs_copy[kw] = arg.detach().clone()
                    else:
                        kwargs_copy[kw] = copy.deepcopy(arg)
                    kwargs[kw] = arg

            leaf_tensors = composite_compliance.gather_leaf_tensors(args, kwargs)

            # Call forward op
            results_raw = op.get_op()(*args, **kwargs)

            # Check that COW inputs remain COW after the forward op is executed
            for idx, arg in enumerate(args):
                check_cow_input(arg, args_copy[idx], idx)

            for kw, arg in kwargs.items():
                check_cow_input(arg, kwargs_copy[kw], kw)

            # Call backward op if it is supported. This part of the test is
            # based on `composite_compliance.check_backward_formula`
            if (
                op.supports_autograd
                and len(leaf_tensors) > 0
                and not op.skip_cow_input_backward
            ):
                if sample.output_process_fn_grad is not None:
                    results_raw = sample.output_process_fn_grad(results_raw)

                leaf_results = pytree.tree_leaves(results_raw)
                results = [
                    r
                    for r in leaf_results
                    if isinstance(r, torch.Tensor) and r.requires_grad
                ]

                all_results_strided = all(
                    is_strided_tensor(result) for result in results
                )

                # Only test backward if the results are strided tensors
                if all_results_strided:
                    output_grads_raw = [
                        torch.ones(r.shape, device=r.device, dtype=r.dtype)
                        for r in results
                    ]
                    output_grads_copy = []
                    output_grads = []

                    # Convert output grads to COW tensors and make copies
                    for output_grad in output_grads_raw:
                        output_grads_copy.append(output_grad.detach().clone())
                        output_grads.append(torch._lazy_clone(output_grad))

                    input_grads = torch.autograd.grad(
                        results,
                        leaf_tensors,
                        output_grads,
                        allow_unused=True,
                        retain_graph=True,
                    )

                    # Check that COW inputs remain COW after the backward op is executed
                    for idx, arg in enumerate(args):
                        check_cow_input(
                            arg,
                            args_copy[idx],
                            idx,
                            backward_or_forward="backward",
                            supports_cow_input_no_materialize=op.supports_cow_input_no_materialize_backward,
                            allow_list=op.allow_cow_input_materialize_backward,
                        )

                    # Check that COW inputs remain COW after the backward op is executed
                    for idx, output_grad in enumerate(output_grads):
                        check_cow_input(
                            output_grad,
                            output_grads_copy[idx],
                            f"output grad {idx}",
                            backward_or_forward="backward",
                            supports_cow_input_no_materialize=op.supports_cow_input_no_materialize_backward,
                            allow_list=op.allow_cow_input_materialize_backward,
                        )

    @ops(op_db, allowed_dtypes=(torch.float,))
    def test_view_replay(self, device, dtype, op):
        def _assert_match_metadata(a, b):
            self.assertEqual(a.size(), b.size())
            self.assertEqual(a.stride(), b.stride())
            self.assertEqual(a.storage_offset(), b.storage_offset())
            self.assertEqual(a.device, b.device)
            self.assertEqual(a.dtype, b.dtype)

        # ensure view replay is enabled
        with torch.autograd._force_original_view_tracking(True):
            for sample in op.sample_inputs(device, dtype, requires_grad=False):
                inp = sample.input
                outs = op(inp, *sample.args, **sample.kwargs)
                if not isinstance(outs, (tuple, List)):
                    outs = [outs]

                # for all outputs that are views of the input, we should be able to replay the
                # forward and reverse views via a functioning view_func() / rev_view_func().
                for out in outs:
                    if not (
                        isinstance(out, torch.Tensor)
                        and out._is_view()
                        and out._base is inp
                    ):
                        continue

                    # forward view_func
                    new_inp = inp.clone()
                    _assert_match_metadata(new_inp, inp)
                    new_out = out._view_func_unsafe(new_inp)
                    _assert_match_metadata(new_out, out)
                    self.assertEqual(new_out, out)

                    # reverse view_func
                    new_out = out.detach()
                    new_inp = out._rev_view_func_unsafe(new_out)
                    _assert_match_metadata(new_inp, inp)
                    self.assertTrue(new_inp._is_view())
                    self.assertTrue(new_inp._base is new_out)


@unMarkDynamoStrictTest
class TestMathBits(TestCase):
    # Tests that
    # 1. The operator's output for physically conjugated/negated tensors and conjugate/negative view tensors
    # produces the same value
    # 2. The gradients are same in both cases mentioned in (1)
    # 3. If the operator's inplace variant is supported, tests that the inplace operation
    #    produces the correct value when called on a conjugate/negative view tensor and that the output
    #    has its conj/neg bit set to true
    # This test only runs for C -> R and C -> C functions
    # TODO: add tests for `R->C` functions
    # Note: This test runs for functions that take both tensors and tensorlists as input.
    def _test_math_view(
        self,
        device,
        dtype,
        op,
        samples,
        math_op_physical,
        math_op_view,
        is_bit_set,
        out_type,
    ):
        inplace_variant = op.inplace_variant

        # helper function to clone and conjugate/negate the input if its a tensor
        # else clone the sequence and conjugate/negate the first element in the sequence
        # If a requires_grad argument is provided the tensor being conjugated/negated will
        # have its requires_grad set to that value.
        def clone_and_perform_view(input, **kwargs):
            if isinstance(input, torch.Tensor):
                requires_grad = kwargs.get("requires_grad", input.requires_grad)
                with torch.no_grad():
                    # Ensure view represents the original sample input
                    input = math_op_physical(input)
                # Note: .conj() is not called under no_grad mode since it's not allowed to modify a
                # view created in no_grad mode. Here it's ok to do so, so as a workaround we call conj
                # before resetting the requires_grad field for input
                input = math_op_view(input)
                assert input.is_leaf
                return input.requires_grad_(requires_grad)

            if isinstance(input, Sequence):
                out = list(map(clone_input_helper, input))
                out[0] = clone_and_perform_view(out[0])
                return tuple(out)

        for sample in samples:
            tensor = (
                sample.input
                if isinstance(sample.input, torch.Tensor)
                else sample.input[0]
            )
            cloned1 = clone_and_perform_view(sample.input)

            # Computes function forward value with a physically conjugated/negated tensor and
            # a conj/neg view tensor and verifies that the output in both case are equal.
            expected_forward = op(sample.input, *sample.args, **sample.kwargs)
            forward_with_mathview = op(cloned1, *sample.args, **sample.kwargs)
            self.assertEqual(expected_forward, forward_with_mathview)

            # If the op has an inplace variant, and the input doesn't require broadcasting
            # and has the same dtype as output, verify that the inplace operation on a conjugated/negated
            # input produces correct output, and the output tensor has the conj/neg bit set to True
            if inplace_variant is not None and not sample.broadcasts_input:
                cloned2 = clone_and_perform_view(tensor, requires_grad=False)
                if (
                    isinstance(expected_forward, torch.Tensor)
                    and expected_forward.dtype is tensor.dtype
                ):
                    inplace_forward = inplace_variant(
                        cloned2, *sample.args, **sample.kwargs
                    )
                    self.assertTrue(is_bit_set(inplace_forward))
                    self.assertEqual(inplace_forward, expected_forward)

            # TODO: backward consistency only supported for single tensor outputs
            # TODO: backward consistency only checked on sample.input, not all
            #   tensor inputs
            # TODO: update to handle checking grads of all tensor inputs as
            #   derived from each tensor output
            if (
                isinstance(expected_forward, torch.Tensor)
                and expected_forward.requires_grad
            ):
                output_process_fn_grad = sample.output_process_fn_grad or (lambda x: x)
                expected_forward = output_process_fn_grad(expected_forward)
                forward_with_mathview = output_process_fn_grad(forward_with_mathview)

                tensor = (
                    sample.input
                    if isinstance(sample.input, torch.Tensor)
                    else sample.input[0]
                )
                expected_forward.sum().abs().backward(retain_graph=True)
                forward_with_mathview.sum().abs().backward(retain_graph=True)
                if tensor.grad is not None:
                    cloned1_tensor = (
                        cloned1 if isinstance(cloned1, torch.Tensor) else cloned1[0]
                    )
                    self.assertEqual(tensor.grad, cloned1_tensor.grad)

                    tensor.grad, cloned1_tensor.grad = None, None

                    # a repeat of the above test if output is not complex valued
                    if out_type(expected_forward):
                        grad = torch.randn_like(expected_forward)
                        expected_forward.backward(grad)
                        forward_with_mathview.backward(
                            math_op_view(math_op_physical(grad))
                        )

                        self.assertEqual(tensor.grad, cloned1_tensor.grad)

    @ops(ops_and_refs, allowed_dtypes=(torch.cfloat,))
    def test_conj_view(self, device, dtype, op):
        if not op.test_conjugated_samples:
            self.skipTest("Operation doesn't support conjugated inputs.")
        math_op_physical = torch.conj_physical
        math_op_view = torch.conj
        _requires_grad = torch.cfloat in op.supported_backward_dtypes(
            torch.device(device).type
        )
        is_bit_set = torch.is_conj
        samples = op.sample_inputs(device, dtype, requires_grad=_requires_grad)
        self._test_math_view(
            device,
            dtype,
            op,
            samples,
            math_op_physical,
            math_op_view,
            is_bit_set,
            torch.is_complex,
        )

    @ops(ops_and_refs, allowed_dtypes=(torch.double,))
    def test_neg_view(self, device, dtype, op):
        if not op.test_neg_view:
            self.skipTest("Operation not tested with tensors with negative bit.")
        math_op_physical = torch.neg
        math_op_view = torch._neg_view
        is_bit_set = torch.is_neg
        samples = op.sample_inputs(device, dtype, requires_grad=op.supports_autograd)
        self._test_math_view(
            device,
            dtype,
            op,
            samples,
            math_op_physical,
            math_op_view,
            is_bit_set,
            lambda x: True,
        )

    @ops(ops_and_refs, allowed_dtypes=(torch.cdouble,))
    def test_neg_conj_view(self, device, dtype, op):
        if not op.test_neg_view:
            self.skipTest("Operation not tested with tensors with negative bit.")
        if not op.test_conjugated_samples:
            self.skipTest("Operation doesn't support conjugated inputs.")

        def math_op_physical(x):
            return -x.conj_physical()

        def math_op_view(x):
            return torch._neg_view(x).conj()

        def is_bit_set(x):
            return torch.is_neg(x) and torch.is_conj(x)

        _requires_grad = dtype in op.supported_backward_dtypes(
            torch.device(device).type
        )
        samples = op.sample_inputs(device, dtype, requires_grad=_requires_grad)
        # Only test one sample
        samples = itertools.islice(samples, 1)
        self._test_math_view(
            device,
            dtype,
            op,
            samples,
            math_op_physical,
            math_op_view,
            is_bit_set,
            torch.is_complex,
        )


# input strides and size may have been altered due to the result of an inplace op
def check_inplace_view(func, input, rs, input_size, input_strides):
    if func is None:
        return
    # TODO: extend this test to test ops with multiple outputs and ops like native_batch_norm(_legit).out
    # which mutate not necessarily the first input.
    if isinstance(rs, torch.Tensor) and rs is input:
        unequal_size = rs.size() != input_size
        unequal_strides = rs.stride() != input_strides
        # resize_ should probably have inplace_view tag. Not adding the tag since it
        # breaks some codegen logic
        if unequal_size or unequal_strides:
            if isinstance(func, torch._ops.OpOverloadPacket):
                func = func.default
            # Reference: https://github.com/pytorch/pytorch/issues/78759
            if func is not torch.ops.aten.resize_.default:
                # TODO: use self.assertIn when we have separate tests for each tag
                assert torch.Tag.inplace_view in func.tags


# A mode that when enabled runs correctness checks to ensure
# that operators have expected tags based on their input and
# output tensor properties
class _TestTagsMode(TorchDispatchMode):
    def __torch_dispatch__(self, func, types, args=(), kwargs=None):
        if isinstance(args[0], torch.Tensor):
            old_size = args[0].size()
            old_stride = args[0].stride()
            rs = func(*args, **kwargs)
            check_inplace_view(func, args[0], rs, old_size, old_stride)
        else:
            rs = func(*args, **kwargs)
        return rs


# Test to verify the correctness for tags in `tags.yaml`, also available for access through `torch.Tags`
@unMarkDynamoStrictTest
class TestTags(TestCase):
    @onlyCPU
    @ops(ops_and_refs, dtypes=OpDTypes.any_one)
    def test_tags(self, device, dtype, op):
        samples = op.sample_inputs(device, dtype, requires_grad=False)
        for sample in samples:
            # TODO: Test tags for ops that return a list of tensors
            input = sample.input
            if isinstance(input, torch.Tensor):
                old_size = input.size()
                old_stride = input.stride()
                with _TestTagsMode():
                    rs = op(input, *sample.args, **sample.kwargs)
                # TODO: add test for aliases: https://github.com/pytorch/pytorch/issues/78761
                aten_name = op.aten_name if op.aten_name is not None else op.name
                opoverloadpacket = getattr(torch.ops.aten, aten_name, None)
                check_inplace_view(opoverloadpacket, input, rs, old_size, old_stride)


class TestSelfKwarg(TestCase):
    def test_self_kwargs(self):
        """Verify that we can call the aten ops with all kwargs even if the
        argument's name is "self"
        """
        torch.ops.aten.reshape.default(self=torch.rand(1, 2), shape=[2])
        torch.ops.aten.min.default(self=torch.rand(100))


@unMarkDynamoStrictTest
class TestRefsOpsInfo(TestCase):
    import_paths = [
        "_refs",
        "_refs.special",
        "_refs.nn.functional",
        "_refs.fft",
        "_refs._conversions",
    ]
    module_alls = [
        (path, import_module(f"torch.{path}").__all__) for path in import_paths
    ]
    ref_ops_names = tuple(
        itertools.chain.from_iterable(
            [f"{path}.{op}" for op in module_all] for path, module_all in module_alls
        )
    )
    ref_db_names = {ref_op.name for ref_op in python_ref_db}

    # TODO: References that do not have an entry in python_ref_db
    skip_ref_ops = {
        "_refs.alias",
        "_refs.bitwise_right_shift",
        "_refs.copy_to",
        "_refs.empty_permuted",
        "_refs.empty_strided",
        "_refs.equal",
        "_refs.full",
        "_refs.full_like",
        "_refs.is_complex",
        "_refs.to",
        "_refs.mvlgamma",
        "_refs.ones",
        "_refs.ones_like",
        "_refs.special.expit",
        "_refs.std_var",
        "_refs.swap_axes",
        "_refs.uniform",
        "_refs.scalar_tensor",
        "_refs.trunc_divide",
        "_refs.zero",
        "_refs.zeros",
        "_refs.zeros_like",
        "_refs.rfloordiv",
        "_refs.rtruediv",
        "_refs.rpow",
        # These should be tested with their out-of-place counterparts
        "_refs.index_add_",
        "_refs.index_copy_",
        "_refs.index_fill_",
        "_refs.native_group_norm",
    }

    not_in_decomp_table = {
        # duplicated in _decomp and _refs
        "_refs.nn.functional.group_norm",
        "_refs.nn.functional.mse_loss",
        "_refs.floor_divide",
        # duplicated as refs do not have decent support for advanced indexing
        "_refs.index_copy",
        "_refs.index_copy_",
        "_refs.index_add",
        "_refs.index_add_",
        # these are not aten ops?
        "_refs._conversions.bfloat16",
        "_refs._conversions.bool",
        "_refs._conversions.byte",
        "_refs._conversions.char",
        "_refs._conversions.double",
        "_refs._conversions.float",
        "_refs._conversions.half",
        "_refs._conversions.int",
        "_refs._conversions.long",
        "_refs._conversions.short",
        "_refs._conversions.chalf",
        "_refs._conversions.cfloat",
        "_refs._conversions.cdouble",
        "_refs.broadcast_shapes",
        "_refs.broadcast_tensors",
        "_refs.mvlgamma",
        "_refs.nn.functional.layer_norm",
        "_refs.nn.functional.tanhshrink",
        "_refs.nn.functional.triplet_margin_loss",
        "_refs.rfloordiv",
        "_refs.rtruediv",
        "_refs.rpow",
        # CompositeImplicitAutograd
        "_refs.allclose",
        "_refs.atleast_1d",
        "_refs.atleast_2d",
        "_refs.atleast_3d",
        "_refs.broadcast_to",
        "_refs.chunk",
        "_refs.column_stack",
        "_refs.contiguous",
        "_refs.dsplit",
        "_refs.dstack",
        "_refs.fill",
        "_refs.fill_",
        "_refs.flatten",
        "_refs.fliplr",
        "_refs.flipud",
        "_refs.float_power",
        "_refs.hsplit",
        "_refs.hstack",
        "_refs.isclose",
        "_refs.isfinite",
        "_refs.isreal",
        "_refs.istft",
        "_refs.log_softmax",
        "_refs.movedim",
        "_refs.narrow",
        "_refs.nn.functional.dropout",
        "_refs.nn.functional.l1_loss",
        "_refs.nn.functional.smooth_l1_loss",
        "_refs.nn.functional.log_softmax",
        "_refs.nn.functional.poisson_nll_loss",
        "_refs.nn.functional.softmax",
        "_refs.nn.functional.softmin",
        "_refs.positive",
        "_refs.ravel",
        "_refs.reshape",
        "_refs.softmax",
        "_refs.special.expit",
        "_refs.special.log_softmax",
        "_refs.special.softmax",
        "_refs.square",
        "_refs.stft",
        "_refs.T",
        "_refs.take_along_dim",
        "_refs.tensor_split",
        "_refs.to",
        "_refs.true_divide",
        "_refs.trunc_divide",
        "_refs.vsplit",
        "_refs.vstack",
        "_refs.linalg.matrix_norm",
        "_refs.linalg.norm",
        "_refs.linalg.svd",
        "_refs.linalg.svdvals",
        "_refs.unflatten",
        "_refs.sum_to_size",
        # ref implementation missing kwargs
        "_refs.full_like",  # missing "layout"
        "_refs.scalar_tensor",  # missing "layout"
        # other
        "_refs.block_diag",  # only refs._block_diag_iterable is in decomposition table
        "_refs.empty",  # intentional; direct empty is faster and has less guards
        "_refs.empty_permuted",  # intentional; direct empty is faster and has less guards
        "_refs.expand_as",
        "_refs.as_strided",  # _prims._as_strided_meta: "reduce() of empty sequence with no initial value"
        "_refs.copy_to",  # torch._C._jit_get_operation: No such operator aten::copy_to
        "_refs.equal",  # 'bool' object has no attribute 'dtype'
        "_refs.conj",  # Calls _prims.conj
        "_refs.real",
        "_refs.imag",
        "_refs.reshape_as",
        "_refs.view_as",
        "_refs.view_as_complex",  # TorchInductor does not support complex at the moment.
        # the decompositions for these ops are slightly different
        # because of out handling
        "_refs.var_mean",
        "_refs.std_mean",
        "_refs.native_layer_norm",
    }

    @parametrize("op", ref_ops_names)
    def test_refs_are_in_python_ref_db(self, op):
        inplace = op[-1] == "_"
        if op in self.skip_ref_ops:
            raise unittest.SkipTest(f"{op} does not have an entry in python_ref_db")
        elif inplace:
            self.assertNotIn(
                op,
                self.ref_db_names,
                msg=f"{op} is an in-place operation and should not have an OpInfo",
            )
        else:
            # Intentionally don't use assertIn to avoid printing the
            # (very large) container
            self.assertTrue(op in self.ref_db_names, msg=f"{op} not in ref_db_names")

    @parametrize("op", ref_ops_names)
    def test_refs_are_in_decomp_table(self, op):
        path = op.split(".")
        module_path = ".".join(path[:-1])
        op_name = path[-1]
        op_impl = getattr(import_module(f"torch.{module_path}"), op_name)

        if op in self.not_in_decomp_table:
            self.assertNotIn(
                op_impl,
                torch._decomp.decomposition_table.values(),
                f"Unexpectedly found {op} in torch._decomp.decomposition_table.values()",
            )
        else:
            self.assertIn(
                op_impl,
                torch._decomp.decomposition_table.values(),
                f"Did not find {op} in torch._decomp.decomposition_table.values()",
            )


fake_skips = (
    "aminmax",  # failing input
    "cov",  # aweights cannot be negtaive
    "istft",  # window overlap add min: 0
    "linalg.eigvals",  # The tensor has a non-zero number of elements, but its data is not allocated yet
    "linalg.eigvalsh",  # aten::linalg_eigvalsh.out' with arguments from the 'Meta' backend
    "linalg.matrix_power",  # Could not run 'aten::eye.m_out' with arguments from the 'Meta' backend
    # "linalg.pinv",  # Could not run 'aten::pinv.out' with arguments from the 'Meta' backen
    "linalg.matrix_rank.hermitian",  # Could not run 'aten::linalg_eigvalsh.out' with arguments from the 'Meta' backend
    "linalg.pinv.hermitian",  # tensor.mH is only supported on matrices or batches of matrices. Got 1-D tensor
    "linalg.solve",  # Could not run 'aten::linalg_solve' with arguments from the 'Meta' backend
    "linalg.tensorsolve",  # Could not run 'aten::linalg_solve' with arguments from the 'Meta'
    "lu_solve",  # MALLOC ERROR: debug
    "multinomial",  # Could not run 'aten::multinomial' with arguments from the 'Meta' backend
    "mvlgamma.mvlgamma_p_1",  # Could not run 'aten::_local_scalar_dense' with arguments from the 'Meta' backend
    "mvlgamma.mvlgamma_p_3",  # Could not run 'aten::_local_scalar_dense' with arguments from the 'Meta' backend
    "mvlgamma.mvlgamma_p_5",  # Could not run 'aten::_local_scalar_dense' with arguments from the 'Meta' backend
    "nanmean",  # logical_not() got an unexpected keyword argument 'out'
    "quantile",  # quantile() q values must be in the range [0, 1]
    "nanquantile",  # quantile() q values must be in the range [0, 1]
    "nn.functional.ctc_loss",  # The tensor has a non-zero number of elements, but its data is not allocated yet
    "nn.functional.embedding_bag",  # sometimes errors
    "nn.functional.nll_loss",  # sometimes errors
    "nn.functional.max_pool1d",  # The tensor has a non-zero number of elements
    "to_sparse",  # Could not run 'aten::_to_sparse' with arguments from the 'Meta' backend
    "tensor_split",  # The tensor has a non-zero number of elements, but its data is not allocated yet
    "repeat_interleave",  # cannot repeat_interleave a meta tensor without output_size
    "sparse.sampled.addmm",  # sparsity not supported
    # Can not infer total number of classes from meta. no way at present to throw DynamicOutputShapeException
    "nn.functional.one_hot",
    "narrow",  # Fails only for one overload with DataDependentOutputException (hence skip).
)

fake_autocast_device_skips = defaultdict(dict)

# TODO: investigate/fix
fake_autocast_device_skips["cpu"] = {"linalg.pinv"}
fake_autocast_device_skips["cuda"] = {"linalg.pinv", "pinverse"}


dynamic_output_op_tests = (
    "argwhere",
    "bincount",
    "combinations",
    "linalg.lstsq",
    "masked_select",
    "nonzero",
    "unique_consecutive",
    "unique",
    "linalg.lstsq.grad_oriented",
)

# Ops that have dynamic output shapes that we can handle when
# allow_dynamic_shape_ops is True in fake tensor shape environment.
supported_dynamic_output_op_tests = (
    "nonzero",
    "unique",
    "repeat_interleave",
    "masked_select",
)

# some inputs invoke dynamic output shape operators, some do not
sometimes_dynamic_output_op_test = ("__getitem__", "index_select")

data_dependent_op_tests = (
    "equal",
    "corrcoef",
    "nn.functional.gaussian_nll_loss",
    "allclose",
)

aliasing_failures = ("histogramdd",)

fake_backward_skips = {
    "linalg.cond",
    "linalg.matrix_norm",
    "linalg.norm",
    "linalg.svd",
    "linalg.svdvals",
    "pca_lowrank",
    "roll",
    "svd_lowrank",
    "sgn",
}

fake_backward_xfails = {skip(s) for s in fake_backward_skips} | {
    xfail("fft.ihfftn"),  # Mismatch in aten._conj_physical.default
    xfail("fft.ihfft2"),  # Mismatch in aten._conj_physical.default
    skip("nn.functional.ctc_loss"),
}

fake_autocast_backward_xfails = {
    skip("nn.functional.binary_cross_entropy"),
    skip("sparse.sampled_addmm"),
    skip("linalg.pinv"),
    skip("linalg.pinv", "hermitian"),
    skip("linalg.pinv", "singular"),
    skip("pinverse"),
}


@unMarkDynamoStrictTest
class TestFakeTensor(TestCase):
    def setUp(self):
        # Turn on FakeTensor caching and cross-checking for these tests:
        cache_enabled = unittest.mock.patch(
            "torch._dynamo.config.fake_tensor_cache_enabled", True
        )
        cache_enabled.start()
        self.addCleanup(cache_enabled.stop)

        cache_crosscheck = unittest.mock.patch(
            "torch._dynamo.config.fake_tensor_cache_crosscheck_enabled", True
        )
        cache_crosscheck.start()
        self.addCleanup(cache_crosscheck.stop)

    def _test_fake_helper(self, device, dtype, op, context):
        name = op.name
        if op.variant_test_name:
            name += "." + op.variant_test_name
        if name in fake_skips or "sparse" in name or "jiterator" in name:
            self.skipTest("Skip failing test")

        samples = op.sample_inputs(device, dtype, requires_grad=False)
        for sample in samples:
            mode = FakeTensorMode()

            from torch.fx.experimental.symbolic_shapes import ShapeEnv

            allow_dynamic_output_shape_shape_env = ShapeEnv(
                allow_dynamic_output_shape_ops=True
            )

            allow_dynamic_output_shape_mode = FakeTensorMode(
                shape_env=allow_dynamic_output_shape_shape_env
            )

            try:
                with context():
                    res = op(sample.input, *sample.args, **sample.kwargs)
            except Exception:
                continue

            def run_with_fake_mode_and_verify(fake_mode, match_results=True):
                def map_to_fake(e):
                    if isinstance(e, torch.Tensor):
                        return fake_mode.from_tensor(e)
                    else:
                        return e

                input = tree_map(map_to_fake, sample.input)
                args = tree_map(map_to_fake, sample.args)
                kwargs = tree_map(map_to_fake, sample.kwargs)

                try:
                    with context():
                        with fake_mode:
                            res_fake = op(input, *args, **kwargs)

                    if not match_results:
                        return

                    for fake_out, real_out in zip(
                        pytree.tree_leaves(res_fake), pytree.tree_leaves(res)
                    ):
                        if not isinstance(fake_out, torch.Tensor):
                            self.assertTrue(not isinstance(real_out, torch.Tensor))
                            self.assertEqual(fake_out, real_out)
                            continue

                        self.assertTrue(isinstance(fake_out, FakeTensor))
                        # if you see a shape exception here, you may need to add
                        # a `dynamic_output_shape` tag to an operator

                        if op.op not in [
                            torch.ops.aten._efficient_attention_forward,
                            torch.ops.aten._flash_attention_forward,
                        ]:
                            # prims/decomps must correctly model strides,
                            # see https://github.com/pytorch/pytorch/issues/78050#issuecomment-1253950325

                            # note: the excluded ops have intentionally incorrect device;
                            # see "Note [Seed and Offset]" (_meta_registrations.py)
                            prims.utils.compare_tensor_meta(fake_out, real_out, True)

                        if name not in aliasing_failures:
                            fake_aliasing = outputs_alias_inputs(
                                (input, args, kwargs), res_fake
                            )
                            real_aliasing = outputs_alias_inputs(
                                (sample.input, sample, args, sample.kwargs), res
                            )
                            self.assertEqual(fake_aliasing, real_aliasing)

                    self.assertTrue(
                        name not in dynamic_output_op_tests
                        and name not in data_dependent_op_tests
                    )

                except torch._subclasses.fake_tensor.UnsupportedFakeTensorException:
                    pass
                except torch._subclasses.fake_tensor.UnsupportedOperatorException:
                    pass
                except torch._subclasses.fake_tensor.DynamicOutputShapeException:
                    self.assertTrue(
                        name in dynamic_output_op_tests
                        or name in sometimes_dynamic_output_op_test
                    )
                    self.assertTrue(
                        fake_mode.shape_env is None
                        or not fake_mode.shape_env.allow_dynamic_output_shape_ops
                        or name not in supported_dynamic_output_op_tests
                    )
                except torch._subclasses.fake_tensor.DataDependentOutputException:
                    self.assertTrue(name in data_dependent_op_tests)

            run_with_fake_mode_and_verify(mode)
            if name in supported_dynamic_output_op_tests:
                run_with_fake_mode_and_verify(
                    allow_dynamic_output_shape_mode, match_results=False
                )

    @ops(op_db, dtypes=OpDTypes.any_one)
    def test_pointwise_ops(self, device, dtype, op):
        name = op.name
        if op.variant_test_name:
            name += "." + op.variant_test_name
        if name in fake_skips or "sparse" in name or "jiterator" in name:
            self.skipTest("Skip failing test")

        test_self = self

        class TestPointwiseMode(TorchDispatchMode):
            def __torch_dispatch__(self, func, types, args=(), kwargs=None):
                kwargs = kwargs or {}

                out = func(*args, **kwargs)

                if torch.Tag.pointwise in func.tags:
                    shapes = []
                    for inp in pytree.arg_tree_leaves(*args, **kwargs):
                        if isinstance(inp, torch.Tensor):
                            shapes.append(inp.shape)

                    out_shape = torch._refs._broadcast_shapes(*shapes)

                    for out_elem in pytree.tree_leaves(out):
                        if isinstance(out_elem, torch.Tensor):
                            test_self.assertEqual(out_elem.shape, out_shape)

                return out

        samples = op.sample_inputs(device, dtype, requires_grad=False)
        for sample in samples:
            mode = FakeTensorMode()

            def map_to_fake(e):
                if isinstance(e, torch.Tensor):
                    return mode.from_tensor(e)
                else:
                    return e

            input = tree_map(map_to_fake, sample.input)
            args = tree_map(map_to_fake, sample.args)
            kwargs = tree_map(map_to_fake, sample.kwargs)

            try:
                op(input, *args, **kwargs)
            except Exception:
                continue

            with TestPointwiseMode():
                with mode:
                    op(input, *args, **kwargs)

    @ops(op_db, dtypes=OpDTypes.any_one)
    def test_fake(self, device, dtype, op):
        self._test_fake_helper(device, dtype, op, contextlib.nullcontext)

    @ops(op_db, dtypes=OpDTypes.any_one)
    def test_fake_autocast(self, device, dtype, op):
        device_type = torch.device(device).type
        if op.name in fake_autocast_device_skips[device_type]:
            self.skipTest("Skip failing test")

        def context_fn():
            return torch.amp.autocast(device_type)

        self._test_fake_helper(device, dtype, op, context_fn)

    def _test_fake_crossref_helper(self, device, dtype, op, context):
        samples = op.sample_inputs(device, dtype, requires_grad=True)

        for iter, sample in enumerate(samples):
            args = [sample.input] + list(sample.args)
            kwargs = sample.kwargs

            # skip these to speed up tests
            common_skip_ops = (
                aten.detach.default,
                aten.empty_strided.default,
                aten.copy_.default,
                aten.is_same_size.default,
            )

            # TODO: enable check_aliasing, batch norm fails
            try:
                with torch._subclasses.CrossRefFakeMode(
                    ignore_op_fn=lambda fn: fn in common_skip_ops, check_aliasing=True
                ):
                    with warnings.catch_warnings(), context(), torch.autograd.set_multithreading_enabled(
                        False
                    ):
                        composite_compliance.compute_expected_grads(
                            op.get_op(),
                            args,
                            kwargs,
                            sample.output_process_fn_grad,
                            op.gradcheck_wrapper,
                        )
            except torch._subclasses.fake_tensor.UnsupportedOperatorException:
                pass

    @onlyCUDA
    @ops([op for op in op_db if op.supports_autograd], allowed_dtypes=(torch.float,))
    @skipOps(
        "TestFakeTensor", "test_fake_crossref_backward_no_amp", fake_backward_xfails
    )
    def test_fake_crossref_backward_no_amp(self, device, dtype, op):
        self._test_fake_crossref_helper(device, dtype, op, contextlib.nullcontext)

    @onlyCUDA
    @ops([op for op in op_db if op.supports_autograd], allowed_dtypes=(torch.float,))
    @skipOps(
        "TestFakeTensor",
        "test_fake_crossref_backward_amp",
        fake_backward_xfails | fake_autocast_backward_xfails,
    )
    def test_fake_crossref_backward_amp(self, device, dtype, op):
        self._test_fake_crossref_helper(device, dtype, op, torch.cuda.amp.autocast)

    @ops([op for op in ops_and_refs if op.is_factory_function])
    def test_strided_layout(self, device, dtype, op):
        samples = op.sample_inputs(device, dtype)
        for sample in samples:
            kwargs = sample.kwargs.copy()
            kwargs["layout"] = torch.strided
            strided_result = op(sample.input, *sample.args, **kwargs)
            self.assertEqual(strided_result.layout, torch.strided)


instantiate_device_type_tests(TestCommon, globals())
instantiate_device_type_tests(TestCompositeCompliance, globals())
instantiate_device_type_tests(TestMathBits, globals())
instantiate_device_type_tests(TestRefsOpsInfo, globals(), only_for="cpu")
instantiate_device_type_tests(TestFakeTensor, globals())
instantiate_device_type_tests(TestTags, globals())

if __name__ == "__main__":
    TestCase._default_dtype_check_enabled = True
    run_tests()