1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
|
# Owner(s): ["module: ProxyTensor"]
from torch.testing._internal.common_utils import TestCase, run_tests
import torch
import torch._dynamo
import unittest
import warnings
import operator
from collections.abc import Iterable
from torch.nn.utils import stateless
from torch.testing._internal.common_device_type import instantiate_device_type_tests
from torch.testing._internal.common_methods_invocations import op_db, skip, xfail, skipOps
from torch._subclasses.fake_tensor import DynamicOutputShapeException, DataDependentOutputException, FakeTensorMode
from torch._subclasses.functional_tensor import FunctionalTensor, FunctionalTensorMode
from torch._decomp import decomposition_table
from torch.fx.experimental.symbolic_shapes import (
eval_guards, bind_symbols, fx_placeholder_vals, fx_placeholder_targets,
guard_int, GuardOnDataDependentSymNode
)
from torch.testing._internal.custom_op_db import custom_op_db
from torch.testing._internal.hop_db import hop_db
from torch.testing._internal.common_device_type import ops
import torch.testing._internal.optests as optests
from torch._C import _disabled_torch_function_impl
from torch.fx.experimental.proxy_tensor import make_fx, DecompositionInterpreter, get_isolated_graphmodule
from torch.utils._pytree import tree_map
from torch.fx.passes.runtime_assert import insert_deferred_runtime_asserts
from torch import nn
import torch._functorch.config
import re
import functools
import itertools
aten = torch.ops.aten
HAS_CUDA = torch.cuda.is_available()
def strip_end(s, suffix):
if suffix and s.endswith(suffix):
return s[:-len(suffix)]
else:
return s
def show_guards(gm):
names = [strip_end(n, "_1") for n in fx_placeholder_targets(gm)]
return "\n".join(
gm.shape_env.produce_guards(fx_placeholder_vals(gm), names, _simplified=True, input_contexts=None)
)
def process_failures():
"""
Takes file containing failures like
FAILED test/test_proxy_tensor.py::TestProxyTensorOpInfoCPU::test_make_fx_symbolic_exhaustive___getitem___cpu_float32 - RuntimeError: aten.size.default - couldn't find symbolic meta function/decomposition # noqa: B950
and processes them into a list of opinfo xfails
"""
f = open('pytest_failures')
failures = f.readlines()
failures = [i.strip() for i in failures]
def process_failure_string(s, matcher):
out = re.search(matcher, s)
return out.groups()
SYMBOLIC_TRACE_MATCH = r'exhaustive_(.*)_cpu.*: (.*)'
failures = [process_failure_string(s, SYMBOLIC_TRACE_MATCH) for s in failures]
def create_normalized_name(op):
if op.variant_test_name == '':
s = op.name
else:
s = f"{op.name}.{op.variant_test_name}"
return s.replace('.', '_')
remap_opinfo = {create_normalized_name(op): (op.name, op.variant_test_name) for op in op_db}
print("symbolic_tensor_failures = {")
for failure, reason in failures:
print(f" xfail{remap_opinfo[failure]}, # {reason}")
print("}")
USE_TORCHVISION = False
try:
import torchvision
USE_TORCHVISION = True
except ImportError:
warnings.warn("Couldn't import torchvision. Some of our tests use it, try "
"to install it with commands from pytorch.org, post-fixed with "
"`--no-deps` to avoid overwriting the pytorch installation",
UserWarning)
def _create_new_input(x):
if not isinstance(x, torch.Tensor):
return x
if x.dtype != torch.float:
return x + 1
if x.is_leaf:
return torch.rand_like(x, requires_grad=x.requires_grad)
else:
return torch.rand_like(x)
"""
Delays a cos being executed on the unwraptensor until its used. Simulates a CommTensor used
"""
class UnwrapTensor(torch.Tensor):
@staticmethod
def __new__(cls, tensor: torch.Tensor):
r = torch.Tensor._make_wrapper_subclass(
cls,
tensor.size(),
dtype=tensor.dtype,
device=tensor.device,
layout=tensor.layout,
requires_grad=tensor.requires_grad,
)
r._tensor = tensor
return r
def __repr__(self):
# TODO: consider all_gather the local tensors for better debugging
return f"UnwrapTensor({self._tensor})"
__torch_function__ = _disabled_torch_function_impl
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
def unwrap(e):
ret = e
if isinstance(e, UnwrapTensor):
ret = e._tensor.cos()
return ret
args = tree_map(unwrap, args)
kwargs = tree_map(unwrap, kwargs)
return func(*args, **kwargs)
class TestGenericProxyTensor(TestCase):
# WARNING: if any of your inputs are index tensors, DO NOT use this
# function
def _test(self, f, inps):
fx_f = make_fx(f, tracing_mode=self.tracing_mode)(*inps)
new_inps = tree_map(_create_new_input, inps)
r1 = fx_f(*new_inps)
r2 = f(*new_inps)
self.assertEqual(r1, r2)
def test_pre_dispatch_mode_stack(self):
def f(a):
b = torch.ones(4, 4)
return torch.matmul(a, b)
# We expect to see matmul in the trace - it should NOT be decomposed into mm.
# Also, torch.ones() doesn't show up in the trace.
# This is annoying but expected: ones() never dispatches to the Autograd dispatch key,
# so our mode never sees it - it goes directly to the BackendSelect key.
inp = torch.ones(4, 4)
# Test that make_fx(pre_dispatch=True) clears caches properly.
from torch._dispatch.python import enable_python_dispatcher
with enable_python_dispatcher():
out1 = f(inp)
fx_g = make_fx(f, pre_dispatch=True)(inp)
self.assertExpectedInline(fx_g.code.strip(), """\
def forward(self, a_1):
ones = torch.ops.aten.ones.default([4, 4], device = device(type='cpu'), pin_memory = False)
matmul = torch.ops.aten.matmul.default(a_1, ones); a_1 = ones = None
return matmul""")
def test_pre_dispatch_linear(self):
def f(a, b, c):
return torch.nn.functional.linear(a, b, c)
a = torch.ones(4, 4)
b = torch.ones(4, 4)
c = torch.ones(4)
fx_g = make_fx(f, pre_dispatch=True)(a, b, c)
out1 = f(a, b, c)
out2 = fx_g(a, b, c)
self.assertEqual(out1, out2)
def test_pre_dispatch_no_grad(self):
def f(a):
b = a.sin()
torch.set_grad_enabled(False)
c = b.cos()
torch.set_grad_enabled(True)
return b + c.sin()
a1 = torch.randn(4, requires_grad=True)
a2 = a1.detach().clone().requires_grad_(True)
a_tmp = a1.detach().clone().requires_grad_(True)
fx_g = make_fx(f, pre_dispatch=True)(a_tmp)
out1 = f(a1)
out2 = fx_g(a2)
self.assertEqual(out1, out2)
out1.sum().backward()
out2.sum().backward()
self.assertEqual(a1.grad, a2.grad)
def test_make_fx_simple(self):
def f(x):
return torch.sin(x)
self._test(f, (torch.randn(3),))
def test_scalar_device(self, device='cpu'):
def f(a, b):
return a + b
self._test(f, [torch.randn(3, device=device), torch.tensor(5)])
def test_isolated_graphmodule(self):
def is_any_sum(gm):
return any(node.target == torch.ops.aten.sum.default for node in gm.graph.nodes)
def is_any_digamma(gm):
return any(node.target == torch.ops.aten.digamma.default for node in gm.graph.nodes)
def is_any_sigmoid(gm):
return any(node.target == torch.ops.aten.sigmoid.default for node in gm.graph.nodes)
def inner(x):
return torch.sum(x)
def f(x):
gm = get_isolated_graphmodule(inner, (x,), {})
self.assertTrue(is_any_sum(gm))
return x + torch.randn(x.shape)
# get_isolated_graphmodule uses make_fx internally that shouldn't be traced
# by the outer make_fx call
traced = make_fx(f)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
# When factory functions are used, they should not be traced
# by the outer make_fx call
def inner_with_factory():
val = torch.tensor(float(1))
val.add_(2)
return torch.full((10, 10), val).sum()
def f1(x):
gm = get_isolated_graphmodule(inner_with_factory, (), {})
self.assertTrue(is_any_sum(gm))
return torch.sigmoid(x)
def f2(x):
gm = get_isolated_graphmodule(f1, (x,), {})
self.assertFalse(is_any_sum(gm))
self.assertTrue(is_any_sigmoid(gm))
return torch.digamma(x)
traced = make_fx(f2)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
self.assertFalse(is_any_sigmoid(traced))
self.assertTrue(is_any_digamma(traced))
# Verify nested make_fx calls don't make factory functions to be leaked
# into the outer graph. Verify that `make_fx`` itself does not leak its execution.
def f2(x):
gm = make_fx(f1)(x)
self.assertFalse(is_any_sum(gm))
self.assertTrue(is_any_sigmoid(gm))
return torch.digamma(x)
traced = make_fx(f2)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
self.assertFalse(is_any_sigmoid(traced))
self.assertTrue(is_any_digamma(traced))
# Verify that the `forward`` function of a graph module produced as a
# side effect of an interior `make_fx` is still traced
def f3(x):
gm = make_fx(f1)(x)
self.assertFalse(is_any_sum(gm))
self.assertTrue(is_any_sigmoid(gm))
# `gm.forward`` is still traced
return torch.digamma(gm(x))
traced = make_fx(f3)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
self.assertTrue(is_any_sigmoid(traced))
self.assertTrue(is_any_digamma(traced))
# Verify interaction with non-ProxyTensor modes
from torch.testing._internal.logging_tensor import LoggingTensorMode
def f1_logging(x):
with LoggingTensorMode():
gm = get_isolated_graphmodule(inner_with_factory, (), {})
self.assertTrue(is_any_sum(gm))
return torch.sigmoid(x)
def f2_logging(x):
with LoggingTensorMode(), LoggingTensorMode():
gm = get_isolated_graphmodule(f1_logging, (x,), {})
self.assertFalse(is_any_sum(gm))
self.assertTrue(is_any_sigmoid(gm))
return torch.digamma(x)
traced = make_fx(f2_logging)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
self.assertFalse(is_any_sigmoid(traced))
self.assertTrue(is_any_digamma(traced))
# Verify interaction with another tensor subclass
# This case currently doesn't work and should raise an error
# See: https://github.com/pytorch/pytorch/pull/81764#issuecomment-1200472068
from torch.testing._internal.logging_tensor import LoggingTensor
def f1_logging_tensor(x):
gm = get_isolated_graphmodule(inner_with_factory, (), {})
self.assertTrue(is_any_sum(gm))
return torch.sigmoid(x)
def f2_logging_tensor(x):
x = LoggingTensor(x)
gm = get_isolated_graphmodule(f1_logging_tensor, (x,), {})
self.assertFalse(is_any_sum(gm))
self.assertTrue(is_any_sigmoid(gm))
return torch.digamma(x)
traced = make_fx(f2_logging_tensor)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
self.assertFalse(is_any_sigmoid(traced)) # this fails, sigmoid is traced with LoggingTensor
self.assertTrue(is_any_digamma(traced))
# See https://github.com/pytorch/pytorch/issues/97541
def test_empty_like_doesnt_burn_in_defaults(self):
def f(x):
return torch.empty_like(x)
out = make_fx(f)(torch.randn(3))
self.assertExpectedInline(out.code.strip(), """\
def forward(self, x_1):
empty_like = torch.ops.aten.empty_like.default(x_1, pin_memory = False); x_1 = None
return empty_like""")
def test_proxy_tensor_mode_with_decomp_table_preserves_proxy(self):
def f(x):
y = x.new_zeros(x.size())
y.copy_(x)
return y
def _new_zeros_decomp(inp, size, dtype=None, layout=None, device=None, pin_memory=None):
return torch.zeros(size, dtype=inp.dtype, device=inp.device)
factory_func_decomp = {torch.ops.aten.new_zeros.default: _new_zeros_decomp}
# When new_zeros() decomposes into torch.zero(), we expect ProxyTensorMode
# to still be (re-entrantly) enabled, so that the `torch.zero()` call
# returns a ProxyTensor.
out = make_fx(f, decomposition_table=factory_func_decomp)(torch.ones(2))
self.assertExpectedInline(out.code, """\
def forward(self, x_1):
zeros = torch.ops.aten.zeros.default([2], dtype = torch.float32, device = device(type='cpu'), pin_memory = False)
copy_ = torch.ops.aten.copy_.default(zeros, x_1); zeros = x_1 = None
return copy_
""")
def test_make_fx_reentrant_dispatch(self):
def f(x):
return torch.ops.aten.norm.Scalar(x, 2.0)
def norm_decomp(x, p=2.0):
if p != 2.0:
raise RuntimeError("can't handle with p != 2")
return torch.sqrt(torch.sum(torch.square(x)))
decomp = {torch.ops.aten.norm.Scalar: norm_decomp}
traced = make_fx(f, decomposition_table=decomp, tracing_mode=self.tracing_mode)(torch.rand(3))
for n in traced.graph.nodes:
self.assertTrue("square" not in str(n.target))
self.assertTrue("norm" not in str(n.target))
@unittest.skipIf(not USE_TORCHVISION, "test requires torchvision")
def test_resnet18_backward_trace(self):
mod = torchvision.models.resnet18()
# An old version of this test called the module directly. This works
# for tracing_mode == "real", but for fake tensors, we also have to
# ensure that the parameters and buffers get wrapped in fake tensors
# because free fake tensors are not supported. Fortunately functional_call
# does precisely this for us.
def f(x, params, buffers):
for p in params.values():
p.grad = None
loss = torch.func.functional_call(mod, {**params, **buffers}, (x,)).sum()
# I could have done this with the functional API, but there is
# plenty of exercising this; I want to show mutating API still
# works
loss.backward()
return [p.grad for p in params.values()]
inp = torch.randn(3, 3, 250, 250)
self._test(f, [inp, dict(mod.named_parameters()), dict(mod.named_buffers())])
def test_varargs(self):
def f(*args):
return sum(args)
self._test(f, [torch.randn(2), torch.randn(2)])
def test_proxy_tensor(self):
def f_grad(x):
val = x.cos().cos().sum()
return torch.autograd.grad(val, x)
def f_backward(x):
val = x.cos().cos().sum()
val.backward()
return x.grad
for f in [f_grad, f_backward]:
self._test(f, [torch.randn(3, requires_grad=True)])
def test_pickle_issue89626(self):
import pickle
x = torch.randn(2)
make_fx(lambda x: x * 2, tracing_mode=self.tracing_mode)(x)
pickle.dumps(x)
def test_inplace_metadata(self):
def f(x):
x = x.clone()
x.unsqueeze_(-1)
assert x.shape[-1] == 1
return x
self._test(f, [torch.randn(5)])
def test_mode_tracing_factory_function(self):
def f(x):
return x + torch.randn(x.shape)
# default behavior should trace factory functions
traced = make_fx(f, tracing_mode=self.tracing_mode)(torch.randn(3))
self.assertTrue(
any(
node.target == aten.randn.default
for node in traced.graph.nodes
)
)
def test_pre_dispatch_functionalization(self):
def f(x):
a = FunctionalTensorMode(pre_dispatch=True, export=True)
with a:
x_unwrapped = FunctionalTensor.to_functional(x)
y = torch.matmul(x_unwrapped, x_unwrapped)
y = y + x_unwrapped
y.mul_(5)
y_unwrapped = torch._from_functional_tensor(y.elem)
return y_unwrapped
from torch._dispatch.python import enable_python_dispatcher
with enable_python_dispatcher():
inp = torch.randn(4, 4)
gm = make_fx(f, pre_dispatch=True)(inp)
# TODO actually not decompose
self.assertExpectedInline(gm.code.strip(), """\
def forward(self, x_1):
matmul = torch.ops.aten.matmul.default(x_1, x_1)
add = torch.ops.aten.add.Tensor(matmul, x_1); matmul = x_1 = None
mul = torch.ops.aten.mul.Tensor(add, 5); add = None
return mul""")
def test_pre_dispatch_functionalization_view_op(self):
def f(x):
a = FunctionalTensorMode(pre_dispatch=True, export=True)
with a:
x_unwrapped = FunctionalTensor.to_functional(x)
y = torch.matmul(x_unwrapped, x_unwrapped)
x_unwrapped = x_unwrapped.transpose(1, 0)
y = y + x_unwrapped
y = y.view(2, 8)
y_unwrapped = torch._from_functional_tensor(y.elem)
return y_unwrapped
from torch._dispatch.python import enable_python_dispatcher
with enable_python_dispatcher():
inp = torch.randn(4, 4)
gm = make_fx(f, pre_dispatch=True)(inp)
# TODO actually not decompose
self.assertExpectedInline(gm.code.strip(), """\
def forward(self, x_1):
matmul = torch.ops.aten.matmul.default(x_1, x_1)
transpose = torch.ops.aten.transpose.int(x_1, 1, 0); x_1 = None
add = torch.ops.aten.add.Tensor(matmul, transpose); matmul = transpose = None
view = torch.ops.aten.view.default(add, [2, 8]); add = None
return view""")
def test_val_metadata_mutation(self):
def f(x):
y = x.clone()
y.unsqueeze_(0)
return y
traced = make_fx(f, tracing_mode=self.tracing_mode)(torch.randn(3, requires_grad=True))
self.assertEqual([
tuple(node.meta['val'].shape)
for node in traced.graph.nodes
if 'val' in node.meta
], [(3,), (3,), (1, 3)])
def test_make_fx_overloads(self):
def f(x):
return x.cos() + torch.randn(x.shape)
traced = make_fx(f, tracing_mode=self.tracing_mode)(torch.randn(3))
self.assertTrue(all(isinstance(node.target, torch._ops.OpOverload)
for node in traced.graph.nodes if node.op == 'call_function'))
def test_tensor_constants(self):
def f():
val = torch.tensor(float('inf'))
return torch.full((100, 100), val)
self._test(f, [])
def test_allclose(self):
def f(a, b):
return torch.allclose(a, b)
def test_f():
make_fx(f, tracing_mode=self.tracing_mode)(
torch.zeros(3), torch.zeros(3)
)
if self.tracing_mode != "real":
self.assertRaises(DataDependentOutputException, test_f)
else:
self.assertRaisesRegex(RuntimeError, "data-dependent", test_f)
def test_constant_proxy_tensor_mut(self):
def f():
val = torch.tensor(float(1))
val.add_(2)
return torch.full((100, 100), val)
g = make_fx(f, tracing_mode=self.tracing_mode)()
self.assertEqual(g(), f())
# In case we mutated shared state in the g graph!
self.assertEqual(g(), f())
def test_constant_unbind(self):
def f():
val = torch.tensor([2])
r, = torch.unbind(val, 0)
return r.item()
g = make_fx(f, tracing_mode=self.tracing_mode)()
self.assertEqual(g(), f())
def test_constant_blowup(self):
def f():
val = torch.tensor([2])
blowup = val.repeat(1000)
return bool(blowup.sum().item() == 2)
def test_f():
make_fx(f, tracing_mode=self.tracing_mode)()
self.assertRaisesRegex(RuntimeError, "data-dependent", test_f)
def test_constant_random(self):
def f():
val = torch.tensor([2.0])
val.normal_()
return bool(val.item() == 2.1)
def test_f():
make_fx(f, tracing_mode=self.tracing_mode)()
self.assertRaisesRegex(RuntimeError, "data-dependent", test_f)
def test_decomposition_interpreter(self):
def fn(x):
return torch.nn.functional.silu(x)
x = torch.rand((4, 4))
fx_module = make_fx(fn, tracing_mode=self.tracing_mode, decomposition_table=None)(x)
found_silu = False
for n in fx_module.graph.nodes:
if n.target == torch.ops.aten.silu or n.target == torch.ops.aten.silu.default:
found_silu = True
self.assertTrue(found_silu)
new_graph = torch.fx.Graph()
silu_decomp_table = {torch.ops.aten.silu.default: decomposition_table[torch.ops.aten.silu.default]}
DecompositionInterpreter(
fx_module,
new_graph=new_graph,
decomposition_table=silu_decomp_table,
).run(x)
decomposed_module = torch.fx.GraphModule(fx_module, new_graph)
for n in decomposed_module.graph.nodes:
self.assertTrue(n.target != torch.ops.aten.silu)
self.assertTrue(n.target != torch.ops.aten.silu.default)
self.assertEqual(fx_module(x), decomposed_module(x))
def test_make_fx_model_fwd_bwd(self):
class Foo(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(5, 5)
def forward(self, x):
return self.linear(x).relu()
model = Foo()
def f(x, params):
out = torch.func.functional_call(model, params, x).sum()
out.backward()
return list(params.values())
input = torch.randn(3, 5, requires_grad=True)
params = dict(model.named_parameters())
fx_f = make_fx(f, tracing_mode=self.tracing_mode)(input, params)
# fx may change the order of parameters in list, so using set() to compare
self.assertTrue(
torch.allclose(fx_f(input, params)[0], f(input, params)[0])
or
torch.allclose(fx_f(input, params)[0], f(input, params)[1])
)
self.assertTrue(
torch.allclose(fx_f(input, params)[1], f(input, params)[0])
or
torch.allclose(fx_f(input, params)[1], f(input, params)[1])
)
def test_make_fx_model_double_param(self):
class Emformer(torch.nn.Module):
def __init__(
self,
input_dim: int = 256,
) -> None:
super().__init__()
self.layer_norm = torch.nn.LayerNorm(input_dim)
def forward(mod_self, x): # noqa: B902
self.assertTrue(isinstance(mod_self.layer_norm.weight, torch.Tensor))
y = mod_self.layer_norm(x)
self.assertTrue(isinstance(mod_self.layer_norm.weight, torch.Tensor))
z = mod_self.layer_norm(y)
return z
gm = make_fx(Emformer())(torch.randn(16, 1, 256))
ops = {n.target for n in gm.graph.nodes if n.op == 'call_function'}
self.assertEqual(len(ops), 2)
def test_make_fx_model_fwd_bwd_wgtupdate(self):
class Foo(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(5, 5)
def forward(self, x):
return self.linear(x).relu()
model = Foo()
def f(args, params, buffers):
for p in params.values():
p.grad = None
if not isinstance(args, Iterable):
args = [args]
params_and_buffers = {**params, **buffers}
out = torch.func.functional_call(model, params_and_buffers, args)
out.sum().backward()
return [p - 1e-4 * p.grad for p in params.values()]
input = torch.randn(3, 5, requires_grad=True)
params = dict(model.named_parameters())
buffers = dict(model.named_buffers())
fx_f = make_fx(f, tracing_mode=self.tracing_mode)(input, params, buffers)
# fx may change the order of parameters in list, so using set() to compare
# also there is a numerical difference in results so changing atol from 1e-08 to 1e-03
self.assertTrue(
torch.allclose(fx_f(input, params, buffers)[0], f(input, params, buffers)[0], atol=1e-03)
or
torch.allclose(fx_f(input, params, buffers)[0], f(input, params, buffers)[1], atol=1e-03)
)
self.assertTrue(
torch.allclose(fx_f(input, params, buffers)[1], f(input, params, buffers)[0], atol=1e-03)
or
torch.allclose(fx_f(input, params, buffers)[1], f(input, params, buffers)[1], atol=1e-03)
)
def test_trace_subclasses(self):
def f1(x):
x = UnwrapTensor(x)
y = x * 2
return y
def f2(x):
wrapped = UnwrapTensor(x)
y = x * wrapped
return y
inp = [torch.randn(5)]
self._test(f1, inp)
self._test(f2, inp)
def test_partial_decomp(self):
def f(a, b, c):
x = torch.addmm(a, b, c)
y = torch.addmm(a, b, c, beta=2, alpha=1)
return x + y
inps = [torch.randn(5, 5), torch.randn(5, 5), torch.randn(5, 5)]
fx_g = make_fx(f)(*inps)
def addmm(a, b, c, beta=1, alpha=1):
if beta == 1 and alpha == 1:
return NotImplemented
return beta * a + alpha * (b @ c)
decomposed_fx = make_fx(f, decomposition_table={aten.addmm.default: addmm})(*inps)
self.assertEqual(fx_g(*inps), decomposed_fx(*inps))
self.assertEqual(len([n for n in fx_g.graph.nodes if n.target == aten.addmm.default]), 2)
self.assertEqual(len([n for n in decomposed_fx.graph.nodes if n.target == aten.addmm.default]), 1)
def test_decomp_of_capture(self):
val = torch.randn(5)
def f(x):
return x.t() + val.t()
def nop(x):
return x.cos()
traced = make_fx(f, decomposition_table={torch.ops.aten.t.default: nop})(torch.randn(5))
self.assertEqual(len([n for n in traced.graph.nodes if n.target == torch.ops.aten.t.default]), 0)
@unittest.skipIf(not HAS_CUDA, 'CUDA-only test')
def test_amp_cache(self):
layer = torch.nn.Conv2d(3, 3, 3).cuda()
def f(x, w):
return torch.nn.functional.conv2d(x, w, stride=layer.stride)
inp = torch.randn(4, 3, 10, 10, device='cuda')
with torch.autocast('cuda'):
out_graph = make_fx(f)(inp, layer.weight).graph
out_graph2 = make_fx(f)(inp, layer.weight).graph
self.assertEqual(len(out_graph.nodes), len(out_graph2.nodes))
for a, b in zip(out_graph.nodes, out_graph2.nodes):
self.assertEqual(a.op, b.op)
def test_strides(self):
def f(x):
self.assertTrue(x.is_contiguous())
self.assertFalse(x.is_contiguous(memory_format=torch.channels_last))
x = x.permute(0, 3, 1, 2)
self.assertFalse(x.is_contiguous())
self.assertTrue(x.is_contiguous(memory_format=torch.channels_last))
return x
make_fx(f)(torch.randn(2, 3, 4, 5))
def f(x):
self.assertTrue(x.is_contiguous())
y = x[:, 1]
self.assertFalse(y.is_contiguous())
y = x[:, ::2]
self.assertFalse(y.is_contiguous())
return x.cos()
make_fx(f)(torch.randn(2, 3, 4, 5))
def test_pr_86917(self):
# Tests the issue brought up here https://github.com/pytorch/pytorch/pull/86917#issuecomment-1283155344
def f(a, b):
return torch.ops.aten.nll_loss_forward(a, b, None, 1, 10)
self._test(f, [torch.randn(1, 10), torch.zeros(1, dtype=torch.long)])
class TestGenericProxyTensorReal(TestGenericProxyTensor):
tracing_mode = "real"
class TestGenericProxyTensorFake(TestGenericProxyTensor):
tracing_mode = "fake"
class TestGenericProxyTensorSymbolic(TestGenericProxyTensor):
tracing_mode = "symbolic"
del TestGenericProxyTensor
class TestRealProxyTensor(TestCase):
def test_error_on_data_dependent_ops(self):
def f():
x = torch.randn([])
y = torch.randn([])
assert torch.allclose(x * y, y * x)
z = float(x)
z2 = float(y)
# Smoke tests
make_fx(f, _error_on_data_dependent_ops=False)()
make_fx(f, pre_dispatch=True, _error_on_data_dependent_ops=False)()
class TestFakeProxyTensor(TestCase):
def test_issue82547(self):
x = nn.Parameter(torch.randn(3, 3))
def f():
return torch.ops.aten.t.default(x)
self.assertRaisesRegex(Exception, "Please convert all Tensors", lambda: make_fx(f, tracing_mode="fake")())
class A(torch.Tensor):
pass
x = A(torch.randn(3, 3))
self.assertRaisesRegex(TypeError, "Multiple dispatch failed", lambda: make_fx(f, tracing_mode="fake")())
def test_use_fake_and_tensor(self):
def f(x, y):
z = torch.tensor([2.0, 3.0])
return x + y + z
g = make_fx(f, tracing_mode="fake")(torch.randn(2), torch.randn(2))
x, y = torch.randn(2), torch.randn(2)
self.assertEqual(g(x, y), f(x, y))
def test_free_fake(self):
def f(x):
return torch.add(x, y)
with FakeTensorMode() as fake_mode:
y = torch.randn(2)
make_fx(f, tracing_mode="real")(torch.randn(2))
def test_fused_adam(self):
# See https://github.com/pytorch/pytorch/issues/99356
params = [torch.randn(10, 10) for _ in range(10)]
grads = [torch.randn(10, 10) for _ in range(10)]
exp_avgs = [torch.randn(10, 10) for _ in range(10)]
exp_avg_sqs = [torch.randn(10, 10) for _ in range(10)]
max_exp_avg_sqs = [torch.randn(10, 10) for _ in range(10)]
state_steps = [torch.tensor(0) for _ in range(10)]
def fused_adam(params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps):
(new_params, _, _, _, _) = aten._fused_adam.default(
params,
grads,
exp_avgs,
exp_avg_sqs,
max_exp_avg_sqs,
state_steps,
lr=0.1,
beta1=0.9,
beta2=0.999,
weight_decay=0.01,
eps=1e-8,
amsgrad=False,
maximize=False,
)
for p, new_p in zip(params, new_params):
p.copy_(new_p)
return params
gm = make_fx(fused_adam, tracing_mode='fake')(
params,
grads,
exp_avgs,
exp_avg_sqs,
max_exp_avg_sqs,
state_steps,
)
ensure_ops_have_val = [aten._fused_adam.default, operator.getitem]
for n in gm.graph.nodes:
if n.op == "call_function" and n.target in ensure_ops_have_val:
self.assertIn('val', n.meta)
def test_alias(self):
def f(x):
return torch.ops.aten.alias(x)
r = str(make_fx(f, tracing_mode="fake")(torch.randn(2)).code).strip()
# NB: this should not have a detach call
self.assertExpectedInline(r, """\
def forward(self, x_1):
alias = torch.ops.aten.alias.default(x_1); x_1 = None
return alias""")
def test_meta(self):
def f(x):
a = x.cos()
b = torch.var_mean(a, dim=0)
c = b * 2
return c
out = make_fx(f, tracing_mode="fake")(torch.randn(5, 5))
for n in out.graph.nodes:
if n.op == 'output':
continue
self.assertTrue('val' in n.meta)
def _get_node(fx_g, cond):
for n in fx_g.graph.nodes:
if cond(n):
return n
raise AssertionError
def _get_free_symbols(shape_env):
vars = tuple(shape_env.var_to_val.keys())
return len([var for var in vars if var not in shape_env.replacements])
def _trace(f, *args):
inps = [torch.randn(arg) for arg in args]
return make_fx(f, tracing_mode="symbolic")(*inps)
# TODO: Need to test the guards themselves specifically as well
class TestSymbolicTracing(TestCase):
def _test_dynamic(self, fn, trace_inputs, test_inputs, assert_eq=True):
"""
Tests fn traced with trace_inputs against test_inputs
Also returns shape env
"""
trace_inputs = [torch.randn(shape) for shape in trace_inputs]
traced_f = make_fx(fn, tracing_mode="symbolic")(*trace_inputs)
for input in test_inputs:
input = [torch.randn(shape) for shape in input]
rx, ry = traced_f(*input), fn(*input)
if assert_eq:
self.assertEqual(rx, ry)
return traced_f
def test_debug_interpreter(self):
import torch.library
from torch.library import Library
foo = Library("foo", "DEF") # noqa: TOR901
foo.define("foo(Tensor self) -> Tensor")
# Operator where meta and cpu disagree on strides
@torch.library.impl(foo, "foo", "CPU")
def foo_cpu(x):
return x.clone().T
@torch.library.impl(foo, "foo", "Meta")
def foo_meta(x):
return x.clone()
def f(x):
return torch.ops.foo.foo.default(x)
gm = make_fx(f, tracing_mode="symbolic")(torch.randn(2, 2))
from torch._functorch.compilers import DebugInterpreter
interp = DebugInterpreter(gm)
# input mismatch is caught (indicates guard problem)
self.assertRaisesRegex(
AssertionError, r"3 != 1",
lambda: interp.run(torch.randn(3, 3).T),
)
# Catch the incorrect meta
self.assertRaisesRegex(
AssertionError, r"\(3, 1\) != \(1, 3\)",
lambda: interp.run(torch.randn(3, 3))
)
def test_int_input(self):
def f(x, y):
return x.view(y)
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(3, 4), 12).code).strip()
self.assertExpectedInline(r, """\
def forward(self, x_1, y_1):
view = torch.ops.aten.view.default(x_1, [y_1]); x_1 = y_1 = None
return view""")
def test_resize_from_zero(self):
def f(x, y):
x.resize_(y.size(0))
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(0), torch.empty(2)).code).strip()
self.assertExpectedInline(r, """\
def forward(self, x_1, y_1):
sym_size_int = torch.ops.aten.sym_size.int(y_1, 0); y_1 = None
resize_ = torch.ops.aten.resize_.default(x_1, [sym_size_int]); x_1 = sym_size_int = resize_ = None
return None""")
def test_broadcast_shapes(self):
def f(x, y):
return torch.functional.broadcast_shapes(x.size(), y.size()[0])
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(3, 1), torch.empty(5)).code).strip()
self.assertExpectedInline(r, """\
def forward(self, x_1, y_1):
sym_size_int = torch.ops.aten.sym_size.int(x_1, 0); x_1 = None
sym_size_int_1 = torch.ops.aten.sym_size.int(y_1, 0); y_1 = None
return (sym_size_int, sym_size_int_1)""")
def test_deduped_shape(self):
def f(s0, s1, x, y):
return torch.functional.broadcast_shapes(x.size(), y.size()[0]), torch.empty(x.shape[0])
x = torch.empty(3, 1)
y = torch.empty(5)
from torch.fx.experimental.symbolic_shapes import ShapeEnv
shape_env = ShapeEnv()
with FakeTensorMode(shape_env=shape_env, static_shapes=False) as fake_mode:
x = fake_mode.from_tensor(x)
y = fake_mode.from_tensor(y)
r = str(make_fx(f, tracing_mode="real")(x.shape[0], y.shape[0], x, y).code).strip()
self.assertExpectedInline(r, """\
def forward(self, s0_1, s1_1, x_1, y_1):
empty = torch.ops.aten.empty.memory_format([s0_1], device = device(type='cpu'), pin_memory = False)
return ((s0_1, s1_1), empty)""")
def test_non_deduped_shape(self):
def f(x, y):
return torch.functional.broadcast_shapes(x.size(), y.size()[0]), torch.empty(x.shape[0])
x = torch.empty(3, 1)
y = torch.empty(5)
from torch.fx.experimental.symbolic_shapes import ShapeEnv
shape_env = ShapeEnv()
with FakeTensorMode(shape_env=shape_env, static_shapes=False) as fake_mode:
x = fake_mode.from_tensor(x)
y = fake_mode.from_tensor(y)
r = str(make_fx(f, tracing_mode="real")(x, y).code).strip()
self.assertExpectedInline(r, """\
def forward(self, x_1, y_1):
sym_size_int = torch.ops.aten.sym_size.int(x_1, 0); x_1 = None
sym_size_int_1 = torch.ops.aten.sym_size.int(y_1, 0); y_1 = None
empty = torch.ops.aten.empty.memory_format([sym_size_int], device = device(type='cpu'), pin_memory = False)
return ((sym_size_int, sym_size_int_1), empty)""")
def test_unary(self):
def f(x):
assert x.shape[0] < 20
return x.cos()
test_inputs = []
test_inputs.append([(2, 5)])
test_inputs.append([(6, 8)])
gm = self._test_dynamic(f, [(3, 4)], test_inputs)
self.assertTrue(eval_guards(gm, torch.randn(4, 5)))
self.assertEqual(repr(bind_symbols(gm, torch.randn(4, 5))), "{s0: 4, s1: 5}")
self.assertFalse(eval_guards(gm, torch.randn(25, 5)))
self.assertExpectedInline(show_guards(gm), """L['x'].size()[0] <= 19""")
def test_repeat_interleave(self):
def f(src_tokens, beam_size_src):
return src_tokens.repeat_interleave(beam_size_src.size(0), 0)
prompt_size = 64
vocab_size = 64
batch_size = 4
src_tokens = torch.randint(1, vocab_size, (batch_size, prompt_size))
gm = make_fx(f, tracing_mode="symbolic")(src_tokens, torch.randn(5))
self.assertEqual(len(gm.shape_env.guards), 0)
def test_non_symint_size_spec(self):
# this isn't really a proxy tensor test, but it's the most convenient
# way to get a fake tensor with symbolic sizes
def f(x):
torch._C._non_sym_sizes(x)
return x + 1
x = torch.randn(2, 3)
make_fx(f, tracing_mode="symbolic")(x)
# https://github.com/pytorch/pytorch/issues/108195
def test_symbolic_repeat_interleave(self):
def f(y, x):
return y.repeat_interleave(x, dim=1)
y = torch.tensor([[1, 2], [3, 4]])
x = torch.tensor([2, 3])
r = str(make_fx(f, tracing_mode="symbolic")(y, x).code).strip()
self.assertExpectedInline(r, """\
def forward(self, y_1, x_1):
repeat_interleave = torch.ops.aten.repeat_interleave.Tensor(x_1); x_1 = None
index_select = torch.ops.aten.index_select.default(y_1, 1, repeat_interleave); y_1 = repeat_interleave = None
return index_select""")
def test_mod_gcd_unbacked(self):
def f(_a, _b, _stride):
a = _a.item()
b = _b.item()
stride = _stride.item()
torch._check_is_size(a)
torch._check_is_size(b)
torch._check_is_size(stride)
ta = torch.randn(a * stride)
tb = torch.randn(b * stride)
r = torch.cat([ta, tb])
return r.view(a + b, stride)
_a = torch.tensor(30)
_b = torch.tensor(20)
_stride = torch.tensor(10)
r = str(make_fx(f, tracing_mode="symbolic")(_a, _b, _stride).code).strip()
self.assertExpectedInline(r, """\
def forward(self, _a_1, _b_1, _stride_1):
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(_a_1); _a_1 = None
_local_scalar_dense_1 = torch.ops.aten._local_scalar_dense.default(_b_1); _b_1 = None
_local_scalar_dense_2 = torch.ops.aten._local_scalar_dense.default(_stride_1); _stride_1 = None
mul = _local_scalar_dense * _local_scalar_dense_2
randn = torch.ops.aten.randn.default([mul], device = device(type='cpu'), pin_memory = False); mul = None
mul_1 = _local_scalar_dense_1 * _local_scalar_dense_2
randn_1 = torch.ops.aten.randn.default([mul_1], device = device(type='cpu'), pin_memory = False); mul_1 = None
cat = torch.ops.aten.cat.default([randn, randn_1]); randn = randn_1 = None
add = _local_scalar_dense + _local_scalar_dense_1; _local_scalar_dense = _local_scalar_dense_1 = None
view = torch.ops.aten.view.default(cat, [add, _local_scalar_dense_2]); cat = add = _local_scalar_dense_2 = None
return view""")
def test_cumsum_unbacked(self):
def f(x):
y = x.item()
z = torch.randn((3, y, 3))
return z.cumsum(0)
r = str(make_fx(f, tracing_mode="symbolic")(torch.tensor([5])).code).strip()
self.assertExpectedInline(
r, """\
def forward(self, x_1):
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(x_1); x_1 = None
randn = torch.ops.aten.randn.default([3, _local_scalar_dense, 3], device = device(type='cpu'), pin_memory = False); _local_scalar_dense = None
cumsum = torch.ops.aten.cumsum.default(randn, 0); randn = None
return cumsum""" # noqa: B950
)
def test_repeat_interleave_unbacked_output_size(self):
def f(x, y):
s = x.sum().item()
return y.repeat_interleave(x, dim=0, output_size=s)
r = str(make_fx(f, tracing_mode="symbolic")(torch.tensor([2, 3]), torch.randn(2)).code).strip()
self.assertExpectedInline(
r, """\
def forward(self, x_1, y_1):
sum_1 = torch.ops.aten.sum.default(x_1)
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(sum_1); sum_1 = None
repeat_interleave = torch.ops.aten.repeat_interleave.Tensor(x_1, output_size = _local_scalar_dense); x_1 = _local_scalar_dense = None
index_select = torch.ops.aten.index_select.default(y_1, 0, repeat_interleave); y_1 = repeat_interleave = None
return index_select""" # noqa: B950
)
def test_arange_unbacked_output_size(self):
def f(x):
return torch.arange(0, x)
r = str(make_fx(f, tracing_mode="symbolic")(torch.tensor(10)).code).strip()
self.assertExpectedInline(
r, """\
def forward(self, x_1):
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(x_1); x_1 = None
arange = torch.ops.aten.arange.start(0, _local_scalar_dense, device = device(type='cpu'), pin_memory = False); _local_scalar_dense = None
return arange""" # noqa: B950
)
def test_adv_index_batch(self):
def f(src_tokens):
bsz, src_len = src_tokens.size()[:2]
start_step = src_tokens.shape[1]
beam_size = 1
generate_size = 64
max_len = src_len + generate_size
tokens = torch.zeros(bsz * beam_size, max_len).to(src_tokens).long().fill_(0)
tokens[:, :start_step] = src_tokens.repeat_interleave(beam_size, 0)
return tokens
prompt_size = 64
vocab_size = 64
batch_size = 4
src_tokens = torch.randint(1, vocab_size, (batch_size, prompt_size))
gm = make_fx(f, tracing_mode="symbolic")(src_tokens)
# Guards to rule out batch_size == sys.maxsize (wobbling between 2 and
# 1 ok)
self.assertEqual(len(gm.shape_env.guards), 1)
@unittest.skipIf(not HAS_CUDA, 'CUDA-only test')
def test_cpu_scalar_cuda(self):
# Extracted from wave2vec2
def f(a, b):
return (a * b) @ b
r = str(
make_fx(f, tracing_mode="symbolic")(
torch.tensor(1.0), torch.randn(2, 2, device='cuda')
).code
).strip()
self.assertExpectedInline(r, """\
def forward(self, a_1, b_1):
mul = torch.ops.aten.mul.Tensor(a_1, b_1); a_1 = None
mm = torch.ops.aten.mm.default(mul, b_1); mul = b_1 = None
return mm""")
def test_binary_broadcast(self):
def f(a, b):
c = a * b
return c
test_inputs = []
test_inputs.append([(1, 5), (3, 1)])
test_inputs.append([(1, 4), (4, 1)])
shape_env = self._test_dynamic(f, [(1, 2), (3, 1)], test_inputs).shape_env
assert len(shape_env.guards) == 0
def test_multiply_shape(self):
def f(a):
return torch.empty(a.shape[0] * 2)
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(4)).code).strip()
self.assertExpectedInline(r, """\
def forward(self, a_1):
sym_size_int = torch.ops.aten.sym_size.int(a_1, 0); a_1 = None
mul = sym_size_int * 2; sym_size_int = None
empty = torch.ops.aten.empty.memory_format([mul], device = device(type='cpu'), pin_memory = False); mul = None
return empty""")
def test_item(self):
def f(a):
r = a.item()
return r * a
r = str(make_fx(f, tracing_mode="symbolic")(torch.randn(1)).code).strip()
self.assertExpectedInline(r, """\
def forward(self, a_1):
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(a_1)
mul = torch.ops.aten.mul.Tensor(a_1, _local_scalar_dense); a_1 = _local_scalar_dense = None
return mul""")
def test_tensor_symfloat(self):
def f(a):
r = torch.tensor(a.size(0) ** 2.0)
assert r.dtype is torch.float
return r
gm = make_fx(f, tracing_mode="symbolic")(torch.randn(2))
r = str(gm.code).strip()
# NB: this specializes, which is fine, the point is to make sure the
# dtype inference is correct
self.assertExpectedInline(r, """\
def forward(self, a_1):
_tensor_constant0 = self._tensor_constant0
lift_fresh_copy = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
return lift_fresh_copy""")
self.assertEqual(gm._tensor_constant0, torch.tensor(4.0))
def test_item_to_constructor(self):
def f(a):
r = a.item()
return torch.empty(r)
r = str(make_fx(f, tracing_mode="symbolic")(torch.randint(5, (1,))).code).strip()
self.assertExpectedInline(
r, """\
def forward(self, a_1):
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(a_1); a_1 = None
empty = torch.ops.aten.empty.memory_format([_local_scalar_dense], device = device(type='cpu'), pin_memory = False); _local_scalar_dense = None
return empty""" # noqa: B950
)
def test_setitem_symint(self):
# from moco
# https://github.com/pytorch/pytorch/issues/101939
def f(x):
x[0] = x.size(0)
return x
r = str(make_fx(f, tracing_mode="symbolic")(torch.randn(10)).code).strip()
self.assertExpectedInline(
r, """\
def forward(self, x_1):
sym_size_int = torch.ops.aten.sym_size.int(x_1, 0)
scalar_tensor = torch.ops.aten.scalar_tensor.default(sym_size_int, dtype = torch.float32, layout = torch.strided, device = device(type='cpu')); sym_size_int = None
select = torch.ops.aten.select.int(x_1, 0, 0)
copy_ = torch.ops.aten.copy_.default(select, scalar_tensor); select = scalar_tensor = copy_ = None
return x_1""" # noqa: B950
)
def test_dynamic_pointwise_scalar(self):
def f(gravity, mask):
gravity[mask, 0] = gravity[mask, 0] * -1
r = str(make_fx(f, tracing_mode="symbolic")(
torch.randn((12, 4)),
torch.randint(0, 2, (12,), dtype=torch.bool)
).code).strip()
self.assertExpectedInline(r, """\
def forward(self, gravity_1, mask_1):
select = torch.ops.aten.select.int(gravity_1, 1, 0)
index = torch.ops.aten.index.Tensor(select, [mask_1]); select = None
mul = torch.ops.aten.mul.Tensor(index, -1); index = None
select_1 = torch.ops.aten.select.int(gravity_1, 1, 0); gravity_1 = None
index_put_ = torch.ops.aten.index_put_.default(select_1, [mask_1], mul); select_1 = mask_1 = mul = index_put_ = None
return None""")
def test_reflect_r_over_x(self):
def reflect_R_over_x(R):
reflect = torch.eye(3, device=R.device)
reflect[0, 0] = -1
return reflect @ R @ reflect
def f(crop_camera, mask):
crop_camera[mask] = reflect_R_over_x(crop_camera[mask])
r = str(make_fx(f, tracing_mode="symbolic")(
torch.randn((12, 3, 3)),
torch.randint(0, 2, (12,), dtype=torch.bool)
).code).strip()
self.assertExpectedInline(r, """\
def forward(self, crop_camera_1, mask_1):
index = torch.ops.aten.index.Tensor(crop_camera_1, [mask_1])
eye = torch.ops.aten.eye.default(3, device = device(type='cpu'), pin_memory = False)
_tensor_constant0 = self._tensor_constant0
lift_fresh_copy = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
select = torch.ops.aten.select.int(eye, 0, 0)
select_1 = torch.ops.aten.select.int(select, 0, 0); select = None
copy_ = torch.ops.aten.copy_.default(select_1, lift_fresh_copy); select_1 = lift_fresh_copy = copy_ = None
sym_size_int = torch.ops.aten.sym_size.int(index, 0)
expand = torch.ops.aten.expand.default(eye, [sym_size_int, 3, 3])
view = torch.ops.aten.view.default(expand, [sym_size_int, 3, 3]); expand = None
sym_size_int_1 = torch.ops.aten.sym_size.int(crop_camera_1, 1)
sym_size_int_2 = torch.ops.aten.sym_size.int(crop_camera_1, 2)
expand_1 = torch.ops.aten.expand.default(index, [sym_size_int, sym_size_int_1, sym_size_int_2]); index = None
view_1 = torch.ops.aten.view.default(expand_1, [sym_size_int, sym_size_int_1, sym_size_int_2]); expand_1 = sym_size_int_1 = sym_size_int_2 = None
bmm = torch.ops.aten.bmm.default(view, view_1); view = view_1 = None
view_2 = torch.ops.aten.view.default(bmm, [sym_size_int, 3, 3]); bmm = None
mul_4 = sym_size_int * 3
view_3 = torch.ops.aten.view.default(view_2, [mul_4, 3]); view_2 = mul_4 = None
mm = torch.ops.aten.mm.default(view_3, eye); view_3 = eye = None
_unsafe_view = torch.ops.aten._unsafe_view.default(mm, [sym_size_int, 3, 3]); mm = sym_size_int = None
index_put_ = torch.ops.aten.index_put_.default(crop_camera_1, [mask_1], _unsafe_view); crop_camera_1 = mask_1 = _unsafe_view = index_put_ = None
return None""") # noqa: B950
def test_unbacked_slice(self):
def f(x, m):
x = x[m]
return x[slice(None, None, None), slice(None, None, None), slice(None, 2, None)]
make_fx(f, tracing_mode="symbolic")(
torch.randn((12, 3, 3)),
torch.randint(0, 2, (12,), dtype=torch.bool)
)
@unittest.skipIf(not USE_TORCHVISION, "test requires torchvision")
def test_unbacked_batch_resnet(self):
mod = torchvision.models.resnet18()
def f(x, mask, params, buffers):
for p in itertools.chain([x, mask], params.values(), buffers.values()):
for s in p.shape:
guard_int(s)
x = x[mask]
torch._check(x.shape[0] >= 1)
for p in params.values():
p.grad = None
return torch.func.functional_call(mod, {**params, **buffers}, (x,)).sum()
make_fx(f, tracing_mode="symbolic")(
torch.randn(3, 3, 250, 250),
torch.randint(0, 2, (3,), dtype=torch.bool),
dict(mod.named_parameters()),
dict(mod.named_buffers()),
)
def test_boolean_index(self):
def f(images, handedness, valid):
images = images[valid]
handedness = handedness[valid]
right_hand_mask = handedness == 1
images[right_hand_mask] = images[right_hand_mask].flip(-1)
r = str(make_fx(f, tracing_mode="symbolic")(
torch.randint(0, 256, (512, 1, 96, 96)),
torch.randint(0, 1, (512,)),
torch.randint(0, 2, (512,), dtype=torch.bool)
).code).strip()
self.assertExpectedInline(r, """\
def forward(self, images_1, handedness_1, valid_1):
index = torch.ops.aten.index.Tensor(images_1, [valid_1]); images_1 = None
index_1 = torch.ops.aten.index.Tensor(handedness_1, [valid_1]); handedness_1 = valid_1 = None
eq = torch.ops.aten.eq.Scalar(index_1, 1); index_1 = None
index_2 = torch.ops.aten.index.Tensor(index, [eq])
flip = torch.ops.aten.flip.default(index_2, [-1]); index_2 = None
index_put_ = torch.ops.aten.index_put_.default(index, [eq], flip); index = eq = flip = index_put_ = None
return None""")
def test_neg_shape(self):
def f(a):
return torch.empty(-a.shape[0] + 10)
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(2)).code).strip()
self.assertExpectedInline(r, """\
def forward(self, a_1):
sym_size_int = torch.ops.aten.sym_size.int(a_1, 0); a_1 = None
neg = -sym_size_int; sym_size_int = None
add = neg + 10; neg = None
empty = torch.ops.aten.empty.memory_format([add], device = device(type='cpu'), pin_memory = False); add = None
return empty""")
def test_unbacked_unification(self):
def f(x, y):
z = torch.zeros(x.item())
return z + y
r = str(make_fx(f, tracing_mode="symbolic")(torch.tensor(10), torch.randn(10)).code).strip()
self.assertExpectedInline(r, """\
def forward(self, x_1, y_1):
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(x_1); x_1 = None
zeros = torch.ops.aten.zeros.default([_local_scalar_dense], device = device(type='cpu'), pin_memory = False); _local_scalar_dense = None
add = torch.ops.aten.add.Tensor(zeros, y_1); zeros = y_1 = None
return add""") # noqa: B950
def test_reshape_divisibility_unbacked(self):
def f(x):
i0 = x.item()
r = torch.zeros(i0, 4, 20)
r = r.transpose(2, 1)
return r.reshape(-1, 80)
make_fx(f, tracing_mode="symbolic")(torch.tensor(24))
def test_view_divisibility_unbacked(self):
def f(x):
i0 = x.item()
r = torch.zeros(i0, 192)
return r.view(12, -1, 192)
make_fx(f, tracing_mode="symbolic")(torch.tensor(24))
@unittest.skipIf(not HAS_CUDA, 'CUDA-only test')
def test_view_divisibility_unbacked_relatively_prime(self):
# See https://github.com/pytorch/pytorch/issues/123651
def f(x):
i0 = x.item()
torch._check_is_size(i0)
# To trigger the original issue, the max bound has to
# be chosen such that 448 / 447 < 2 (which it is.)
torch._check(i0 <= 448)
return torch.zeros(256 * i0).view(-1, 447)
make_fx(f, tracing_mode="symbolic")(torch.tensor(256 * 447, device="cuda"))
def test_unbacked_unify_guard(self):
def f(x, y):
z = torch.zeros(x.item())
torch._check(z.size(0) == y.size(0)) # refines i0 = s0
if z.size(0) == 4:
return y * 2
else:
return y + 2
r = str(make_fx(f, tracing_mode="symbolic")(torch.tensor(10), torch.randn(10)).code).strip()
self.assertExpectedInline(r, """\
def forward(self, x_1, y_1):
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(x_1); x_1 = None
zeros = torch.ops.aten.zeros.default([_local_scalar_dense], device = device(type='cpu'), pin_memory = False); _local_scalar_dense = zeros = None
add = torch.ops.aten.add.Tensor(y_1, 2); y_1 = None
return add""") # noqa: B950
@unittest.skipIf(not HAS_CUDA, 'CUDA-only test')
@unittest.expectedFailure
def test_unbacked_unify_guard_transitivity(self):
def f(x1, x2, y):
z1 = torch.zeros(x1.item())
z2 = torch.zeros(x2.item())
torch._check(z1.size(0) == z2.size(0)) # refines i0 = i1
torch._check(z2.size(0) == y.size(0)) # refines i0 = s0
if z1.size(0) == 4:
return y * 2
else:
return y + 2
gm = make_fx(f, tracing_mode="symbolic")(
torch.tensor(10, device="cuda"),
torch.tensor(10, device="cuda"),
torch.randn(10, device="cuda")
)
insert_deferred_runtime_asserts(gm, gm.shape_env, "test")
gm.recompile()
r = str(gm.code).strip()
# self.assertExpectedInline(
# r, """""" # noqa: B950
# )
@unittest.skipIf(not HAS_CUDA, 'CUDA-only test')
def test_unbacked_unify_dependency_violation(self):
def f(x1, x2, x3, y):
z1 = x1.item()
torch._check(z1 // 9 == 1)
z2 = x2.item()
z3 = x3.item()
torch._check(z1 == z2 + z3)
return y * 2
# NB: inputs are done as CUDA to ensure they aren't queried to be
# backed
gm = make_fx(f, tracing_mode="symbolic")(
torch.tensor(10, device="cuda"), torch.tensor(5, device="cuda"),
torch.tensor(5, device="cuda"), torch.randn(1, device="cuda")
)
insert_deferred_runtime_asserts(gm, gm.shape_env, "test")
gm.recompile()
self.assertEqual(gm(
torch.tensor(12, device="cuda"), torch.tensor(6, device="cuda"),
torch.tensor(6, device="cuda"), torch.tensor([1.0], device="cuda")),
torch.tensor([2.0], device="cuda")
)
with self.assertRaises(RuntimeError):
gm(
torch.tensor(20, device="cuda"), torch.tensor(10, device="cuda"),
torch.tensor(10, device="cuda"), torch.tensor([1.0], device="cuda")
)
def test_split_unbacked_sizes(self):
def f(lengths, values):
# tolist not directly supported atm
sizes = [lengths[i].item() for i in range(lengths.size(0))]
for s in sizes:
# TODO(avik): no assertion generated with torch._check_is_size?
torch._constrain_as_size(s)
return torch.split(values, sizes)
r = str(make_fx(f, tracing_mode="symbolic")(
torch.tensor([2, 3, 4]),
torch.randn(9)
).code).strip()
self.assertExpectedInline(r, """\
def forward(self, lengths_1, values_1):
select = torch.ops.aten.select.int(lengths_1, 0, 0)
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(select); select = None
select_1 = torch.ops.aten.select.int(lengths_1, 0, 1)
_local_scalar_dense_1 = torch.ops.aten._local_scalar_dense.default(select_1); select_1 = None
select_2 = torch.ops.aten.select.int(lengths_1, 0, 2); lengths_1 = None
_local_scalar_dense_2 = torch.ops.aten._local_scalar_dense.default(select_2); select_2 = None
sym_constrain_range_for_size = torch.ops.aten.sym_constrain_range_for_size.default(_local_scalar_dense); sym_constrain_range_for_size = None
sym_constrain_range_for_size_1 = torch.ops.aten.sym_constrain_range_for_size.default(_local_scalar_dense_1); sym_constrain_range_for_size_1 = None
sym_constrain_range_for_size_2 = torch.ops.aten.sym_constrain_range_for_size.default(_local_scalar_dense_2); sym_constrain_range_for_size_2 = None
split_with_sizes = torch.ops.aten.split_with_sizes.default(values_1, [_local_scalar_dense, _local_scalar_dense_1, _local_scalar_dense_2]); values_1 = _local_scalar_dense = _local_scalar_dense_1 = _local_scalar_dense_2 = None
getitem = split_with_sizes[0]
getitem_1 = split_with_sizes[1]
getitem_2 = split_with_sizes[2]; split_with_sizes = None
return (getitem, getitem_1, getitem_2)""") # noqa: B950
def test_invalidate_nonzero(self):
ok = False
def f(a):
nonlocal ok
b = a.clone()
x = b.nonzero()
x1 = b.nonzero()
x2 = b.nonzero()
assert x1.shape[0] == x2.shape[0]
ok = True
b.normal_()
y = b.nonzero()
try:
bool(x1.shape[0] == y.shape[0])
self.fail("didn't raise exception")
except GuardOnDataDependentSymNode:
pass
make_fx(f, tracing_mode="symbolic")(torch.randn(4))
@torch._functorch.config.patch(fake_tensor_propagate_real_tensors=True)
def test_invalidate_nonzero_propagate_real_tensors(self):
def f(a):
b = a.clone()
x = b.nonzero()
x1 = b.nonzero()
x2 = b.nonzero()
assert x1.shape[0] == x2.shape[0]
b.normal_()
y = b.nonzero()
# Because you're not actually going to generate exactly zero with
# normal_ lol
assert x1.shape[0] == y.shape[0]
make_fx(f, tracing_mode="symbolic")(torch.randn(4))
def test_sqrt_size(self):
def f(a):
return a / a.size(-1) ** 0.5
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(4)).code).strip()
self.assertExpectedInline(r, """\
def forward(self, a_1):
sym_size_int = torch.ops.aten.sym_size.int(a_1, 0)
sym_float = torch.sym_float(sym_size_int); sym_size_int = None
pow_1 = sym_float ** 0.5; sym_float = None
div = torch.ops.aten.div.Tensor(a_1, pow_1); a_1 = pow_1 = None
return div""")
def test_make_fx_with_custom_tracer_preserving_nn_module_stack(self):
class Bar(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, x):
return x + 1
class Foo(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.bar = Bar()
def forward(self, x):
return x + self.bar(x)
gm = make_fx(Foo())(torch.randn(4, 4))
for node in gm.graph.nodes:
self.assertTrue("nn_module_stack" not in node.meta)
foo = Foo()
def functional_call(*args, **kwargs):
with stateless._reparametrize_module(foo, {}):
return foo(*args, **kwargs)
functional_call._orig_mod = foo
gm_with_stack = make_fx(functional_call, record_module_stack=True)(torch.randn(4, 4))
found = False
for node in gm_with_stack.graph.nodes:
if "nn_module_stack" in node.meta:
if len(node.meta["nn_module_stack"]) == 1:
self.assertTrue("custom_tracer_preserving_nn_module_stack.<locals>.Foo" in str(node.meta["nn_module_stack"]))
found = True
elif len(node.meta["nn_module_stack"]) == 2:
self.assertTrue("preserving_nn_module_stack.<locals>.Bar" in str(node.meta["nn_module_stack"]))
found = True
else:
# there can be at most 2 level
self.assertTrue(False)
self.assertTrue(found)
gm_without_stack = make_fx(functional_call)(torch.randn(4, 4))
for node in gm_without_stack.graph.nodes:
self.assertTrue("nn_module_stack" not in node.meta)
def test_symint_to_tensor(self):
def f(a):
return a / a.shape[0]
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(4)).code).strip()
self.assertExpectedInline(r, """\
def forward(self, a_1):
sym_size_int = torch.ops.aten.sym_size.int(a_1, 0)
div = torch.ops.aten.div.Tensor(a_1, sym_size_int); a_1 = sym_size_int = None
return div""")
r = str(make_fx(f, tracing_mode="symbolic", decomposition_table=decomposition_table)(torch.empty(4)).code).strip()
self.assertExpectedInline(r, """\
def forward(self, a_1):
sym_size_int = torch.ops.aten.sym_size.int(a_1, 0)
sym_float = torch.sym_float(sym_size_int); sym_size_int = None
div = torch.ops.prims.div.default(a_1, sym_float); a_1 = sym_float = None
return div""")
def test_cat(self):
def f(a, b):
val = torch.mul(a, b)
out = torch.cat([val, val])
if out.shape[0] * out.shape[1] > 20:
out = out.cos()
return out
test_inputs = []
test_inputs.append([(1, 5), (6, 1)])
test_inputs.append([(1, 4), (3, 1)])
gm = self._test_dynamic(f, [(1, 6), (8, 1)], test_inputs)
self.assertTrue(eval_guards(gm, torch.randn(1, 10), torch.randn(6, 1)))
self.assertFalse(eval_guards(gm, torch.randn(1, 2), torch.randn(4, 1)))
self.assertExpectedInline(show_guards(gm), """2*L['a'].size()[1]*L['b'].size()[0] > 20""")
def test_new_empty(self):
def f(a, b):
return a.new_empty(b.shape[0], b.shape[1] * 2)
self._test_dynamic(f, [(2, 4), (4, 5)], [[(2, 3), (5, 7)], [(3, 7), (9, 3)]], assert_eq=False).shape_env
def test_size_with_tensor(self):
# I think I messed up writing this test case originally, I think
# I'm supposed to hit an error case, but the code here works in both
# eager and tracing
def f(tensor):
max_size = torch.tensor([800, 1216], dtype=torch.int64)
batch_shape = [2] + list(tensor.shape[:-2]) + list(max_size)
return tensor.new_empty(batch_shape)
a = torch.randn(3, 800, 1199)
f(a)
make_fx(f, tracing_mode="symbolic")(a)
def test_fake_tensor_as_size(self):
def f(x):
r = torch.zeros([x])
return r
fx_g = make_fx(f, tracing_mode="symbolic")(torch.tensor(4))
self.assertExpectedInline(fx_g.code.strip(), """\
def forward(self, x_1):
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(x_1); x_1 = None
zeros = torch.ops.aten.zeros.default([_local_scalar_dense], device = device(type='cpu'), pin_memory = False); _local_scalar_dense = None
return zeros""") # noqa: B950
def test_expand(self):
def f(a):
b = torch.mul(a, a)
c = b.expand(a.shape)
return c
self._test_dynamic(f, [(3,)], [[(3,)], [(4,)], [(2,)]])
self._test_dynamic(f, [(5, 1)], [[(4, 1)], [(3, 1)], [(6, 1)]])
def test_metadata(self):
def f(a, b):
d = a.new_empty(a.shape[0] + b.shape[0])
return d
fx_g = make_fx(f, tracing_mode="symbolic")(torch.randn(5), torch.randn(4))
meta_c = _get_node(fx_g, lambda x: x.target == aten.new_empty.default)
meta_d = _get_node(fx_g, lambda x: x.target == operator.add)
self.assertTrue(meta_c.meta['val'].shape[0].node.expr == meta_d.meta['val'].node.expr)
def test_metadata_fresh(self):
def f(x):
assert x.shape[0] == 3
return x.cos()
fx_g = make_fx(f, tracing_mode="symbolic")(torch.randn(3))
meta_cos = _get_node(fx_g, lambda x: x.target == aten.cos.default)
meta_inp = _get_node(fx_g, lambda x: x.op == 'placeholder')
self.assertTrue(meta_cos.meta['val'].shape[0] == 3)
# Checks if the input expr has been updated even though the constraint
# happened afterwards
self.assertTrue(meta_inp.meta['val'].shape[0] == 3)
def test_elementwise_meta_with_sym_numbers(self):
def f(x, offset, as_sym_float=False):
x0 = x.size()[0]
if as_sym_float:
x0 = torch.sym_float(x0)
return torch.add(x0, offset)
fx_g = make_fx(f, tracing_mode="symbolic")(torch.rand(2, 3), 2.0, False)
meta_add = _get_node(fx_g, lambda x: x.target == aten.add.Tensor)
self.assertEqual(meta_add.meta['val'].shape, ())
self.assertEqual(meta_add.meta['val'].dtype, torch.float32)
fx_g = make_fx(f, tracing_mode="symbolic")(torch.rand(2, 3), 2, False)
meta_add = _get_node(fx_g, lambda x: x.target == aten.add.Tensor)
self.assertEqual(meta_add.meta['val'].shape, ())
self.assertEqual(meta_add.meta['val'].dtype, torch.int64)
fx_g = make_fx(f, tracing_mode="symbolic")(torch.rand(2, 3), 2, True)
meta_add = _get_node(fx_g, lambda x: x.target == aten.add.Tensor)
self.assertEqual(meta_add.meta['val'].shape, ())
self.assertEqual(meta_add.meta['val'].dtype, torch.float32)
def test_return_symint(self):
def f(x):
return x.shape[0], x.cos(), x.shape[0] / 5
self._test_dynamic(f, [(5,)], [[(4,)], [(12,)]])
def f(x):
return x.shape
self._test_dynamic(f, [(5, 3)], [[(4, 6)]])
def test_rmethod(self):
def f(x):
return x.size(0) + x
self._test_dynamic(f, [(5,)], [[(4,)], [(12,)]])
def test_mega_guard(self):
def f(a, b):
assert a.shape[0] == b.shape[0] * 2
return a.cos()
fx_g = make_fx(f, tracing_mode="symbolic")(torch.randn(16), torch.randn(8))
from torch._dynamo.source import LocalSource
self.assertExpectedInline(
str(fx_g.shape_env.produce_guards(fx_placeholder_vals(fx_g), [LocalSource("a"), LocalSource("b")], ignore_static=False)), # noqa: B950
"""["L['a'].size()[0] == 2*L['b'].size()[0]", "L['a'].stride()[0] == 1", "L['a'].storage_offset() == 0", "L['b'].stride()[0] == 1", "L['b'].storage_offset() == 0", "2 <= L['b'].size()[0]"]""" # noqa: B950
)
self.assertExpectedInline(
str(fx_g.shape_env.produce_guards(fx_placeholder_vals(fx_g), [LocalSource("a"), LocalSource("b")], ignore_static=True)), # noqa: B950
"""["L['a'].size()[0] == 2*L['b'].size()[0]", "2 <= L['b'].size()[0]"]""" # noqa: B950
)
def test_guard_upperbound_range_refinement(self):
def f(a):
assert a.shape[0] > 5 and a.shape[0] > 12
return a.cos()
tensor = make_fx(f, tracing_mode="symbolic")(torch.randn(15))
self.assertExpectedInline(show_guards(tensor), """13 <= L['a'].size()[0]""")
def test_guard_lowerbound_range_refinement(self):
def f(a):
assert a.shape[0] < 20 and a.shape[0] < 30
return a.cos()
tensor = make_fx(f, tracing_mode="symbolic")(torch.randn(15))
self.assertExpectedInline(show_guards(tensor), """L['a'].size()[0] <= 19""")
def test_guard_upperbound_range_refinement_multivariate(self):
def f(a):
assert a.shape[0] > 5 and a.shape[0] > 12
assert a.shape[1] > 5 and a.shape[1] > a.shape[0]
return a.cos()
tensor = make_fx(f, tracing_mode="symbolic")(torch.randn((15, 20)))
self.assertExpectedInline(show_guards(tensor), """\
L['a'].size()[1] > L['a'].size()[0]
13 <= L['a'].size()[0]
14 <= L['a'].size()[1]""")
def test_guard_lowerbound_range_refinement_multivariate(self):
def f(a):
assert a.shape[0] < 20 and a.shape[0] < 30
assert a.shape[1] < 30 and a.shape[1] < a.shape[0]
return a.cos()
tensor = make_fx(f, tracing_mode="symbolic")(torch.randn((15, 5)))
self.assertExpectedInline(
show_guards(tensor),
"""\
L['a'].size()[1] < L['a'].size()[0]
L['a'].size()[0] <= 19
L['a'].size()[1] <= 18""")
def test_sym_storage_offset(self):
def f(x, y):
return x + y
inp = (torch.randn(8)[3:], torch.randn(5))
fx_g = make_fx(f, tracing_mode="symbolic")(*inp)
inp = (torch.randn(8)[3:], torch.randn(5))
self.assertEqual(fx_g(*inp), f(*inp))
def _assert_no_guards(self, fx_g, free_symbols):
assert _get_free_symbols(fx_g.shape_env) == free_symbols, fx_g.shape_env.var_to_val
assert len(fx_g.shape_env.get_nontrivial_guards()) == 0, fx_g.shape_env.format_guards()
def test_guards_equal(self):
def f(a, b):
return a * b
# NB: Numbers are carefully chosen to avoid duck shaping from applying
fx_g = _trace(f, (5, 6), (5, 6))
self._assert_no_guards(fx_g, 2)
fx_g = _trace(f, (5, 6, 7), (5, 6, 7))
self._assert_no_guards(fx_g, 3)
fx_g = _trace(f, (5, 1), (1, 6))
self._assert_no_guards(fx_g, 2)
def f(a, b, c, d):
a = a + b
cat = torch.cat([c, d])
return a + cat
fx_g = _trace(f, 7, 7, 4, 3)
self._assert_no_guards(fx_g, 2)
def f(a, b, c, d, e):
vals = [a, b, c, d, e]
x = a
for idx in range(len(vals) - 1):
x = torch.cat([x, vals[idx]]) + vals[idx + 1]
return x
fx_g = _trace(f, 2, 4, 8, 16, 32)
self._assert_no_guards(fx_g, 1)
def f(a, b):
a = a.view(b.shape[0])
return a + b.sum()
fx_g = _trace(f, (4, 2), 8)
self._assert_no_guards(fx_g, 2)
fx_g = _trace(f, (4, 2), (8, 5))
self._assert_no_guards(fx_g, 3)
fx_g = _trace(f, (2, 3, 4), 24)
self._assert_no_guards(fx_g, 3)
def test_nonidentity_transitive_guards(self):
def f(a, b, c, d, e):
vals = [a, b, c, d, e]
cat_vals = []
for idx in range(len(vals) - 1):
cat_vals.append(torch.cat([vals[idx], vals[idx]]))
final_vals = []
for a, b in reversed(list(zip(cat_vals, vals[1:]))):
final_vals.append(a + b)
return final_vals
fx_g = _trace(f, 2, 4, 8, 16, 32)
self.assertExpectedInline(show_guards(fx_g), """""")
@torch.fx.experimental._config.patch(translation_validation=True)
def test_constant_specialization(self):
def f(t):
assert t.shape[0] == 10
return t
tensor = make_fx(f, tracing_mode="symbolic")(torch.randn(10))
self.assertExpectedInline(show_guards(tensor), """""")
make_fx_failures = {
# unknown
xfail('allclose'),
xfail('equal'),
# empty
skip('new_empty'),
skip('empty_like'),
skip('empty'),
skip('empty_permuted'),
# flaky
skip('linalg.lstsq', 'grad_oriented'),
skip('nn.functional.max_unpool1d', '', device_type='cpu'),
skip('nn.functional.max_unpool2d', '', device_type='cpu'),
skip('nn.functional.max_unpool3d', '', device_type='cpu'),
skip('linalg.lstsq'), # flaky, probably just a precision issue
# data-dependent control flow
skip('item'),
xfail('cov'),
xfail('nn.functional.gaussian_nll_loss'),
xfail('tensor_split'),
xfail('corrcoef'),
xfail('quantile'),
xfail('nanquantile'),
# Seems like it's creating a sparse tensor that isn't captured by tensor.is_sparse
xfail('sparse.sampled_addmm'),
xfail('sparse.mm', 'reduce'),
# proxy tensor doesn't support sparse correctly right now
skip('to_sparse'),
# segfaults
skip('block_diag'),
# AssertionError: Tensor-likes are not close!
skip('empty_strided', '', device_type='cpu'),
}
only_real_tensor_failures = {
xfail('narrow'),
}
only_fake_tensor_failures = {
xfail('narrow'),
}
fake_tensor_failures = set()
symbolic_tensor_failures = {
xfail('combinations', ''),
xfail('geqrf', ''), # aten.geqrf.default - couldn't find symbolic meta function/decomposition
xfail('histogram', ''), # Could not run 'aten::histogram.bin_ct' with arguments from the 'Meta' backend. This c...
xfail('histogramdd', ''), # aten._histogramdd_bin_edges.default - couldn't find symbolic meta function/decomposition
xfail('nanquantile', ''), # Could not run 'aten::equal' with arguments from the 'Meta' backend.
xfail('nn.functional.binary_cross_entropy', ''), # aten.new_empty.default - couldn't find symbolic meta function/decom...
xfail('nn.functional.cross_entropy', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.ctc_loss'), # aten._ctc_loss.Tensor - couldn't find symbolic meta function/decomposition
xfail('quantile', ''), # Could not run 'aten::equal' with arguments from the 'Meta' backend.
xfail('unique_consecutive', ''), # aten.unique_consecutive.default - couldn't find symbolic meta function/decomposition
xfail('max_pool2d_with_indices_backward', ''), # Expected a value of type 'List[int]' for argument 'kernel_size' but...
# many complex operators incorrect striding, metadata
xfail('fft.fft', ''),
xfail('fft.hfft2', ''),
xfail('fft.hfft', ''),
xfail('fft.hfftn', ''),
xfail('fft.ifft', ''),
xfail('fft.ihfft2', ''),
xfail('fft.ihfft', ''),
xfail('fft.ihfftn', ''),
xfail('fft.ihfft2', ''),
xfail('fft.irfft2', ''),
xfail('fft.irfft', ''),
xfail('fft.irfftn', ''),
xfail('fft.rfft2', ''),
xfail('fft.rfft', ''),
xfail('fft.rfftn', ''),
xfail('stft', '')
}
symbolic_tensor_segfaults = {
skip('nn.functional.batch_norm') # Segfault??
}
symbolic_tensor_failures.update(symbolic_tensor_segfaults)
inplace_symbolic_tensor_failures = {
# bugs
xfail('float_power', ''), # base given to float_power_ has dtype Float but the operation's result requires dtype Double
}
out_symbolic_tensor_failures = {
# Cast error details: Unable to cast (...) to Tensor
#
# This happens because the test is set up to call the out variant using the `out` kwarg:
# torch._some_op(arg1, arg2, out=(out1, out2, out3))
#
# However, this only works on torch ops, not aten ops. For `_batch_norm_with_update`,
# this fails because the op has no python bindings, so it doesn't support the `out` kwarg
# way of calling its out variant.
xfail('_batch_norm_with_update', ''),
xfail('_native_batch_norm_legit', ''),
xfail('angle', ''),
xfail('argmax', ''),
xfail('argmin', ''),
xfail('fft.fft2', ''),
xfail('fft.fftn', ''),
xfail('fft.ifft2', ''),
xfail('fft.ifftn', ''),
xfail('gather', ''),
xfail('linalg.pinv', ''),
xfail('linalg.pinv', 'hermitian'),
xfail('lu', ''),
xfail('scatter_add', ''),
xfail('scatter', ''),
xfail('take_along_dim', ''),
# SymIntArrayRef expected to contain only concrete
xfail('ones', ''),
xfail('randn', ''),
xfail('zeros', ''),
# RuntimeError: Cannot call numel() on tensor with symbolic sizes/strides
xfail('index_reduce', 'prod'),
xfail('index_reduce', 'mean'),
xfail('index_reduce', 'amax'),
xfail('index_reduce', 'amin'),
}
out_symbolic_tensor_segfaults = {
skip('nanmean', ''),
}
out_symbolic_tensor_failures.update(out_symbolic_tensor_segfaults)
# Copies inputs to inplace operations to avoid inplace modifications
# to leaves requiring gradient
def _get_safe_inplace(inplace_variant):
@functools.wraps(inplace_variant)
def _fn(t, *args, **kwargs):
return inplace_variant(t.clone(), *args, **kwargs)
return _fn
def _test_make_fx_helper(self, device, dtype, op, tracing_mode, inplace=False, out=False):
fn = _get_safe_inplace(op.get_inplace()) if inplace else op.op
sample_inputs_itr = op.sample_inputs(device, dtype, requires_grad=False)
# Limit ourselves to first 100 inputs so symbolic tracing tests don't take too long
count = 100
if out:
count = 5
for sample_input in itertools.islice(sample_inputs_itr, count):
if inplace and sample_input.broadcasts_input:
continue
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
if out:
expected = fn(*args, **kwargs)
kwargs['out'] = expected
try:
optests.make_fx_check(fn, args, kwargs, tracing_mode, self.assertEqual,
randomize_data=True)
except DynamicOutputShapeException:
self.skipTest("Dynamic output shape operation in trace")
def skipIfNameMatches(pattern):
"""
Decorator to skip a test if its name matches the given pattern.
"""
def decorator(test_func):
def wrapper(*args, **kwargs):
if re.match(pattern, test_func.__name__):
raise unittest.SkipTest(f"Test '{test_func.__name__}' skipped because its name matches the pattern '{pattern}'")
return test_func(*args, **kwargs)
return wrapper
return decorator
# Auto functionalize shouldn't work with make_fx directly
filtered_hop_db = [op for op in hop_db if op.name != "auto_functionalize"]
@unittest.skipIf(not torch._dynamo.is_dynamo_supported(), "Cond requires dynamo")
class TestProxyTensorOpInfo(TestCase):
@ops(op_db + filtered_hop_db + custom_op_db, allowed_dtypes=(torch.float,))
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_exhaustive', make_fx_failures.union(only_real_tensor_failures))
def test_make_fx_exhaustive(self, device, dtype, op):
_test_make_fx_helper(self, device, dtype, op, "real")
@ops(op_db + filtered_hop_db + custom_op_db, allowed_dtypes=(torch.float,))
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_fake_exhaustive',
make_fx_failures.union(fake_tensor_failures, only_fake_tensor_failures))
def test_make_fx_fake_exhaustive(self, device, dtype, op):
_test_make_fx_helper(self, device, dtype, op, "fake")
@ops(op_db + filtered_hop_db + custom_op_db, allowed_dtypes=(torch.float,))
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_symbolic_exhaustive',
make_fx_failures | fake_tensor_failures | symbolic_tensor_failures)
def test_make_fx_symbolic_exhaustive(self, device, dtype, op):
_test_make_fx_helper(self, device, dtype, op, "symbolic")
@ops(op_db + custom_op_db, allowed_dtypes=(torch.float,))
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_symbolic_exhaustive_inplace',
make_fx_failures | fake_tensor_failures | symbolic_tensor_failures | inplace_symbolic_tensor_failures)
def test_make_fx_symbolic_exhaustive_inplace(self, device, dtype, op):
if not op.get_inplace():
self.skipTest("No inplace variable for this op")
_test_make_fx_helper(self, device, dtype, op, "symbolic", inplace=True)
@ops(op_db + custom_op_db, allowed_dtypes=(torch.float,))
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_symbolic_exhaustive_out',
make_fx_failures | fake_tensor_failures | symbolic_tensor_failures | out_symbolic_tensor_failures)
def test_make_fx_symbolic_exhaustive_out(self, device, dtype, op):
if not op.supports_out:
self.skipTest("Op doesn't support out")
_test_make_fx_helper(self, device, dtype, op, "symbolic", out=True)
only_for = ("cpu")
instantiate_device_type_tests(TestProxyTensorOpInfo, globals(), only_for=only_for)
if __name__ == '__main__':
run_tests()
|