File: test_optim.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (2171 lines) | stat: -rw-r--r-- 94,397 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
# Owner(s): ["module: optimizer"]
import functools
import math
import tempfile
import unittest
from copy import deepcopy
from typing import Any, Dict, Tuple
from unittest.mock import patch

from optim.test_lrscheduler import TestLRScheduler  # noqa: F401
from optim.test_optim import TestDifferentiableOptimizer  # noqa: F401
from optim.test_swa_utils import TestSWAUtils  # noqa: F401

import torch
from torch.nn import Parameter
from torch.optim import Optimizer, SGD
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.optim.optimizer import (
    register_optimizer_step_post_hook,
    register_optimizer_step_pre_hook,
)
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_device_type import (
    instantiate_device_type_tests,
    largeTensorTest,
    onlyCPU,
    onlyCUDA,
    onlyNativeDeviceTypes,
    skipMPS,
    TEST_WITH_ROCM,
)
from torch.testing._internal.common_dtype import floating_types_and
from torch.testing._internal.common_optimizers import (
    _get_device_type,
    _get_optim_inputs_including_global_cliquey_kwargs,
    optim_db,
    OptimizerErrorEnum,
    optims,
    TensorTracker,
)
from torch.testing._internal.common_utils import (
    markDynamoStrictTest,
    parametrize,
    run_tests,
    TEST_WITH_TORCHDYNAMO,
    TestCase,
    xfailIfS390X,
)


FP16_REDUCED_PRECISION = {"atol": 1e-5, "rtol": 1e-4}


def rosenbrock(tensor):
    assert tensor.size() == torch.Size(
        [2]
    ), f"Requires tensor with 2 scalars but got {tensor.size()}"
    x, y = tensor
    return (1 - x) ** 2 + 100 * (y - x**2) ** 2


def drosenbrock(tensor):
    assert tensor.size() == torch.Size(
        [2]
    ), f"Requires tensor with 2 scalars but got {tensor.size()}"
    x, y = tensor
    return torch.stack((-400 * x * (y - x**2) - 2 * (1 - x), 200 * (y - x**2)))


@markDynamoStrictTest
class TestOptimRenewed(TestCase):
    """
    This test class validates the core optimizers and is structured as the correctness of:
    - The update algorithms (forloop implementation)
        * Every optimizer's algorithm is most readably implemented through a big for-loop
          over all the parameters, which is what we refer to as the forloop or single tensor
          implementation. These algorithms are manually validated by comparing to the paper
          and systematically validated by assuring that the loss goes the right direction
          when the optimizer has been applied.
        * This implementation should compose with optimizer hyperparameters well, such as
          supporting Tensor LRs, the capturable API, and sparse and complex parameters.
    - Each varying implementation
        * We then have implementations that improve upon the performance of the forloop
          implementation by leveraging fusion, namely our foreach (mult_tensor) and fused
          implementations.
        * These variations are validated numerically by comparing with the forloop version
          of the optimizer. In fact, we test most variations this way--we see the forloop
          implementation as the ground truth and expect that improvements to it in any way
          should be just as correct.
        * Both params and optimizer states should be validated numerically.
    - state_dict APIs
        * The optimizer instance should be serializable
        * Calling save and load should be deterministic
        * Moving between devices should be seamless
        * BC - load_state_dict should be able to handle older optimizer states
    - Hook APIs (everything should fire in the right order)
    - LR Scheduler integration (composing should not error + should go the right direction)
    - Parameter groups (should be equivalent to having multiple optimizers)
    - Erroring (what should error should error)

    We also cover different ways of generating parameters and grads:
    - With parameters, we either generate them randomly given specific shapes or we take
      them from a sample NN module.
        * Variety is important here because NN modules have type Parameter and randomly
          generated tensors have type Tensor.
        * Parameters can be sparse for a subset of the optimizers (check out OptimizerInfo)
        * Complex parameters should be handled using view_as_real
        * Parameters can be spread across different devices and different dtypes for any
          given optimizer
        * Parameters can be contiguous and noncontiguous
    - With grads, we follow suit from the parameters.
        * Grads can also be None, empty, or zero-valued, and this should not disrupt training.
    """

    @onlyCPU
    @optims(optim_db)
    def test_optim_infos_do_not_specify_global_cliquey_kwargs(
        self, device, dtype, optim_info
    ):
        global_cliquey_flags = ["foreach", "fused", "differentiable"]
        for optim_input in optim_info.optim_inputs_func(device=device):
            self.assertFalse(
                any(f for f in global_cliquey_flags if f in optim_input.kwargs)
            )

    @optims([optim for optim in optim_db if optim.optim_error_inputs_func is not None])
    def test_errors(self, device, dtype, optim_info):
        optim_cls = optim_info.optim_cls
        error_inputs = optim_info.optim_error_inputs_func(device=device, dtype=dtype)

        for error_input in error_inputs:
            optim_input = error_input.optimizer_error_input
            params, kwargs = optim_input.params, optim_input.kwargs
            if error_input.error_on == OptimizerErrorEnum.CONSTRUCTION_ERROR:
                if issubclass(error_input.error_type, Warning):
                    with self.assertWarnsRegex(
                        error_input.error_type, error_input.error_regex
                    ):
                        optim_cls(params, **kwargs)
                else:
                    with self.assertRaisesRegex(
                        error_input.error_type, error_input.error_regex
                    ):
                        optim_cls(params, **kwargs)
            elif error_input.error_on == OptimizerErrorEnum.STEP_ERROR:
                optim = optim_cls(params, **kwargs)
                if issubclass(error_input.error_type, Warning):
                    with self.assertWarnsRegex(
                        error_input.error_type, error_input.error_regex
                    ):
                        optim.step()
                else:
                    with self.assertRaisesRegex(
                        error_input.error_type, error_input.error_regex
                    ):
                        optim.step()
            else:
                raise NotImplementedError(f"Unknown error type {error_input.error_on}")

    @parametrize("contiguous", [True, False])
    @parametrize("with_lrsched", [True, False])
    @optims(optim_db, dtypes=[torch.float32])
    def test_forloop_goes_right_direction(
        self, device, dtype, optim_info, contiguous, with_lrsched
    ):
        optim_cls = optim_info.optim_cls
        schedulers_constructors = (
            optim_info.scheduler_inputs if with_lrsched else [None]
        )

        for schedulers_constructor in schedulers_constructors:
            # with tensor LR we need fresh inputs for each scheduler
            # or mutating it will carry across iters
            optim_inputs = optim_info.optim_inputs_func(device=device)
            for optim_input in optim_inputs:
                if "foreach" in optim_info.supported_impls:
                    optim_input.kwargs["foreach"] = False  # force forloop
                if contiguous:
                    weight = Parameter(torch.randn((10, 5), device=device, dtype=dtype))
                    bias = Parameter(torch.randn((10), device=device, dtype=dtype))
                else:
                    weight = Parameter(
                        torch.randn((10, 5, 2), device=device, dtype=dtype)[..., 0]
                    )
                    bias = Parameter(
                        torch.randn((10, 2), device=device, dtype=dtype)[..., 0]
                    )
                input = torch.randn(5, device=device, dtype=dtype)

                optimizer = optim_cls([weight, bias], **optim_input.kwargs)
                schedulers = [
                    s(optimizer)
                    for s in (schedulers_constructor if schedulers_constructor else [])
                ]

                def closure():
                    optimizer.zero_grad()
                    loss = (weight.mv(input) + bias).pow(2).sum()
                    loss.backward()
                    if optim_info.only_supports_sparse_grads:
                        # For this test, we naively convert the Tensor layout, which we know does
                        # NOT represent the expected use case for optims like SparseAdam!
                        weight.grad = weight.grad.to_sparse()
                        bias.grad = bias.grad.to_sparse()
                    return loss

                initial_value = closure().item()
                for _ in range(20):
                    if optim_info.step_requires_closure:
                        loss = optimizer.step(closure)
                    else:
                        loss = closure()
                        optimizer.step()

                    for scheduler in schedulers:
                        if isinstance(scheduler, ReduceLROnPlateau):
                            scheduler.step(loss)
                        else:
                            scheduler.step()

                if optim_input.kwargs.get("maximize", False):
                    self.assertGreater(closure().item(), initial_value)
                else:
                    self.assertLess(closure().item(), initial_value)

    @onlyCUDA
    @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
    @parametrize("with_lrsched", [True, False])
    @optims(optim_db, dtypes=[torch.float32])
    def test_forloop_goes_right_direction_multigpu(
        self, device, dtype, optim_info, with_lrsched
    ):
        optim_cls = optim_info.optim_cls
        schedulers_constructors = (
            optim_info.scheduler_inputs if with_lrsched else [None]
        )
        for schedulers_constructor in schedulers_constructors:
            # We need a fresh set of inputs if we have a tensor LR
            # to not carry mutations across iterations.
            optim_inputs = optim_info.optim_inputs_func(device=device)
            for optim_input in optim_inputs:
                if "foreach" in optim_info.supported_impls:
                    optim_input.kwargs["foreach"] = False  # force forloop

                weight = Parameter(torch.randn((10, 5), device="cuda:0", dtype=dtype))
                bias = Parameter(torch.randn((10), device="cuda:1", dtype=dtype))
                inpt = torch.randn(5, device="cuda:0", dtype=dtype)

                optimizer = optim_cls([weight, bias], **optim_input.kwargs)
                schedulers = [
                    s(optimizer)
                    for s in (schedulers_constructor if schedulers_constructor else [])
                ]

                def closure():
                    optimizer.zero_grad()
                    loss = (weight.mv(inpt).cuda(1) + bias).pow(2).sum()
                    loss.backward()
                    if optim_info.only_supports_sparse_grads:
                        # For this test, we naively convert the Tensor layout, which we know does
                        # NOT represent the expected use case for optims like SparseAdam!
                        weight.grad = weight.grad.to_sparse()
                        bias.grad = bias.grad.to_sparse()
                    return loss

                initial_value = closure().item()
                for _ in range(20):
                    loss = optimizer.step(closure)
                    for scheduler in schedulers:
                        if isinstance(scheduler, ReduceLROnPlateau):
                            scheduler.step(loss)
                        else:
                            scheduler.step()

                if optim_input.kwargs.get("maximize", False):
                    self.assertGreater(closure().item(), initial_value)
                else:
                    self.assertLess(closure().item(), initial_value)

    @optims(optim_db, dtypes=[torch.float32])
    def test_param_group_with_lrscheduler_goes_right_direction(
        self, device, dtype, optim_info
    ):
        optim_cls = optim_info.optim_cls

        for schedulers_c in optim_info.scheduler_inputs:
            weight = Parameter(torch.randn((10, 5), device=device, dtype=dtype))
            bias = Parameter(torch.randn((10), device=device, dtype=dtype))
            inpt = torch.randn(5, device=device, dtype=dtype)

            # avoid endless recompiles by wrapping LR in a tensor if we're compiling
            lr = torch.tensor(0.01) if torch.compiler.is_compiling() else 0.01
            optimizer = optim_cls([{"params": [weight]}, {"params": [bias], "lr": lr}])
            schedulers = [scheduler_c(optimizer) for scheduler_c in schedulers_c]

            def closure():
                optimizer.zero_grad()
                loss = (weight.mv(inpt) + bias).pow(2).sum()
                loss.backward()
                if optim_info.only_supports_sparse_grads:
                    # For this test, we naively convert the Tensor layout, which we know does
                    # NOT represent the expected use case for optims like SparseAdam!
                    weight.grad = weight.grad.to_sparse()
                    bias.grad = bias.grad.to_sparse()
                return loss

            initial_value = closure().item()
            for _ in range(20):
                loss = optimizer.step(closure)
                for scheduler in schedulers:
                    if isinstance(scheduler, ReduceLROnPlateau):
                        scheduler.step(loss)
                    else:
                        scheduler.step()

            self.assertLess(closure().item(), initial_value)

    @optims(optim_db, dtypes=[torch.float32])
    def test_tensor_lr(self, device, dtype, optim_info):
        optim_cls = optim_info.optim_cls

        # Skip differentiable testing for now, see https://github.com/pytorch/pytorch/issues/116490
        all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
            device, dtype, optim_info, skip=("differentiable",)
        )
        for optim_input in all_optim_inputs:
            weight = Parameter(torch.randn((10, 5), device=device, dtype=dtype))
            weight_c = weight.detach().clone().requires_grad_(True)
            bias = Parameter(torch.randn((10), device=device, dtype=dtype))
            bias_c = bias.detach().clone().requires_grad_(True)
            inpt = torch.randn(5, device=device, dtype=dtype)

            kwargs = optim_input.kwargs
            if "lr" in kwargs:
                del kwargs["lr"]

            kwargs["lr"] = 1.0 if optim_info.step_requires_closure else 1e-3
            optimizer_r = optim_cls([weight, bias], **kwargs)

            try:
                kwargs["lr"] = torch.tensor(kwargs["lr"])
                optimizer = optim_cls([weight_c, bias_c], **kwargs)
            except ValueError as e:
                self.assertRegex(str(e), ".*lr as a Tensor is not supported.*")
                continue

            def closure(optim, w, b, i):
                optim.zero_grad()
                loss = (w.mv(i) + b).pow(2).sum()
                loss.backward()
                if optim_info.only_supports_sparse_grads:
                    # For this test, we naively convert the Tensor layout, which we know does
                    # NOT represent the expected use case for optims like SparseAdam!
                    w.grad = w.grad.to_sparse()
                    b.grad = b.grad.to_sparse()
                return loss

            for _ in range(5):
                if optim_info.step_requires_closure:
                    optimizer_r.step(
                        functools.partial(closure, optimizer_r, weight, bias, inpt)
                    )
                    optimizer.step(
                        functools.partial(closure, optimizer, weight_c, bias_c, inpt)
                    )
                else:
                    closure(optimizer_r, weight, bias, inpt)
                    closure(optimizer, weight_c, bias_c, inpt)

                self.assertEqual(weight, weight_c)
                self.assertEqual(bias, bias_c)

    @parametrize("with_lrsched", [True, False])
    @optims(
        [o for o in optim_db if o.supports_sparse or o.only_supports_sparse_grads],
        dtypes=[torch.float64],
    )
    def test_rosenbrock_sparse(self, device, dtype, optim_info, with_lrsched):
        optim_cls = optim_info.optim_cls

        # Skip differentiable testing for now, see https://github.com/pytorch/pytorch/issues/116490
        # Fused impls do not support sparse gradients
        all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
            device, dtype, optim_info, skip=("differentiable", "fused")
        )
        kwarg_updates, schedulers_constructors = optim_info.metadata_for_sparse

        if with_lrsched and len(schedulers_constructors) == 0:
            return

        supported_inputs = []
        if len(kwarg_updates) != 0:
            seen = set()
            for i in all_optim_inputs:
                for k in kwarg_updates:
                    if k in i.kwargs:
                        del i.kwargs[k]
                hashable_kwargs = tuple(sorted(i.kwargs.items()))
                if len(i.kwargs) > 0 and hashable_kwargs not in seen:
                    supported_inputs.append(i)
                    seen.add(hashable_kwargs)
                    if "lr" in kwarg_updates:
                        i.kwargs["lr"] = kwarg_updates["lr"]
        else:
            supported_inputs = all_optim_inputs

        for optim_input in supported_inputs:
            kwargs = optim_input.kwargs
            multi_tensor = kwargs.get("foreach", False)

            # For rosenbrock tests, it is mandated that the param is a tensor with 2 numbers
            if multi_tensor:
                params_t = [
                    torch.tensor([1.5, 1.5]),
                    torch.tensor([1.5, 1.5], dtype=dtype),
                ]
            else:
                params_t = [torch.tensor([1.5, 1.5])]

            params = [Parameter(param_t) for param_t in params_t]
            optimizer = optim_cls(params, **kwargs)
            schedulers = [
                s(optimizer) for s in (schedulers_constructors if with_lrsched else [])
            ]

            if not optim_info.only_supports_sparse_grads:
                params_c = [Parameter(param_t.clone()) for param_t in params_t]
                optimizer_c = optim_cls(params_c, **kwargs)
                schedulers_c = [
                    s(optimizer_c)
                    for s in (schedulers_constructors if with_lrsched else [])
                ]

            solution = torch.tensor([1, 1])
            with torch.no_grad():
                initial_dist = sum(param.dist(solution) for param in params)

            def get_grad(param, sparse_grad, w):
                grad = drosenbrock(param)
                # NB: We torture test the optimizer by returning an
                # uncoalesced sparse tensor

                # Depending on w, provide only the x or y gradient
                if sparse_grad:
                    if w:
                        i = torch.tensor([[0, 0]], dtype=torch.int64)
                        x = grad[0]
                        v = torch.tensor([x / 4.0, x - x / 4.0])
                    else:
                        i = torch.tensor([[1, 1]], dtype=torch.int64)
                        y = grad[1]
                        v = torch.tensor([y - y / 4.0, y / 4.0])
                    grad_out = torch.sparse_coo_tensor(i, v, (2,), dtype=v.dtype)
                else:
                    if w:
                        grad_out = torch.tensor([grad[0], 0], dtype=param.dtype)
                    else:
                        grad_out = torch.tensor([0, grad[1]], dtype=param.dtype)
                return grad_out

            def eval(params, sparse_grad, w):
                optimizer.zero_grad()
                if multi_tensor:
                    loss = sum(rosenbrock(param) for param in params)
                else:
                    loss = rosenbrock(params[0])
                loss.backward()

                grads_out = [get_grad(param, sparse_grad, w) for param in params]
                with torch.no_grad():
                    params[0].grad = grads_out[0]
                    if multi_tensor:
                        params[1].grad = grads_out[1].to(dtype=dtype)
                return loss

            for i in range(1800):
                # Do cyclic coordinate descent
                w = i % 2
                optimizer.step(functools.partial(eval, params, True, w))
                for scheduler in schedulers:
                    if isinstance(scheduler, ReduceLROnPlateau):
                        scheduler.step(rosenbrock(params[0]))
                    else:
                        scheduler.step()
                if not optim_info.only_supports_sparse_grads:
                    optimizer_c.step(functools.partial(eval, params_c, False, w))
                    for scheduler in schedulers_c:
                        if isinstance(scheduler, ReduceLROnPlateau):
                            scheduler.step(rosenbrock(params_c[0]))
                        else:
                            scheduler.step()
                    # Tolerance is increased due to floating point error from different
                    # code path for dense case: x v.s. x - x / 4.0 + x / 4.0
                    self.assertEqual(params, params_c, atol=5e-6, rtol=5e-6)

            if not kwargs.get("maximize", False):
                self.assertLessEqual(
                    sum(param.dist(solution) for param in params), initial_dist
                )
            else:
                self.assertGreaterEqual(
                    sum(rosenbrock(param) for param in params),
                    sum(rosenbrock(param_t) for param_t in params_t),
                )

    @skipMPS
    @optims([o for o in optim_db if o.supports_complex], dtypes=[torch.complex64])
    def test_complex(self, device, dtype, optim_info):
        optim_cls = optim_info.optim_cls
        # Skip differentiable testing for now, see https://github.com/pytorch/pytorch/issues/116490
        # Also skip fused, since our fused kernels do not support complex
        all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
            device, dtype, optim_info, skip=("differentiable", "fused")
        )
        for optim_input in all_optim_inputs:
            # Last param is intentionally real to test that we can mix real and complex
            complex_params = [
                torch.randn(10, 5, device=device, dtype=dtype, requires_grad=True),
                torch.randn(10, device=device, dtype=dtype, requires_grad=True),
                torch.randn(
                    10, 5, device=device, dtype=torch.float32, requires_grad=True
                ),
            ]
            real_params = [
                (
                    torch.view_as_real(param).detach().clone().requires_grad_()
                    if param.is_complex()
                    else param.detach().clone().requires_grad_()
                )
                for param in complex_params
            ]

            complex_optimizer = optim_cls(complex_params, **optim_input.kwargs)
            real_optimizer = optim_cls(real_params, **optim_input.kwargs)
            real_steps = []
            complex_steps = []
            grads_losses = []

            def real_closure():
                for param in real_params:
                    grad = torch.randn_like(param)
                    param.grad = grad
                    real_steps.append(param.detach().clone())
                    grads_losses.append(grad.clone())
                loss = torch.randn(1)
                grads_losses.append(loss.clone())
                return loss

            def complex_closure():
                for param in complex_params:
                    if torch.is_complex(param):
                        grad = torch.view_as_complex(grads_losses.pop(0))
                        complex_steps.append(torch.view_as_real_copy(param.detach()))
                    else:
                        grad = grads_losses.pop(0)
                        complex_steps.append(param.detach().clone())
                    param.grad = grad
                return grads_losses.pop(0)

            for _ in range(3):
                if optim_info.step_requires_closure:
                    # LBFGS, for example, requires closure and calls it internally
                    real_optimizer.step(real_closure)
                    complex_optimizer.step(complex_closure)
                else:
                    # For other optimizers, we call closure explicitly to set the gradients
                    real_closure()
                    complex_closure()
                    real_optimizer.step()
                    complex_optimizer.step()

            # Final Parameters should be the same
            complex_params_asreal = [
                torch.view_as_real(param) if param.is_complex() else param
                for param in complex_params
            ]
            self.assertEqual(real_params, complex_params_asreal)

            # All intermediate steps should also be the same
            # also checks steps taken within for example a line search
            self.assertEqual(complex_steps, real_steps)

    @skipMPS
    @xfailIfS390X
    @optims([o for o in optim_db if o.supports_complex], dtypes=[torch.complex64])
    def test_complex_2d(self, device, dtype, optim_info):
        optim_cls = optim_info.optim_cls
        # Skip differentiable testing for now, see https://github.com/pytorch/pytorch/issues/116490
        # Also skip fused, since our fused kernels do not support complex
        all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
            device, dtype, optim_info, skip=("differentiable", "fused")
        )
        for optim_input in all_optim_inputs:
            if optim_info.step_requires_closure:
                # Why? The way we implement complex is by turning complex params into view_as_real
                # alternatives. For example, an size (M,N) tensor will become (M,N,2). In this test,
                # we break apart a tensor into its real and imaginary parts, which would be 2x(M,N).
                # For other pointwise optimizers, this distinction is trivial, but for LBFGS where
                # there are reductions across all parameters (and all the grads get flattened into
                # one long Tensor), this ordering matters. Why? Reductions are not deterministic
                # because addition between floating point numbers is not associative, i.e.,
                # a + b + c != a + c + b. Thus, we add a seed here to control the discrepancy that
                # will happen with LBFGS. Note that in test_complex above, there is no need for a seed
                # nor for increased tolerance, because results should be bitwise equivalent.
                torch.manual_seed(2024)

            a1 = torch.randn(2, device=device, dtype=dtype, requires_grad=True)
            a1_real = a1.real.detach().clone()
            a1_imag = a1.imag.detach().clone()
            a1_real.requires_grad_()
            a1_imag.requires_grad_()
            optim1 = optim_cls([a1], **optim_input.kwargs)
            optim2 = optim_cls([a1_real, a1_imag], **optim_input.kwargs)

            a1_reals = TensorTracker()
            a1_imags = TensorTracker()
            a1_grad_reals = TensorTracker()
            a1_grad_imags = TensorTracker()
            losses = TensorTracker()

            def closure1():
                optim1.zero_grad()
                loss = rosenbrock(a1).abs()
                loss.backward()

                # Track clones to best test accuracy
                a1_reals.add(a1.real)
                a1_imags.add(a1.imag)
                a1_grad_reals.add(a1.grad.real)
                a1_grad_imags.add(a1.grad.imag)

                losses.add(loss)

                return loss

            def closure2():
                optim2.zero_grad()
                a1_reals.pop_check_set(a1_real, self)
                a1_imags.pop_check_set(a1_imag, self)
                a2 = torch.complex(a1_real, a1_imag)
                loss = rosenbrock(a2).abs()
                losses.pop_check_set(loss, self)
                loss.backward()
                a1_grad_reals.pop_check_set(a1_real.grad, self)
                a1_grad_imags.pop_check_set(a1_imag.grad, self)
                return loss

            for _ in range(3):
                if optim_info.step_requires_closure:
                    # LBFGS, for example, requires closure and calls it internally
                    optim1.step(closure1)
                    optim2.step(closure2)
                else:
                    closure1()
                    closure2()
                    optim1.step()
                    optim2.step()

                self.assertEqual(a1.real, a1_real)
                self.assertEqual(a1.imag, a1_imag)

            self.assertTrue(a1_reals.all_popped())
            self.assertTrue(a1_imags.all_popped())
            self.assertTrue(a1_grad_reals.all_popped())
            self.assertTrue(a1_grad_imags.all_popped())
            self.assertTrue(losses.all_popped())

    def _compare_between(
        self, inputs, models, optimizers, assert_eq_kwargs=None, assert_step_dtype=None
    ):
        # why 7? iteration 7 is where we start to see differences for RAdam
        # params interacting with the small eps value, because that's right
        # after rho_t becomes greater than 5 in step 6.
        if assert_eq_kwargs is None:
            assert_eq_kwargs = {}
        kIterations = 7
        tracker = TensorTracker(assert_eq_kwargs)
        for i in range(kIterations):
            state, updated_params = [], []
            if not isinstance(inputs, list):
                inputs = [inputs, inputs]
            for input, model, optimizer in zip(inputs, models, optimizers):
                optimizer.zero_grad()

                if i == 3:
                    # Freeze a layer to test if the step of this layer in 'fused' or 'foreach'
                    # is same as the step in 'forloop'.
                    model[2].requires_grad_(False)
                if i == 5:
                    # Unfreeze the layer after 2 iters.
                    model[2].requires_grad_(True)

                # Test that step behaves as expected (a no-op) when grads are set to None
                if i != 2:
                    output = model(input)
                    loss = output.sum()
                    loss.backward()

                optimizer.step()
                state.append(optimizer.state)
                updated_params.append(model.parameters())

            og_state, new_state = state
            for og_p, new_p in zip(updated_params[0], updated_params[1]):
                tracker.add(og_p)
                tracker.pop_check_set(new_p, self)

                # check that optimizer states are the same
                og_p_state = og_state[og_p]
                new_p_state = new_state[new_p]
                if assert_step_dtype is not None:
                    if torch.is_tensor(og_p_state.get("step", None)):
                        self.assertEqual(og_p_state["step"].dtype, assert_step_dtype)
                    if torch.is_tensor(new_p_state.get("step", None)):
                        self.assertEqual(new_p_state["step"].dtype, assert_step_dtype)
                for k in og_p_state:
                    tracker.add(og_p_state[k])
                    tracker.pop_check_set(new_p_state[k], self)

            self.assertTrue(tracker.all_popped())

    def _test_derived_optimizers(
        self,
        device,
        dtype,
        optim_info,
        flag,
        reduced_precision=False,
        assert_step_dtype=None,
    ):
        """
        Given a flag 'fused' or 'foreach', test for parity of optimizer state
        and updated parameters between when the flag is set to True and False
        for provided optimizer configurations.
        """
        assert flag in ("foreach", "fused")
        assert_eq_kwargs = {} if not reduced_precision else FP16_REDUCED_PRECISION

        optim_inputs = optim_info.optim_inputs_func(device=device, dtype=dtype)
        optim_cls = optim_info.optim_cls
        for optim_input in optim_inputs:
            models, optimizers = [], []
            kwargs = deepcopy(optim_input.kwargs)
            if kwargs.get("capturable", False) and _get_device_type(device) == "cpu":
                # capturable is not supported on CPU
                continue
            for flag_value in (False, True):
                kwargs[flag] = flag_value
                input = torch.tensor(
                    [0.1, 0.2, 0.3, 0.4, 0.5, 0.6], dtype=dtype, device=device
                ).reshape(3, 2)

                torch.manual_seed(1)
                model = torch.nn.Sequential(
                    torch.nn.Linear(2, 3),
                    torch.nn.Sigmoid(),
                    torch.nn.Linear(3, 1),
                    torch.nn.Sigmoid(),
                )
                model.to(dtype=dtype, device=device)

                # foreach/fused optimizers should be tested with a
                # zero_size tensor as its last param.
                # ref: https://github.com/pytorch/pytorch/issues/100701
                empty_param = torch.empty(
                    (), device=device, dtype=dtype, requires_grad=True
                )
                empty_param.grad = torch.rand_like(empty_param)
                params = list(model.parameters()) + [empty_param]

                optimizer = optim_cls(params, **kwargs)
                models.append(model)
                optimizers.append(optimizer)

            self._compare_between(
                input, models, optimizers, assert_eq_kwargs, assert_step_dtype
            )

    @skipMPS  # MPS doesn't support torch.float64, see https://github.com/pytorch/pytorch/issues/115350
    @optims(
        [optim for optim in optim_db if "foreach" in optim.supported_impls],
        dtypes=[torch.float64],
    )
    def test_foreach_matches_forloop(self, device, dtype, optim_info):
        self._test_derived_optimizers(device, dtype, optim_info, "foreach")

    @onlyCUDA
    @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
    @parametrize("impl", ["foreach", "fused"])
    @optims(
        [
            optim
            for optim in optim_db
            if "foreach" in optim.supported_impls or "fused" in optim.supported_impls
        ]
    )
    def test_mixed_device_dtype(self, device, dtype, optim_info, impl):
        """
        Similar in essence to _test_derived_optimizers above. The main difference is that
        _test_derived_optimizers uses model parameters whereas we randomly pass in
        parameters of different dtypes and devices here. We need multiple GPUs (vs just a
        CPU and GPU) because fused adam only works on GPUs. (Thus we only run the tests
        that call into this helper when TEST_MULTIGPU.)
        """
        assert impl in ("foreach", "fused")
        if impl == "foreach" and "foreach" not in optim_info.supported_impls:
            return unittest.skip(
                f"foreach not supported for {optim_info.optim_cls.__name__}"
            )
        elif impl == "fused" and "cuda" not in optim_info.supports_fused_on:
            return unittest.skip(
                f"fused not supported for {optim_info.optim_cls.__name__} on cuda"
            )

        params = [
            torch.rand(2, 3, dtype=torch.float64, device="cuda:0", requires_grad=True),
            torch.rand(2, 3, dtype=torch.float32, device="cuda:0", requires_grad=True),
            torch.rand(2, 3, dtype=torch.float16, device="cuda:0", requires_grad=True),
            torch.rand(2, 3, dtype=torch.bfloat16, device="cuda:0", requires_grad=True),
            torch.rand(2, 3, dtype=torch.float64, device="cuda:1", requires_grad=True),
            torch.rand(2, 3, dtype=torch.float32, device="cuda:1", requires_grad=True),
            torch.rand(2, 3, dtype=torch.float16, device="cuda:1", requires_grad=True),
            torch.rand(2, 3, dtype=torch.bfloat16, device="cuda:1", requires_grad=True),
            torch.randint(
                1024, (2, 3), dtype=torch.int64, device="cuda:1", requires_grad=False
            ),
        ]

        for p in params:
            if p.requires_grad:
                p.grad = torch.rand_like(p, device=p.device, dtype=p.dtype)

        kIterations = 7 if impl == "foreach" else 1
        optim_inputs = optim_info.optim_inputs_func(device=device)
        optim_cls = optim_info.optim_cls
        for optim_input in optim_inputs:
            updated_params, state = [], []
            kwargs = deepcopy(optim_input.kwargs)
            if kwargs.get("capturable", False) and _get_device_type(device) == "cpu":
                # capturable is not supported on CPU
                continue
            for use_impl in (False, True):
                kwargs[impl] = use_impl
                params_clone = []
                for p in params:
                    p_clone = p.detach().clone()
                    if p.requires_grad:
                        p_clone.requires_grad = True
                        p_clone.grad = p.grad.detach().clone()
                        params_clone.append(p_clone)

                optimizer = optim_cls(params_clone, **kwargs)
                for _ in range(kIterations):
                    optimizer.step()

                state.append(optimizer.state)
                updated_params.append(params_clone)

            og_state, new_state = state
            for og_p, new_p in zip(updated_params[0], updated_params[1]):
                # Increasing the tolerance as we are collating lots of ops together for optimizers and
                # the designated tolerances are for single op only.
                single_rtol, single_atol = torch.testing._comparison.get_tolerances(
                    new_p.dtype, rtol=None, atol=None
                )
                rtol = 5 * single_rtol
                atol = 5 * single_atol

                self.assertEqual(og_p, new_p, rtol=rtol, atol=atol)

                # check that optimizer states are the same
                og_p_state = og_state[og_p]
                new_p_state = new_state[new_p]

                for k in og_p_state:
                    actual = new_p_state[k]
                    self.assertEqual(og_p_state[k], actual, rtol=rtol, atol=atol)

    @onlyCUDA
    @optims(
        [optim for optim in optim_db if "foreach" in optim.supported_impls],
        dtypes=[torch.float64],
    )
    def test_set_default_dtype_works_with_foreach(self, device, dtype, optim_info):
        # https://github.com/pytorch/pytorch/issues/110940
        # We coerce step to always be float32 unless the
        # default dtype is higher prec float64
        old_default_dtype = torch.get_default_dtype()
        for default_dtype in [torch.float64, torch.float16]:
            try:
                torch.set_default_dtype(default_dtype)
                self._test_derived_optimizers(
                    device,
                    dtype,
                    optim_info,
                    "foreach",
                    reduced_precision=default_dtype == torch.float16,
                    assert_step_dtype=(
                        torch.float64
                        if default_dtype == torch.float64
                        else torch.float32
                    ),
                )
            finally:
                torch.set_default_dtype(old_default_dtype)

    @onlyCUDA
    @largeTensorTest("72GB", "cuda")
    @optims(
        [optim for optim in optim_db if "foreach" in optim.supported_impls],
        dtypes=[torch.float16],
    )
    def test_foreach_large_tensor(self, device, dtype, optim_info):
        optim_cls = optim_info.optim_cls
        optim_inputs = optim_info.optim_inputs_func(device=device)
        for optim_input in optim_inputs:
            params = [torch.ones(2**32, device=device, dtype=dtype)]
            params[0].grad = torch.zeros_like(params[0])
            optimizer = optim_cls(params, foreach=True, **optim_input.kwargs)
            optimizer.step()

    @onlyCUDA
    @optims(
        [optim for optim in optim_db if "foreach" in optim.supported_impls],
        dtypes=[torch.float32],
    )
    def test_peak_memory_foreach(self, device, dtype, optim_info):
        nparams = 10
        optim_inputs = optim_info.optim_inputs_func(device=device)
        optim_cls = optim_info.optim_cls
        for optim_input in optim_inputs:
            kwargs = deepcopy(optim_input.kwargs)
            max_mems = []
            for flag_value in (False, True):
                kwargs["foreach"] = flag_value
                # The 16 * 8 = 128 is critical here! Our CUDACachingAllocator allocates in blocks
                # of 512, meaning any tensor that occupies <512 bytes of memory will allocate a
                # whole 512 bytes anyway. We use 128 (cuz datasize would be 4 bytes) so that param
                # is size 512 exactly, making our later calculations for intermediate_size easy.
                param = torch.rand(16, 8, device=device, dtype=dtype)
                params = [torch.rand_like(param) for _ in range(nparams)]

                optimizer = optim_cls(params, **kwargs)

                for p in params:
                    p.grad = torch.rand_like(p)

                optimizer.step()
                import gc

                gc.collect()
                torch.cuda.reset_peak_memory_stats()
                optimizer.step()
                gc.collect()
                max_mems.append(torch.cuda.max_memory_allocated())

            st_max_mem, mt_max_mem = max_mems
            intermediate_size = nparams * param.nelement() * param.element_size()
            nintermediates = 1  # we expect a budget of 1 intermediate most of the time

            # Check the param group directly to handle if the compiler set capturable
            if optimizer.param_groups[0].get(
                "capturable", False
            ) or optim_cls.__name__ in ["Adadelta", "ASGD", "RAdam"]:
                # with capturable in Adam(W), we have 2 extra intermediates for the bias_corrections
                # with Adadelta, we have 2 extra for (acc_delta + eps) and (square_avg + eps)
                # ASGD allocates axs, 2x mus, 2x etas, and grads at the same time
                nintermediates = 3
                if optim_cls.__name__ == "NAdam":
                    # with capturable in NAdam, we have 3 extra intermediates for the
                    # bias_correction, mus, and mu_nexts
                    if TEST_WITH_TORCHDYNAMO:
                        # With dynamo, the eager/FX backend appears to hold memory longer than
                        # vanilla eager: https://github.com/pytorch/pytorch/issues/125511
                        nintermediates = 8
                    else:
                        nintermediates = 5

                if optim_cls.__name__ == "RAdam":
                    # RAdam has four intermediates with capturable
                    # num, unrect_step_size, buffer, grouped_grads
                    if TEST_WITH_TORCHDYNAMO:
                        # With dynamo, the eager/FX backend appears to hold memory than
                        # vanilla eager: https://github.com/pytorch/pytorch/issues/125511
                        nintermediates = 6
                    else:
                        nintermediates = 4

            elif optim_cls.__name__ in ["NAdam", "Adagrad", "RMSprop", "Adafactor"]:
                # NAdam uses two intermediates at the same time (grads & exp_avg_sq_sqrt)
                # Adagrad uses std and grads at the same time
                # RMSprop uses avg and grads
                # Adafactor uses row/col var and its mean
                nintermediates = 2

                if optim_cls.__name__ == "Adafactor" and kwargs.get("maximize", False):
                    # When maximize is True, Adafactor also tracks device_grad
                    nintermediates = 3

            # Dynamo ST uses less mem than eager in the case of Adam/Adagrad/Nadam/RAdam
            # which makes the foreach memory check fail
            if TEST_WITH_TORCHDYNAMO:
                st_max_mem += 6000

            expected_max_mem = st_max_mem + intermediate_size * nintermediates
            # hipcc currently can't generate efficient code for the small buffer optimization
            # code path (see Note [small buffer optimization] for details), thus we always
            # dynamically allocate the tensor metadata for ROCM. Adjusting the expected max
            # memory usage to account for this.
            if TEST_WITH_ROCM:
                expected_max_mem *= 1.02

            self.assertLessEqual(mt_max_mem, expected_max_mem)

    @optims(
        [optim for optim in optim_db if "fused" in optim.supported_impls],
        dtypes=floating_types_and(
            torch.bfloat16,
            torch.float16,
        ),
    )
    def test_fused_matches_forloop(self, device, dtype, optim_info):
        if _get_device_type(device) not in optim_info.supports_fused_on:
            self.skipTest(
                f"{device} is not supported for fused on {optim_info.optim_cls.__name__}"
            )
        if _get_device_type(device) == "mps" and dtype not in (
            torch.float16,
            torch.float32,
            torch.bfloat16,
        ):
            self.skipTest(
                "MPS supports only torch.float16, torch.float32 and torch.bfloat16"
            )
        self._test_derived_optimizers(device, dtype, optim_info, "fused")

    @optims(
        [optim for optim in optim_db if "fused" in optim.supported_impls],
        dtypes=(torch.float32,),
    )
    def test_fused_error_on_params_on_meta(self, device, dtype, optim_info):
        if _get_device_type(device) not in optim_info.supports_fused_on:
            self.skipTest(
                f"{device} is not supported for fused on {optim_info.optim_cls.__name__}"
            )

        with torch.device("meta"):
            model = torch.nn.Sequential(
                torch.nn.Linear(2, 3),
                torch.nn.Sigmoid(),
                torch.nn.Linear(3, 1),
                torch.nn.Sigmoid(),
            ).to(dtype)

        optimizer = optim_info.optim_cls(model.parameters(), fused=True)
        with torch.device("meta"):
            for p in model.parameters():
                p.grad = torch.rand_like(p)

        with self.assertRaisesRegex(
            RuntimeError,
            "`fused=True` requires all the params to be floating point Tensors",
        ):
            optimizer.step()

        optimizer.zero_grad(set_to_none=True)
        model.to_empty(device=device)
        for p in model.parameters():
            p.grad = torch.rand_like(p)
        optimizer.step()

    @onlyNativeDeviceTypes
    @largeTensorTest("64GB")
    @optims(
        [optim for optim in optim_db if "fused" in optim.supported_impls],
        dtypes=[torch.float16],
    )
    def test_fused_large_tensor(self, device, dtype, optim_info):
        if device not in optim_info.supports_fused_on:
            self.skipTest(
                f"{device} is not supported for fused on {optim_info.optim_cls.__name__}"
            )
        optim_cls = optim_info.optim_cls
        optim_inputs = optim_info.optim_inputs_func(device=device)
        for optim_input in optim_inputs:
            params = [torch.ones(2**32, device=device, dtype=dtype)]
            params[0].grad = torch.zeros_like(params[0])
            optimizer = optim_cls(params, fused=True, **optim_input.kwargs)
            optimizer.step()

    @onlyCUDA
    @optims(
        [optim for optim in optim_db if "fused" in optim.supported_impls],
        dtypes=[torch.float32],
    )
    def test_fused_does_not_step_if_foundinf(self, device, dtype, optim_info):
        if device not in optim_info.supports_fused_on:
            self.skipTest(
                f"{device} is not supported for fused on {optim_info.optim_cls.__name__}"
            )
        optim_cls = optim_info.optim_cls
        optim_inputs = optim_info.optim_inputs_func(device=device)
        num_params = 5
        for optim_input in optim_inputs:
            for no_grad_scale in (False, True):
                params = [
                    torch.ones((1,), device=device, dtype=dtype)
                    for _ in range(num_params)
                ]
                params_c = [param.detach().clone() for param in params]
                for p in params:
                    p.grad = torch.ones_like(p)
                optimizer = optim_cls(params, fused=True, **optim_input.kwargs)
                optimizer.grad_scale = (
                    None
                    if no_grad_scale
                    else torch.ones((1,), dtype=dtype, device=device)
                )
                optimizer.found_inf = torch.ones((), dtype=dtype, device=device)
                optimizer.step()
                for p in params:
                    if "step" in optimizer.state[p]:
                        self.assertEqual(
                            torch.zeros((), dtype=dtype, device=device),
                            optimizer.state[p]["step"],
                        )
                self.assertEqual(params, params_c)

    @parametrize("impl", ["fused", "capturable"])
    @optims(
        [optim for optim in optim_db if "fused" in optim.supported_impls],
        dtypes=[torch.float32],
    )
    def test_cpu_load_state_dict(self, device, dtype, impl, optim_info):
        # NOTE: This SIMULATES a fused/capturable optimizer with state moved to CPU, issue 103256
        # How do we get there? Users typically create CUDA models on fused optimizers and then
        # store checkpoints on CPU as CUDA memory is limited with torch.load(...map_location="cpu").
        # Since this is a unit test, it is more expedient to simulate what the state_dict
        # would look like, which is basically CPU tensors with fused/capturable flag = True.
        optim_cls = optim_info.optim_cls
        opt_name = optim_cls.__name__
        if opt_name in ("SGD", "Adagrad") and impl == "capturable":
            # Capturable SGD/Adagrad does not exist
            self.skipTest("SGD does not currently support capturable")
        if _get_device_type(device) == "cpu":
            self.skipTest("Test is only for non-cpu devices")
        elif (
            impl == "fused"
            and _get_device_type(device) not in optim_info.supports_fused_on
        ):
            self.skipTest(f"{device} is not supported for fused on {opt_name}")
        elif impl == "capturable" and _get_device_type(device) == "mps":
            self.skipTest("MPS does not support capturable")

        cpu_optim_inputs = optim_info.optim_inputs_func(device="cpu")
        for optim_input in cpu_optim_inputs:
            param = torch.tensor([0.1, 0.2], dtype=dtype, device="cpu")
            optimizer = optim_cls([param], **optim_input.kwargs)
            param.grad = torch.rand_like(param)
            optimizer.step()
            optim_state_dict_cpu = deepcopy(optimizer.state_dict())
            optim_state_dict_cpu["param_groups"][0][impl] = True

            # load
            optim_input.kwargs[impl] = True
            param_device = param.detach().clone().to(device=device)
            optimizer_device = optim_cls([param_device], **optim_input.kwargs)
            optimizer_device.load_state_dict(optim_state_dict_cpu)
            optimizer_device.zero_grad()
            param_device.grad = torch.rand_like(param_device)
            optimizer_device.step()

    @optims(optim_db, dtypes=[torch.float32])
    def test_param_groups_weight_decay(self, device, dtype, optim_info):
        optim_cls = optim_info.optim_cls
        # Skip differentiable testing for now, see https://github.com/pytorch/pytorch/issues/116490
        all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
            device, dtype, optim_info, skip=("differentiable",)
        )
        for optim_input in all_optim_inputs:
            weight_kwargs = optim_input.kwargs
            bias_kwargs = deepcopy(optim_input.kwargs)
            bias_kwargs["weight_decay"] = 0.0

            weight = Parameter(torch.randn((10, 5), device=device, dtype=dtype))
            bias = Parameter(torch.randn((10), device=device, dtype=dtype))
            input = torch.randn(5, device=device, dtype=dtype)

            optimizer = optim_cls(
                [
                    dict(params=[weight], **weight_kwargs),
                    dict(params=[bias], **bias_kwargs),
                ]
            )

            loss = (weight.mv(input) + bias).pow(2).sum()
            initial_value = loss.item()
            for _ in range(20):
                optimizer.zero_grad()
                loss = (weight.mv(input) + bias).pow(2).sum()
                loss.backward()
                if optim_info.only_supports_sparse_grads:
                    # For this test, we naively convert the Tensor layout, which we know does
                    # NOT represent the expected use case for optims like SparseAdam!
                    weight.grad = weight.grad.to_sparse()
                    bias.grad = bias.grad.to_sparse()
                optimizer.step()

            # Test that the direction of loss moved appropriately
            if optim_input.kwargs.get("maximize", False):
                self.assertGreater(loss.item(), initial_value)
            else:
                self.assertLess(loss.item(), initial_value)

    @optims(optim_db, dtypes=[torch.float32])
    def test_param_groups_lr(self, device, dtype, optim_info):
        optim_cls = optim_info.optim_cls
        # Skip differentiable testing for now, see https://github.com/pytorch/pytorch/issues/116490
        all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
            device, dtype, optim_info, skip=("differentiable",)
        )
        for optim_input in all_optim_inputs:
            # optim_input.kwargs will be the param group kwargs, which should have >0 lr
            if "lr" not in optim_input.kwargs or optim_input.kwargs["lr"] == 0:
                optim_input.kwargs["lr"] = 1e-3
            outer_kwargs = {"lr": 1e-28}
            if optim_cls.__name__ == "Rprop":
                # Allow min step size to be 0
                outer_kwargs["step_sizes"] = (0, 50)

            weight = Parameter(torch.randn((10, 5), device=device, dtype=dtype))
            bias = Parameter(torch.randn((10), device=device, dtype=dtype))
            irrelevant = Parameter(torch.randn(2, device=device, dtype=dtype))
            irrelevant_clone = irrelevant.clone()
            input = torch.randn(5, device=device, dtype=dtype)
            optimizer = optim_cls(
                [
                    dict(params=[weight, bias], **optim_input.kwargs),
                    dict(params=[irrelevant]),
                ],
                **outer_kwargs,
            )

            loss = (weight.mv(input) + bias).pow(2).sum()
            initial_value = loss.item()
            for _ in range(20):
                optimizer.zero_grad()
                loss = (weight.mv(input) + bias).pow(2).sum()
                loss.backward()
                irrelevant.grad = torch.rand_like(irrelevant)
                if optim_info.only_supports_sparse_grads:
                    # For this test, we naively convert the Tensor layout, which we know does
                    # NOT represent the expected use case for optims like SparseAdam!
                    weight.grad = weight.grad.to_sparse()
                    bias.grad = bias.grad.to_sparse()
                    irrelevant.grad = irrelevant.grad.to_sparse()
                optimizer.step()

            # Test that the direction of loss moved appropriately
            if optim_input.kwargs.get("maximize", False):
                self.assertGreater(loss.item(), initial_value)
            else:
                self.assertLess(loss.item(), initial_value)

            # Test that irrelevant parameters were not updated since lr was almost 0
            self.assertEqual(irrelevant, irrelevant_clone)

    @optims(optim_db, dtypes=[torch.float32])
    def test_step_is_noop_when_params_have_no_grad(self, device, dtype, optim_info):
        optim_cls = optim_info.optim_cls
        all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
            device, dtype, optim_info
        )
        params = [
            torch.randn(2, 3, requires_grad=False, device=device, dtype=dtype)
            for _ in range(2)
        ]
        old_params = [p.detach().clone() for p in params]

        def closure():
            return torch.tensor([1], device=device, dtype=dtype)

        for optim_input in all_optim_inputs:
            optimizer = optim_cls(params, **optim_input.kwargs)
            optimizer.step(closure)

    @optims(optim_db, dtypes=[torch.float32])
    def test_step_is_noop_for_zero_grads(self, device, dtype, optim_info):
        optim_cls = optim_info.optim_cls
        all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
            device, dtype, optim_info
        )
        param = torch.randn((5, 1), device=device, dtype=dtype, requires_grad=True)
        old_param = param.detach().clone()

        def closure():
            return torch.tensor([1], device=device, dtype=dtype)

        for optim_input in all_optim_inputs:
            kwargs = optim_input.kwargs

            # params will decay even if grads are empty if weight_decay != 0,
            # and capturable doesn't work for CPU tensors
            if kwargs.get("weight_decay", 0) != 0:
                continue

            # AdamW params will be updated regardless of grads due to lr, so make lr smaller
            if optim_cls.__name__ == "AdamW":
                kwargs["lr"] = (
                    torch.tensor(1e-5)
                    if isinstance(kwargs.get("lr", 1e-5), torch.Tensor)
                    else 1e-5
                )

            if kwargs.get("differentiable", False):
                params = [param.clone()]
            else:
                params = [param]

            optimizer = optim_cls(params, **kwargs)
            if optim_info.only_supports_sparse_grads:
                # Intentionally construct a multidimensional empty v for the sparse grad
                # Single dim v passes the test while multidim correctly repros the issue
                # https://github.com/pytorch/pytorch/issues/82486
                i = torch.empty((1, 0), device=device, dtype=dtype)
                v = torch.empty((0, 1), device=device, dtype=dtype)
                params[0].grad = torch.sparse_coo_tensor(
                    i, v, (5, 1), device=device, dtype=dtype
                )
            else:
                params[0].grad = torch.zeros_like(params[0])
            optimizer.step(closure)
            self.assertEqual(old_param, params[0])

    @optims(optim_db, dtypes=[torch.float32])
    def test_optimizer_can_be_printed(self, device, dtype, optim_info):
        optim_cls = optim_info.optim_cls
        all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
            device, dtype, optim_info
        )
        params = [
            Parameter(torch.randn(2, 3, requires_grad=True, device=device, dtype=dtype))
            for _ in range(2)
        ]
        for optim_input in all_optim_inputs:
            optimizer = optim_cls(params, **optim_input.kwargs)
            optimizer.__repr__()

    @parametrize("is_named_optim0", [True, False])
    @parametrize("is_named_optim1", [True, False])
    @optims(optim_db, dtypes=[torch.float32])
    def test_state_dict_deterministic(
        self, device, dtype, optim_info, is_named_optim0, is_named_optim1
    ):
        optim_cls = optim_info.optim_cls

        # Skip differentiable testing for now, see https://github.com/pytorch/pytorch/issues/116490
        all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
            device, dtype, optim_info, skip=("differentiable",)
        )
        weight = Parameter(
            torch.randn(2, 3, requires_grad=True, device=device, dtype=dtype)
        )
        bias = Parameter(torch.randn(2, requires_grad=True, device=device, dtype=dtype))
        input = torch.randn(3, requires_grad=True, device=device, dtype=dtype)
        params = [weight, bias]

        def make_named_param(param, is_named):
            if not is_named:
                return param
            return [(f"name{i}", p) for i, p in enumerate(param)]

        def without_param_names(state_dict):
            new_state_dict = deepcopy(state_dict)
            for pg in new_state_dict["param_groups"]:
                pg.pop("param_names", None)
            return new_state_dict

        def fwd_bwd(optim, w, b, i):
            optim.zero_grad()
            loss = (w.mv(i) + b).pow(2).sum()
            loss.backward()
            if optim_info.only_supports_sparse_grads:
                if w.grad is not None:
                    w.grad = w.grad.to_sparse()
                if b.grad is not None:
                    b.grad = b.grad.to_sparse()
            return loss

        for optim_input in all_optim_inputs:
            params_in = make_named_param(params, is_named=is_named_optim0)
            optimizer = optim_cls(params_in, **optim_input.kwargs)
            closure = functools.partial(fwd_bwd, optimizer, weight, bias, input)

            # Prime the optimizer
            for _ in range(10):
                if optim_info.step_requires_closure:
                    optimizer.step(closure)
                else:
                    closure()
                    optimizer.step()

            # Clone the weights and construct a new optimizer for them
            with torch.no_grad():
                weight_c = Parameter(weight.clone())
                bias_c = Parameter(bias.clone())
            params_c = make_named_param([weight_c, bias_c], is_named=is_named_optim1)
            optimizer_c = optim_cls(params_c, **optim_input.kwargs)
            closure_c = functools.partial(fwd_bwd, optimizer_c, weight_c, bias_c, input)

            # Load the state dict from the original optimizer into the new one
            optimizer_c.load_state_dict(deepcopy(optimizer.state_dict()))

            # Run both optimizers in parallel
            for _ in range(10):
                if optim_info.step_requires_closure:
                    optimizer.step(closure)
                    optimizer_c.step(closure_c)
                else:
                    closure()
                    closure_c()
                    optimizer.step()
                    optimizer_c.step()

                self.assertEqual(weight, weight_c)
                self.assertEqual(bias, bias_c)

            # Make sure state dict is deterministic with equal (not identical) parameters
            # Param names are optional and not needed to be the consistent.
            self.assertEqual(
                without_param_names(optimizer.state_dict()),
                without_param_names(optimizer_c.state_dict()),
            )

            # Make sure repeated parameters have identical representation (see #36831)
            optimizer_c.param_groups.extend(optimizer_c.param_groups)
            self.assertEqual(
                without_param_names(optimizer.state_dict())["param_groups"][-1],
                without_param_names(optimizer_c.state_dict())["param_groups"][-1],
            )

    @optims(optim_db, dtypes=[torch.float32])
    def test_can_load_older_state_dict(self, device, dtype, optim_info):
        optim_cls = optim_info.optim_cls

        # Skip differentiable testing for now, see https://github.com/pytorch/pytorch/issues/116490
        all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
            device, dtype, optim_info, skip=("differentiable",)
        )
        for optim_input in all_optim_inputs:
            torch.manual_seed(1)
            model = torch.nn.Sequential(
                torch.nn.Conv2d(4, 2, 1, stride=2),
                torch.nn.BatchNorm2d(2, eps=1e-05, momentum=0.1),
            )
            model.to(dtype=dtype, device=device)
            input = torch.rand(1, 4, 16, 16, device=device, dtype=dtype)
            optimizer = optim_cls(model.parameters(), **optim_input.kwargs)

            def fwd_bwd(optim, mod, i):
                optim.zero_grad()
                loss = mod(i).sum()
                loss.backward()
                return loss

            for _ in range(3):
                if optim_info.step_requires_closure:
                    optimizer.step(functools.partial(fwd_bwd, optimizer, model, input))
                else:
                    fwd_bwd(optimizer, model, input)
                    optimizer.step()

            # old_state_dict has all new flags del'd
            old_state_dict = deepcopy(optimizer.state_dict())
            old_state_dict_pg = old_state_dict["param_groups"]
            for group in old_state_dict_pg:
                for flag in optim_info.not_og_supported_flags:
                    if flag in group:
                        del group[flag]

            optimizer.load_state_dict(old_state_dict)

            # Make sure we can still step
            if optim_info.step_requires_closure:
                optimizer.step(functools.partial(fwd_bwd, optimizer, model, input))
            else:
                fwd_bwd(optimizer, model, input)
                optimizer.step()

    @parametrize("is_named_optim0", [True, False])
    @parametrize("is_named_optim1", [True, False])
    @optims(
        [o for o in optim_db if not o.only_supports_sparse_grads],
        dtypes=[torch.float32],
    )
    def test_can_load_from_to_named_state_dict(
        self, device, dtype, optim_info, is_named_optim0, is_named_optim1
    ):
        optim_cls = optim_info.optim_cls

        # Skip differentiable testing for now, see https://github.com/pytorch/pytorch/issues/116490
        all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
            device, dtype, optim_info, skip=("differentiable",)
        )
        for optim_input in all_optim_inputs:
            torch.manual_seed(1)
            model = torch.nn.Sequential(
                torch.nn.Conv2d(4, 2, 1, stride=2),
                torch.nn.BatchNorm2d(2, eps=1e-05, momentum=0.1),
            )
            model.to(dtype=dtype, device=device)
            input = torch.rand(1, 4, 16, 16, device=device, dtype=dtype)

            def fwd_bwd(optim, mod, i):
                optim.zero_grad()
                loss = mod(i).sum()
                loss.backward()
                return loss

            # test for parameters, named_parameters, and 2 groups:
            params_to_optimizer = (
                model.named_parameters() if is_named_optim0 else model.parameters()
            )
            optimizer = optim_cls(params_to_optimizer, **optim_input.kwargs)

            for _ in range(3):
                if optim_info.step_requires_closure:
                    optimizer.step(functools.partial(fwd_bwd, optimizer, model, input))
                else:
                    fwd_bwd(optimizer, model, input)
                    optimizer.step()

            # old_state_dict has all new flags del'd
            old_state_dict = deepcopy(optimizer.state_dict())

            params_to_optimizer2 = (
                model.named_parameters() if is_named_optim1 else model.parameters()
            )
            optimizer2 = optim_cls(params_to_optimizer2, **optim_input.kwargs)
            optimizer2.load_state_dict(old_state_dict)

            # Make sure we can still step
            if optim_info.step_requires_closure:
                optimizer2.step(functools.partial(fwd_bwd, optimizer2, model, input))
            else:
                fwd_bwd(optimizer2, model, input)
                optimizer2.step()

            # Make sure that param_names are preserved when provided to at least one of the optimizers
            if is_named_optim0 or is_named_optim1:
                self.assertEqual(
                    optimizer2.state_dict()["param_groups"][0]["param_names"],
                    ["0.weight", "0.bias", "1.weight", "1.bias"],
                )

    @parametrize("is_named_optim", [True, False])
    @optims(optim_db, dtypes=[torch.float32])
    def test_save_load_equality_with_weights_only(
        self, device, dtype, optim_info, is_named_optim
    ):
        optim_cls = optim_info.optim_cls

        # Skip differentiable testing for now, see https://github.com/pytorch/pytorch/issues/116490
        all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
            device, dtype, optim_info, skip=("differentiable",)
        )
        weight = Parameter(
            torch.randn(2, 3, requires_grad=True, device=device, dtype=dtype)
        )
        bias = Parameter(torch.randn(2, requires_grad=True, device=device, dtype=dtype))
        input = torch.randn(3, requires_grad=True, device=device, dtype=dtype)
        params = [weight, bias]

        def make_named_param(param, is_named):
            if not is_named:
                return param
            return [(f"name{i}", p) for i, p in enumerate(param)]

        def fwd_bwd(optim, w, b, i):
            optim.zero_grad()
            loss = (w.mv(i) + b).pow(2).sum()
            loss.backward()
            if optim_info.only_supports_sparse_grads:
                weight.grad = weight.grad.to_sparse()
                bias.grad = bias.grad.to_sparse()
            return loss

        for optim_input in all_optim_inputs:
            params_in = make_named_param(params, is_named=is_named_optim)
            optimizer = optim_cls(params_in, **optim_input.kwargs)
            closure = functools.partial(fwd_bwd, optimizer, weight, bias, input)

            # Prime the optimizer
            for _ in range(3):
                optimizer.step(closure)

            sd = optimizer.state_dict()

            # === Check saved/loaded state_dict are the same (including weights_only load). ===
            with tempfile.TemporaryFile() as f:
                torch.save(sd, f)
                f.seek(0)
                sd_copy = torch.load(f)
                self.assertEqual(sd_copy, sd)
                del sd_copy
                f.seek(0)
                sd_copy_wo = torch.load(f, weights_only=True)
                self.assertEqual(sd_copy_wo, sd)

    @optims(optim_db, dtypes=[torch.float32])
    def test_load_nontensor_step(self, device, dtype, optim_info):
        optim_cls = optim_info.optim_cls

        # Skip differentiable testing for now, see https://github.com/pytorch/pytorch/issues/116490
        all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
            device, dtype, optim_info, skip=("differentiable",)
        )
        params = [
            Parameter(torch.randn(2, 3, device=device, dtype=dtype)) for _ in range(2)
        ]
        for p in params:
            p.grad = torch.rand_like(p)
            if optim_info.only_supports_sparse_grads:
                # For this test, we naively convert the Tensor layout, which we know does
                # NOT represent the expected use case for optims like SparseAdam!
                p.grad = p.grad.to_sparse()

        # Needed for second order optims like LBFGS
        closure_loss = torch.rand(1, device=device, dtype=dtype)

        def closure():
            return closure_loss if optim_info.step_requires_closure else None

        for optim_input in all_optim_inputs:
            kwargs = optim_input.kwargs
            optimizer = optim_cls(params, **optim_input.kwargs)
            for _ in range(3):
                optimizer.step(closure)
            state_dict = deepcopy(optimizer.state_dict())
            for p_state in state_dict["state"].values():
                if "step" in p_state and torch.is_tensor(p_state["step"]):
                    p_state["step"] = p_state["step"].item()
            optimizer.load_state_dict(state_dict)
            optimizer.step(closure)

    @onlyCUDA
    @optims(optim_db, dtypes=[torch.float32])
    def test_state_dict_with_cuda_params(self, device, dtype, optim_info):
        optim_cls = optim_info.optim_cls

        # Skip differentiable testing for now, see https://github.com/pytorch/pytorch/issues/116490
        # We limit our configs to CPU only, because we will be moving them to CUDA later
        cpu_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
            "cpu", dtype, optim_info, skip=("differentiable",)
        )

        # Needed for second order optims like LBFGS
        closure_loss = torch.rand(1, device=device, dtype=dtype)

        def closure():
            return closure_loss if optim_info.step_requires_closure else None

        for optim_input in cpu_optim_inputs:
            if (
                "fused" in optim_input.kwargs
                and "cuda" not in optim_info.supports_fused_on
            ):
                self.skipTest(
                    f"cuda is not supported for fused on {optim_cls.__name__}"
                )
            params = [
                Parameter(torch.randn(2, 3, device="cpu", dtype=dtype))
                for _ in range(2)
            ]
            for p in params:
                p.grad = torch.randn_like(p)
                if optim_info.only_supports_sparse_grads:
                    # For this test, we naively convert the Tensor layout, which we know does
                    # NOT represent the expected use case for optims like SparseAdam!
                    p.grad = p.grad.to_sparse()

            optimizer = optim_cls(params, **optim_input.kwargs)

            for _ in range(3):
                optimizer.step(closure)

            with torch.no_grad():
                params_cuda = [p.to(device="cuda") for p in params]
                for i, p in enumerate(params_cuda):
                    p.grad = params[i].grad.to(device="cuda")
            optimizer_cuda = optim_cls(params_cuda, **optim_input.kwargs)

            state_dict_cpu = deepcopy(optimizer.state_dict())
            state_dict_cuda = deepcopy(optimizer.state_dict())
            optimizer_cuda.load_state_dict(state_dict_cuda)

            # Make sure state_dict_cuda isn't modified by merely calling load_state_dict
            self.assertEqual(state_dict_cpu, state_dict_cuda)

            # Make sure that device of state['step'] is still CPU _unless_ torch.compile() added a capturable!
            capturable = state_dict_cpu["param_groups"][0].get("capturable", False)
            fused = state_dict_cpu["param_groups"][0].get("fused", False)
            new_state_dict = optimizer_cuda.state_dict()
            for state_cpu, state_cuda in zip(
                state_dict_cpu["state"].values(), new_state_dict["state"].values()
            ):
                if "step" in state_cpu and torch.is_tensor(state_cpu["step"]):
                    self.assertEqual(
                        state_cuda["step"].device.type,
                        "cuda" if capturable or fused else "cpu",
                    )

            for _ in range(5):
                optimizer.step(closure)
                optimizer_cuda.step(closure)
                self.assertEqual(params, params_cuda)
                self.assertEqual(optimizer.state_dict(), optimizer_cuda.state_dict())

    @staticmethod
    def _state_dict_pre_hook(optimizer: Optimizer) -> None:
        optimizer.state["test"] = 1

    @staticmethod
    def _state_dict_post_hook(
        optimizer: Optimizer, state_dict: Dict[str, Any]
    ) -> Dict[str, Any]:
        if "test" in state_dict["state"]:
            state_dict["state"].pop("test")
            state_dict["ran_state_dict_pre_hook"] = True
        else:
            state_dict["ran_state_dict_pre_hook"] = False
        return state_dict

    @optims(optim_db, dtypes=[torch.float32])
    def test_state_dict_pre_hook(self, device, dtype, optim_info):
        optim_cls = optim_info.optim_cls
        all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
            device, dtype, optim_info
        )
        for optim_input in all_optim_inputs:
            param = torch.rand(2, 3, device=device, dtype=dtype, requires_grad=True)
            optim = optim_cls([param], **optim_input.kwargs)
            optim.register_state_dict_pre_hook(self.__class__._state_dict_pre_hook)
            state_dict = optim.state_dict()
            self.assertEqual(state_dict["state"]["test"], 1)

    @optims(optim_db, dtypes=[torch.float32])
    def test_state_dict_post_hook(self, device, dtype, optim_info):
        optim_cls = optim_info.optim_cls
        all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
            device, dtype, optim_info
        )
        for optim_input in all_optim_inputs:
            param = torch.rand(2, 3, device=device, dtype=dtype, requires_grad=True)
            optim = optim_cls([param], **optim_input.kwargs)
            optim.register_state_dict_post_hook(self.__class__._state_dict_post_hook)
            state_dict = optim.state_dict()
            self.assertFalse(state_dict["ran_state_dict_pre_hook"])

    @optims(optim_db, dtypes=[torch.float32])
    def test_state_dict_pre_post_hook(self, device, dtype, optim_info):
        optim_cls = optim_info.optim_cls
        all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
            device, dtype, optim_info
        )
        for optim_input in all_optim_inputs:
            param = torch.rand(2, 3, device=device, dtype=dtype, requires_grad=True)
            optim = optim_cls([param], **optim_input.kwargs)
            optim.register_state_dict_pre_hook(self.__class__._state_dict_pre_hook)
            optim.register_state_dict_post_hook(self.__class__._state_dict_post_hook)
            state_dict = optim.state_dict()
            self.assertFalse("test" in state_dict["state"])
            self.assertTrue(state_dict["ran_state_dict_pre_hook"])

    @staticmethod
    def _load_state_dict_pre_hook1(
        optimizer: Optimizer, state_dict: Dict[str, Any]
    ) -> None:
        state_dict["param_groups"][0]["lr"] = 0.002

    @staticmethod
    def _load_state_dict_pre_hook2(
        optimizer: Optimizer, state_dict: Dict[str, Any]
    ) -> Dict[str, Any]:
        # The typical use case for returning a state dict is to drastically modify the state dict.
        # I will simulate by simply making a deep copy and ensuring that my_state_dict still gets used
        my_state_dict = deepcopy(state_dict)
        my_state_dict["param_groups"][0]["lr"] = 0.003
        return my_state_dict

    @staticmethod
    def _load_state_dict_post_hook(optimizer: Optimizer) -> None:
        optimizer.state["ran_load_state_dict_pre_hook2"] = (
            optimizer.param_groups[0]["lr"] == 0.003
        )
        optimizer.state["ran_load_state_dict_post_hook"] = True

    @optims(optim_db, dtypes=[torch.float32])
    def test_load_state_dict_pre_hook_and_prepend(self, device, dtype, optim_info):
        optim_cls = optim_info.optim_cls
        all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
            device, dtype, optim_info
        )
        for optim_input in all_optim_inputs:
            param = torch.rand(2, 3, device=device, dtype=dtype, requires_grad=True)
            optim = optim_cls([param], **optim_input.kwargs)
            state_dict = optim.state_dict()

            # usually one would have a new optim instance here, but it's all the same here
            optim.register_load_state_dict_pre_hook(
                self.__class__._load_state_dict_pre_hook1
            )
            optim.load_state_dict(state_dict)
            self.assertEqual(optim.param_groups[0]["lr"], 0.002)

            optim.register_load_state_dict_pre_hook(
                self.__class__._load_state_dict_pre_hook2, prepend=True
            )
            optim.load_state_dict(state_dict)
            # If prepend were False would be 0.003 but since prepend is True, the other hook overrides
            self.assertEqual(optim.param_groups[0]["lr"], 0.002)

    @optims(optim_db, dtypes=[torch.float32])
    def test_load_state_dict_post_hook(self, device, dtype, optim_info):
        optim_cls = optim_info.optim_cls
        all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
            device, dtype, optim_info
        )
        for optim_input in all_optim_inputs:
            param = torch.rand(2, 3, device=device, dtype=dtype, requires_grad=True)
            optim = optim_cls([param], **optim_input.kwargs)

            optim.register_load_state_dict_post_hook(
                self.__class__._load_state_dict_post_hook
            )
            optim.load_state_dict(optim.state_dict())
            self.assertFalse(optim.state["ran_load_state_dict_pre_hook2"])
            self.assertTrue(optim.state["ran_load_state_dict_post_hook"])

    @optims(optim_db, dtypes=[torch.float32])
    def test_load_state_dict_pre_post_hook(self, device, dtype, optim_info):
        optim_cls = optim_info.optim_cls
        all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
            device, dtype, optim_info
        )
        for optim_input in all_optim_inputs:
            param = torch.rand(2, 3, device=device, dtype=dtype, requires_grad=True)
            optim = optim_cls([param], **optim_input.kwargs)

            optim.register_load_state_dict_pre_hook(
                self.__class__._load_state_dict_pre_hook2
            )
            optim.register_load_state_dict_post_hook(
                self.__class__._load_state_dict_post_hook
            )
            optim.load_state_dict(optim.state_dict())
            self.assertTrue(optim.state["ran_load_state_dict_pre_hook2"])
            self.assertTrue(optim.state["ran_load_state_dict_post_hook"])

    @optims(optim_db, dtypes=[torch.float32])
    def test_step_post_hook(self, device, dtype, optim_info):
        def post_hook(opt: Optimizer, args: Tuple[Any], kwargs: Dict[Any, Any]):
            nonlocal data
            data += 2

        params = [torch.tensor([1, 1], device=device, dtype=dtype)]

        def dummy_closure():
            return 1

        closure = dummy_closure if optim_info.step_requires_closure else None

        all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
            device, dtype, optim_info
        )
        for optim_input in all_optim_inputs:
            optim = optim_info.optim_cls(params, **optim_input.kwargs)
            data = 2
            hook_handle = optim.register_step_post_hook(post_hook)

            optim.step(closure)
            optim.step(closure)
            # check if post hooks were registered
            self.assertEqual(data, 6)

            # remove handles, take step and verify that hook is no longer registered
            hook_handle.remove()

            optim.step(closure)
            self.assertEqual(data, 6)

    @optims(optim_db, dtypes=[torch.float32])
    def test_step_pre_hook(self, device, dtype, optim_info):
        def pre_hook(opt: Optimizer, args: Tuple[Any], kwargs: Dict[Any, Any]):
            nonlocal data
            data += 2

        params = [torch.tensor([1, 1], device=device, dtype=dtype)]

        def dummy_closure():
            return 1

        closure = dummy_closure if optim_info.step_requires_closure else None

        all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
            device, dtype, optim_info
        )
        for optim_input in all_optim_inputs:
            optim = optim_info.optim_cls(params, **optim_input.kwargs)
            data = 5
            hook_handle = optim.register_step_pre_hook(pre_hook)

            optim.step(closure)
            optim.step(closure)
            # check if pre hooks were registered
            self.assertEqual(data, 9)

            # remove handles, take step and verify that hook is no longer registered
            hook_handle.remove()

            optim.step(closure)
            self.assertEqual(data, 9)

    @optims(optim_db, dtypes=[torch.float32])
    def test_step_all_hooks(self, device, dtype, optim_info):
        def global_pre_hook(opt: Optimizer, args: Tuple[Any], kwargs: Dict[Any, Any]):
            nonlocal data
            data.append(0)

        def global_post_hook(opt: Optimizer, args: Tuple[Any], kwargs: Dict[Any, Any]):
            nonlocal data
            data.append(5)

        def local_pre_hook(opt: Optimizer, args: Tuple[Any], kwargs: Dict[Any, Any]):
            nonlocal data
            data.append(1)

        def local_post_hook(opt: Optimizer, args: Tuple[Any], kwargs: Dict[Any, Any]):
            nonlocal data
            data.append(2)

        params = [torch.tensor([1, 1], device=device, dtype=dtype)]

        def dummy_closure():
            return 1

        closure = dummy_closure if optim_info.step_requires_closure else None

        all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
            device, dtype, optim_info
        )
        for optim_input in all_optim_inputs:
            optim = optim_info.optim_cls(params, **optim_input.kwargs)
            optim2 = SGD(params)
            data = []

            # register global hooks to both optimizers
            global_pre_handle = register_optimizer_step_pre_hook(global_pre_hook)
            global_post_handle = register_optimizer_step_post_hook(global_post_hook)

            # register local hooks
            first_pre_handle = optim.register_step_pre_hook(local_pre_hook)
            first_post_handle = optim.register_step_post_hook(local_post_hook)
            second_pre_handle = optim2.register_step_pre_hook(local_pre_hook)
            second_post_handle = optim2.register_step_post_hook(local_post_hook)

            optim.step(closure)
            self.assertListEqual(data, [0, 1, 2, 5])
            optim2.step(closure)
            self.assertListEqual(data, [0, 1, 2, 5, 0, 1, 2, 5])
            optim.step(closure)
            self.assertListEqual(data, [0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5])

            # remove all hooks
            global_pre_handle.remove()
            global_post_handle.remove()
            first_pre_handle.remove()
            first_post_handle.remove()
            second_pre_handle.remove()
            second_post_handle.remove()

            optim.step(closure)
            optim2.step(closure)
            self.assertListEqual(data, [0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5])

    @optims(optim_db, dtypes=[torch.float32])
    def test_deepcopy_copies_all_public_attrs(self, device, dtype, optim_info):
        optim_cls = optim_info.optim_cls

        # Skip differentiable testing for now, see https://github.com/pytorch/pytorch/issues/116490
        all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
            device, dtype, optim_info, skip=("differentiable",)
        )

        params = [
            Parameter(torch.randn(2, 3, device=device, dtype=dtype)) for _ in range(2)
        ]
        for p in params:
            p.grad = torch.rand_like(p)
            if optim_info.only_supports_sparse_grads:
                # For this test, we naively convert the Tensor layout, which we know does
                # NOT represent the expected use case for optims like SparseAdam!
                p.grad = p.grad.to_sparse()

        # Needed for second order optims like LBFGS
        def closure():
            return 1 if optim_info.step_requires_closure else None

        def getPublicAttrs(obj):
            return {k for k in obj.__dict__ if not k.startswith("_")}

        for optim_input in all_optim_inputs:
            optimizer = optim_cls(params, **optim_input.kwargs)

            # Make some state
            for _ in range(3):
                if optim_info.step_requires_closure:
                    optimizer.step(closure)
                else:
                    closure()
                    optimizer.step()

            self.assertEqual(
                getPublicAttrs(optimizer), getPublicAttrs(deepcopy(optimizer))
            )

    @optims(
        [optim for optim in optim_db if optim.step_requires_closure],
        dtypes=[torch.float32],
    )
    def test_second_order_optims_return_consistent_types(
        self, device, dtype, optim_info
    ):
        # Motivated by #7586
        optim_cls = optim_info.optim_cls
        params = [
            torch.randn(10, 5, device=device, dtype=dtype),
            torch.randn(10, device=device, dtype=dtype),
        ]

        def closure():
            return torch.tensor([10], device=device, dtype=dtype)

        for optim_input in optim_info.optim_inputs_func(device=device):
            # Currently, the only second order optim is LBFGS, so we just go ahead and modify
            # "tolerance_grad", but this may not scale if we add second order optims in the future
            kwargs = optim_input.kwargs
            kwargs["tolerance_grad"] = math.inf
            optim_inf = optim_cls(params, **kwargs)
            kwargs["tolerance_grad"] = -math.inf
            optim_neg_inf = optim_cls(params, **kwargs)

            res1 = optim_inf.step(closure)
            res2 = optim_neg_inf.step(closure)
            self.assertEqual(type(res1), type(res2))

    @onlyCUDA
    @optims(
        [
            optim
            for optim in optim_db
            if "cpu" in optim.supports_fused_on and "cuda" in optim.supports_fused_on
        ],
        dtypes=floating_types_and(
            torch.bfloat16,
            torch.float16,
        ),
    )
    def test_fused_cpu_matches_cuda(self, device, dtype, optim_info):
        optim_cls = optim_info.optim_cls
        optim_inputs = optim_info.optim_inputs_func(device="cpu")
        for optim_input in optim_inputs:
            inpts, models, optimizers = [], [], []
            for dev in ("cpu", "cuda"):
                kwargs = optim_input.kwargs
                kwargs["fused"] = True
                inpt = torch.tensor(
                    [0.1, 0.2, 0.3, 0.4, 0.5, 0.6], dtype=dtype, device=dev
                ).reshape(3, 2)

                torch.manual_seed(1)
                model = torch.nn.Sequential(
                    torch.nn.Linear(2, 3),
                    torch.nn.Sigmoid(),
                    torch.nn.Linear(3, 1),
                    torch.nn.Sigmoid(),
                )
                model.to(dtype=dtype, device=dev)

                # foreach/fused optimizers should be tested with a
                # zero_size tensor as its last param.
                # ref: https://github.com/pytorch/pytorch/issues/100701
                empty_param = torch.empty(
                    (), device=dev, dtype=dtype, requires_grad=True
                )
                empty_param.grad = torch.rand_like(empty_param)
                params = list(model.parameters()) + [empty_param]

                optimizer = optim_cls(params, **kwargs)
                inpts.append(inpt)
                models.append(model)
                optimizers.append(optimizer)
        self._compare_between(inpts, models, optimizers)

    @onlyCUDA
    @optims(
        [
            o
            for o in optim_db
            if ("foreach" in o.supported_impls and o.optim_cls.__name__ != "Adafactor")
        ],
        dtypes=[torch.float32],
    )
    def test_defaults_changed_to_foreach(self, device, dtype, optim_info):
        # Test that the default implementations for optimizers are changed to foreach
        # except Adafactor, which defaults to the single tensor impl for memory efficiency.
        optim_cls = optim_info.optim_cls
        model = torch.nn.Linear(5, 5)
        model.to(dtype=dtype, device=device)
        inpt = torch.rand(2, 5, dtype=dtype, device=device)

        import inspect

        module = inspect.getmodule(optim_cls)

        for optim_input in optim_info.optim_inputs_func(device=device):
            optim = optim_cls(model.parameters(), **optim_input.kwargs)
            optim.zero_grad()
            output = model(inpt)
            loss = output.sum()
            loss.backward()
            with patch.object(
                module, f"_multi_tensor_{optim_cls.__name__.lower()}"
            ) as mocked_foreach_impl:
                optim.step()
                self.assertTrue(mocked_foreach_impl.called)

    @optims(optim_db, dtypes=[torch.float32])
    def test_non_empty_state(self, device, dtype, optim_info):
        # There are internal tests that check that the state is not empty
        optim_cls = optim_info.optim_cls
        model = torch.nn.Linear(5, 5)
        model.to(dtype=dtype, device=device)
        inpt = torch.rand(2, 5, dtype=dtype, device=device)

        for optim_input in optim_info.optim_inputs_func(device=device):
            optim = optim_cls(model.parameters(), **optim_input.kwargs)
            optim.zero_grad()
            output = model(inpt)
            loss = output.sum()
            loss.backward()

            if optim_info.only_supports_sparse_grads:
                for param in model.parameters():
                    if param.grad is not None:
                        param.grad = param.grad.to_sparse()

            if optim_info.step_requires_closure:
                optim.step(lambda: 1.0)
            else:
                optim.step()

            for state in optim.state.values():
                self.assertGreater(len(state), 0)


instantiate_device_type_tests(TestOptimRenewed, globals(), allow_mps=True)


if __name__ == "__main__":
    run_tests()