File: test_proxy_tensor.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (2165 lines) | stat: -rw-r--r-- 83,715 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
# Owner(s): ["module: ProxyTensor"]

from torch.testing._internal.common_utils import TestCase, run_tests
import torch
import torch._dynamo
import unittest
import warnings
import operator
from collections.abc import Iterable
from torch.nn.utils import stateless
from torch.testing._internal.common_device_type import instantiate_device_type_tests
from torch.testing._internal.common_methods_invocations import op_db, skip, xfail, skipOps
from torch._subclasses.fake_tensor import DynamicOutputShapeException, DataDependentOutputException, FakeTensorMode
from torch._subclasses.functional_tensor import FunctionalTensor, FunctionalTensorMode
from torch._decomp import decomposition_table
from torch.fx.experimental.symbolic_shapes import (
    eval_guards, bind_symbols, fx_placeholder_vals, fx_placeholder_targets,
    guard_int, GuardOnDataDependentSymNode
)
from torch.testing._internal.custom_op_db import custom_op_db
from torch.testing._internal.hop_db import hop_db
from torch.testing._internal.common_device_type import ops
import torch.testing._internal.optests as optests
from torch._C import _disabled_torch_function_impl
from torch.fx.experimental.proxy_tensor import make_fx, DecompositionInterpreter, get_isolated_graphmodule
from torch.utils._pytree import tree_map
from torch.fx.passes.runtime_assert import insert_deferred_runtime_asserts
from torch import nn
import torch._functorch.config
import re

import functools
import itertools

aten = torch.ops.aten

HAS_CUDA = torch.cuda.is_available()


def strip_end(s, suffix):
    if suffix and s.endswith(suffix):
        return s[:-len(suffix)]
    else:
        return s


def show_guards(gm):
    names = [strip_end(n, "_1") for n in fx_placeholder_targets(gm)]
    return "\n".join(
        gm.shape_env.produce_guards(fx_placeholder_vals(gm), names, _simplified=True, input_contexts=None)
    )


def process_failures():
    """
    Takes file containing failures like

    FAILED test/test_proxy_tensor.py::TestProxyTensorOpInfoCPU::test_make_fx_symbolic_exhaustive___getitem___cpu_float32 - RuntimeError: aten.size.default - couldn't find symbolic meta function/decomposition  # noqa: B950

    and processes them into a list of opinfo xfails
    """
    f = open('pytest_failures')
    failures = f.readlines()
    failures = [i.strip() for i in failures]

    def process_failure_string(s, matcher):
        out = re.search(matcher, s)
        return out.groups()

    SYMBOLIC_TRACE_MATCH = r'exhaustive_(.*)_cpu.*: (.*)'
    failures = [process_failure_string(s, SYMBOLIC_TRACE_MATCH) for s in failures]

    def create_normalized_name(op):
        if op.variant_test_name == '':
            s = op.name
        else:
            s = f"{op.name}.{op.variant_test_name}"
        return s.replace('.', '_')

    remap_opinfo = {create_normalized_name(op): (op.name, op.variant_test_name) for op in op_db}

    print("symbolic_tensor_failures = {")
    for failure, reason in failures:
        print(f"    xfail{remap_opinfo[failure]},  # {reason}")
    print("}")


USE_TORCHVISION = False
try:
    import torchvision
    USE_TORCHVISION = True
except ImportError:
    warnings.warn("Couldn't import torchvision. Some of our tests use it, try "
                  "to install it with commands from pytorch.org, post-fixed with "
                  "`--no-deps` to avoid overwriting the pytorch installation",
                  UserWarning)


def _create_new_input(x):
    if not isinstance(x, torch.Tensor):
        return x
    if x.dtype != torch.float:
        return x + 1
    if x.is_leaf:
        return torch.rand_like(x, requires_grad=x.requires_grad)
    else:
        return torch.rand_like(x)

"""
Delays a cos being executed on the unwraptensor until its used. Simulates a CommTensor used
"""
class UnwrapTensor(torch.Tensor):
    @staticmethod
    def __new__(cls, tensor: torch.Tensor):
        r = torch.Tensor._make_wrapper_subclass(
            cls,
            tensor.size(),
            dtype=tensor.dtype,
            device=tensor.device,
            layout=tensor.layout,
            requires_grad=tensor.requires_grad,
        )
        r._tensor = tensor
        return r

    def __repr__(self):
        # TODO: consider all_gather the local tensors for better debugging
        return f"UnwrapTensor({self._tensor})"

    __torch_function__ = _disabled_torch_function_impl

    @classmethod
    def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
        def unwrap(e):
            ret = e
            if isinstance(e, UnwrapTensor):
                ret = e._tensor.cos()

            return ret

        args = tree_map(unwrap, args)
        kwargs = tree_map(unwrap, kwargs)
        return func(*args, **kwargs)

class TestGenericProxyTensor(TestCase):
    # WARNING: if any of your inputs are index tensors, DO NOT use this
    # function
    def _test(self, f, inps):
        fx_f = make_fx(f, tracing_mode=self.tracing_mode)(*inps)
        new_inps = tree_map(_create_new_input, inps)
        r1 = fx_f(*new_inps)
        r2 = f(*new_inps)
        self.assertEqual(r1, r2)

    def test_pre_dispatch_mode_stack(self):
        def f(a):
            b = torch.ones(4, 4)
            return torch.matmul(a, b)
        # We expect to see matmul in the trace - it should NOT be decomposed into mm.
        # Also, torch.ones() doesn't show up in the trace.
        # This is annoying but expected: ones() never dispatches to the Autograd dispatch key,
        # so our mode never sees it - it goes directly to the BackendSelect key.
        inp = torch.ones(4, 4)
        # Test that make_fx(pre_dispatch=True) clears caches properly.
        from torch._dispatch.python import enable_python_dispatcher
        with enable_python_dispatcher():
            out1 = f(inp)
        fx_g = make_fx(f, pre_dispatch=True)(inp)
        self.assertExpectedInline(fx_g.code.strip(), """\
def forward(self, a_1):
    ones = torch.ops.aten.ones.default([4, 4], device = device(type='cpu'), pin_memory = False)
    matmul = torch.ops.aten.matmul.default(a_1, ones);  a_1 = ones = None
    return matmul""")

    def test_pre_dispatch_linear(self):
        def f(a, b, c):
            return torch.nn.functional.linear(a, b, c)
        a = torch.ones(4, 4)
        b = torch.ones(4, 4)
        c = torch.ones(4)
        fx_g = make_fx(f, pre_dispatch=True)(a, b, c)
        out1 = f(a, b, c)
        out2 = fx_g(a, b, c)
        self.assertEqual(out1, out2)

    def test_pre_dispatch_no_grad(self):
        def f(a):
            b = a.sin()
            torch.set_grad_enabled(False)
            c = b.cos()
            torch.set_grad_enabled(True)
            return b + c.sin()
        a1 = torch.randn(4, requires_grad=True)
        a2 = a1.detach().clone().requires_grad_(True)
        a_tmp = a1.detach().clone().requires_grad_(True)
        fx_g = make_fx(f, pre_dispatch=True)(a_tmp)
        out1 = f(a1)
        out2 = fx_g(a2)
        self.assertEqual(out1, out2)
        out1.sum().backward()
        out2.sum().backward()
        self.assertEqual(a1.grad, a2.grad)

    def test_make_fx_simple(self):
        def f(x):
            return torch.sin(x)
        self._test(f, (torch.randn(3),))

    def test_scalar_device(self, device='cpu'):
        def f(a, b):
            return a + b
        self._test(f, [torch.randn(3, device=device), torch.tensor(5)])

    def test_isolated_graphmodule(self):
        def is_any_sum(gm):
            return any(node.target == torch.ops.aten.sum.default for node in gm.graph.nodes)

        def is_any_digamma(gm):
            return any(node.target == torch.ops.aten.digamma.default for node in gm.graph.nodes)

        def is_any_sigmoid(gm):
            return any(node.target == torch.ops.aten.sigmoid.default for node in gm.graph.nodes)

        def inner(x):
            return torch.sum(x)

        def f(x):
            gm = get_isolated_graphmodule(inner, (x,), {})
            self.assertTrue(is_any_sum(gm))
            return x + torch.randn(x.shape)

        # get_isolated_graphmodule uses make_fx internally that shouldn't be traced
        # by the outer make_fx call
        traced = make_fx(f)(torch.randn(3))
        self.assertFalse(is_any_sum(traced))

        # When factory functions are used, they should not be traced
        # by the outer make_fx call
        def inner_with_factory():
            val = torch.tensor(float(1))
            val.add_(2)
            return torch.full((10, 10), val).sum()

        def f1(x):
            gm = get_isolated_graphmodule(inner_with_factory, (), {})
            self.assertTrue(is_any_sum(gm))
            return torch.sigmoid(x)

        def f2(x):
            gm = get_isolated_graphmodule(f1, (x,), {})
            self.assertFalse(is_any_sum(gm))
            self.assertTrue(is_any_sigmoid(gm))
            return torch.digamma(x)

        traced = make_fx(f2)(torch.randn(3))
        self.assertFalse(is_any_sum(traced))
        self.assertFalse(is_any_sigmoid(traced))
        self.assertTrue(is_any_digamma(traced))

        # Verify nested make_fx calls don't make factory functions to be leaked
        # into the outer graph. Verify that `make_fx`` itself does not leak its execution.
        def f2(x):
            gm = make_fx(f1)(x)
            self.assertFalse(is_any_sum(gm))
            self.assertTrue(is_any_sigmoid(gm))
            return torch.digamma(x)

        traced = make_fx(f2)(torch.randn(3))
        self.assertFalse(is_any_sum(traced))
        self.assertFalse(is_any_sigmoid(traced))
        self.assertTrue(is_any_digamma(traced))

        # Verify that the `forward`` function of a graph module produced as a
        # side effect of an interior `make_fx` is still traced
        def f3(x):
            gm = make_fx(f1)(x)
            self.assertFalse(is_any_sum(gm))
            self.assertTrue(is_any_sigmoid(gm))
            # `gm.forward`` is still traced
            return torch.digamma(gm(x))

        traced = make_fx(f3)(torch.randn(3))
        self.assertFalse(is_any_sum(traced))
        self.assertTrue(is_any_sigmoid(traced))
        self.assertTrue(is_any_digamma(traced))

        # Verify interaction with non-ProxyTensor modes
        from torch.testing._internal.logging_tensor import LoggingTensorMode

        def f1_logging(x):
            with LoggingTensorMode():
                gm = get_isolated_graphmodule(inner_with_factory, (), {})
            self.assertTrue(is_any_sum(gm))
            return torch.sigmoid(x)

        def f2_logging(x):
            with LoggingTensorMode(), LoggingTensorMode():
                gm = get_isolated_graphmodule(f1_logging, (x,), {})
            self.assertFalse(is_any_sum(gm))
            self.assertTrue(is_any_sigmoid(gm))
            return torch.digamma(x)

        traced = make_fx(f2_logging)(torch.randn(3))
        self.assertFalse(is_any_sum(traced))
        self.assertFalse(is_any_sigmoid(traced))
        self.assertTrue(is_any_digamma(traced))

        # Verify interaction with another tensor subclass
        # This case currently doesn't work and should raise an error
        # See: https://github.com/pytorch/pytorch/pull/81764#issuecomment-1200472068
        from torch.testing._internal.logging_tensor import LoggingTensor

        def f1_logging_tensor(x):
            gm = get_isolated_graphmodule(inner_with_factory, (), {})
            self.assertTrue(is_any_sum(gm))
            return torch.sigmoid(x)

        def f2_logging_tensor(x):
            x = LoggingTensor(x)
            gm = get_isolated_graphmodule(f1_logging_tensor, (x,), {})
            self.assertFalse(is_any_sum(gm))
            self.assertTrue(is_any_sigmoid(gm))
            return torch.digamma(x)

        traced = make_fx(f2_logging_tensor)(torch.randn(3))
        self.assertFalse(is_any_sum(traced))
        self.assertFalse(is_any_sigmoid(traced))  # this fails, sigmoid is traced with LoggingTensor
        self.assertTrue(is_any_digamma(traced))

    # See https://github.com/pytorch/pytorch/issues/97541
    def test_empty_like_doesnt_burn_in_defaults(self):
        def f(x):
            return torch.empty_like(x)
        out = make_fx(f)(torch.randn(3))
        self.assertExpectedInline(out.code.strip(), """\
def forward(self, x_1):
    empty_like = torch.ops.aten.empty_like.default(x_1, pin_memory = False);  x_1 = None
    return empty_like""")

    def test_proxy_tensor_mode_with_decomp_table_preserves_proxy(self):
        def f(x):
            y = x.new_zeros(x.size())
            y.copy_(x)
            return y

        def _new_zeros_decomp(inp, size, dtype=None, layout=None, device=None, pin_memory=None):
            return torch.zeros(size, dtype=inp.dtype, device=inp.device)

        factory_func_decomp = {torch.ops.aten.new_zeros.default: _new_zeros_decomp}

        # When new_zeros() decomposes into torch.zero(), we expect ProxyTensorMode
        # to still be (re-entrantly) enabled, so that the `torch.zero()` call
        # returns a ProxyTensor.
        out = make_fx(f, decomposition_table=factory_func_decomp)(torch.ones(2))
        self.assertExpectedInline(out.code, """\



def forward(self, x_1):
    zeros = torch.ops.aten.zeros.default([2], dtype = torch.float32, device = device(type='cpu'), pin_memory = False)
    copy_ = torch.ops.aten.copy_.default(zeros, x_1);  zeros = x_1 = None
    return copy_
    """)

    def test_make_fx_reentrant_dispatch(self):
        def f(x):
            return torch.ops.aten.norm.Scalar(x, 2.0)

        def norm_decomp(x, p=2.0):
            if p != 2.0:
                raise RuntimeError("can't handle with p != 2")
            return torch.sqrt(torch.sum(torch.square(x)))

        decomp = {torch.ops.aten.norm.Scalar: norm_decomp}

        traced = make_fx(f, decomposition_table=decomp, tracing_mode=self.tracing_mode)(torch.rand(3))

        for n in traced.graph.nodes:
            self.assertTrue("square" not in str(n.target))
            self.assertTrue("norm" not in str(n.target))

    @unittest.skipIf(not USE_TORCHVISION, "test requires torchvision")
    def test_resnet18_backward_trace(self):
        mod = torchvision.models.resnet18()

        # An old version of this test called the module directly.  This works
        # for tracing_mode == "real", but for fake tensors, we also have to
        # ensure that the parameters and buffers get wrapped in fake tensors
        # because free fake tensors are not supported.  Fortunately functional_call
        # does precisely this for us.
        def f(x, params, buffers):
            for p in params.values():
                p.grad = None
            loss = torch.func.functional_call(mod, {**params, **buffers}, (x,)).sum()
            # I could have done this with the functional API, but there is
            # plenty of exercising this; I want to show mutating API still
            # works
            loss.backward()
            return [p.grad for p in params.values()]

        inp = torch.randn(3, 3, 250, 250)
        self._test(f, [inp, dict(mod.named_parameters()), dict(mod.named_buffers())])

    def test_varargs(self):
        def f(*args):
            return sum(args)

        self._test(f, [torch.randn(2), torch.randn(2)])

    def test_proxy_tensor(self):
        def f_grad(x):
            val = x.cos().cos().sum()
            return torch.autograd.grad(val, x)

        def f_backward(x):
            val = x.cos().cos().sum()
            val.backward()
            return x.grad

        for f in [f_grad, f_backward]:
            self._test(f, [torch.randn(3, requires_grad=True)])

    def test_pickle_issue89626(self):
        import pickle
        x = torch.randn(2)
        make_fx(lambda x: x * 2, tracing_mode=self.tracing_mode)(x)
        pickle.dumps(x)

    def test_inplace_metadata(self):
        def f(x):
            x = x.clone()
            x.unsqueeze_(-1)
            assert x.shape[-1] == 1
            return x

        self._test(f, [torch.randn(5)])

    def test_mode_tracing_factory_function(self):
        def f(x):
            return x + torch.randn(x.shape)

        # default behavior should trace factory functions
        traced = make_fx(f, tracing_mode=self.tracing_mode)(torch.randn(3))
        self.assertTrue(
            any(
                node.target == aten.randn.default
                for node in traced.graph.nodes
            )
        )

    def test_pre_dispatch_functionalization(self):
        def f(x):
            a = FunctionalTensorMode(pre_dispatch=True, export=True)
            with a:
                x_unwrapped = FunctionalTensor.to_functional(x)
                y = torch.matmul(x_unwrapped, x_unwrapped)
                y = y + x_unwrapped
                y.mul_(5)
                y_unwrapped = torch._from_functional_tensor(y.elem)
                return y_unwrapped

        from torch._dispatch.python import enable_python_dispatcher

        with enable_python_dispatcher():
            inp = torch.randn(4, 4)
            gm = make_fx(f, pre_dispatch=True)(inp)

        # TODO actually not decompose
        self.assertExpectedInline(gm.code.strip(), """\
def forward(self, x_1):
    matmul = torch.ops.aten.matmul.default(x_1, x_1)
    add = torch.ops.aten.add.Tensor(matmul, x_1);  matmul = x_1 = None
    mul = torch.ops.aten.mul.Tensor(add, 5);  add = None
    return mul""")

    def test_pre_dispatch_functionalization_view_op(self):
        def f(x):
            a = FunctionalTensorMode(pre_dispatch=True, export=True)
            with a:
                x_unwrapped = FunctionalTensor.to_functional(x)
                y = torch.matmul(x_unwrapped, x_unwrapped)
                x_unwrapped = x_unwrapped.transpose(1, 0)
                y = y + x_unwrapped
                y = y.view(2, 8)
                y_unwrapped = torch._from_functional_tensor(y.elem)
                return y_unwrapped

        from torch._dispatch.python import enable_python_dispatcher

        with enable_python_dispatcher():
            inp = torch.randn(4, 4)
            gm = make_fx(f, pre_dispatch=True)(inp)

        # TODO actually not decompose
        self.assertExpectedInline(gm.code.strip(), """\
def forward(self, x_1):
    matmul = torch.ops.aten.matmul.default(x_1, x_1)
    transpose = torch.ops.aten.transpose.int(x_1, 1, 0);  x_1 = None
    add = torch.ops.aten.add.Tensor(matmul, transpose);  matmul = transpose = None
    view = torch.ops.aten.view.default(add, [2, 8]);  add = None
    return view""")

    def test_val_metadata_mutation(self):
        def f(x):
            y = x.clone()
            y.unsqueeze_(0)
            return y

        traced = make_fx(f, tracing_mode=self.tracing_mode)(torch.randn(3, requires_grad=True))
        self.assertEqual([
            tuple(node.meta['val'].shape)
            for node in traced.graph.nodes
            if 'val' in node.meta
        ], [(3,), (3,), (1, 3)])

    def test_make_fx_overloads(self):
        def f(x):
            return x.cos() + torch.randn(x.shape)

        traced = make_fx(f, tracing_mode=self.tracing_mode)(torch.randn(3))

        self.assertTrue(all(isinstance(node.target, torch._ops.OpOverload)
                            for node in traced.graph.nodes if node.op == 'call_function'))

    def test_tensor_constants(self):
        def f():
            val = torch.tensor(float('inf'))
            return torch.full((100, 100), val)

        self._test(f, [])

    def test_allclose(self):
        def f(a, b):
            return torch.allclose(a, b)

        def test_f():
            make_fx(f, tracing_mode=self.tracing_mode)(
                torch.zeros(3), torch.zeros(3)
            )

        if self.tracing_mode != "real":
            self.assertRaises(DataDependentOutputException, test_f)
        else:
            self.assertRaisesRegex(RuntimeError, "data-dependent", test_f)

    def test_constant_proxy_tensor_mut(self):
        def f():
            val = torch.tensor(float(1))
            val.add_(2)
            return torch.full((100, 100), val)

        g = make_fx(f, tracing_mode=self.tracing_mode)()
        self.assertEqual(g(), f())
        # In case we mutated shared state in the g graph!
        self.assertEqual(g(), f())

    def test_constant_unbind(self):
        def f():
            val = torch.tensor([2])
            r, = torch.unbind(val, 0)
            return r.item()

        g = make_fx(f, tracing_mode=self.tracing_mode)()
        self.assertEqual(g(), f())

    def test_constant_blowup(self):
        def f():
            val = torch.tensor([2])
            blowup = val.repeat(1000)
            return bool(blowup.sum().item() == 2)

        def test_f():
            make_fx(f, tracing_mode=self.tracing_mode)()

        self.assertRaisesRegex(RuntimeError, "data-dependent", test_f)

    def test_constant_random(self):
        def f():
            val = torch.tensor([2.0])
            val.normal_()
            return bool(val.item() == 2.1)

        def test_f():
            make_fx(f, tracing_mode=self.tracing_mode)()

        self.assertRaisesRegex(RuntimeError, "data-dependent", test_f)

    def test_decomposition_interpreter(self):
        def fn(x):
            return torch.nn.functional.silu(x)

        x = torch.rand((4, 4))
        fx_module = make_fx(fn, tracing_mode=self.tracing_mode, decomposition_table=None)(x)

        found_silu = False
        for n in fx_module.graph.nodes:
            if n.target == torch.ops.aten.silu or n.target == torch.ops.aten.silu.default:
                found_silu = True

        self.assertTrue(found_silu)

        new_graph = torch.fx.Graph()
        silu_decomp_table = {torch.ops.aten.silu.default: decomposition_table[torch.ops.aten.silu.default]}
        DecompositionInterpreter(
            fx_module,
            new_graph=new_graph,
            decomposition_table=silu_decomp_table,
        ).run(x)

        decomposed_module = torch.fx.GraphModule(fx_module, new_graph)

        for n in decomposed_module.graph.nodes:
            self.assertTrue(n.target != torch.ops.aten.silu)
            self.assertTrue(n.target != torch.ops.aten.silu.default)

        self.assertEqual(fx_module(x), decomposed_module(x))

    def test_make_fx_model_fwd_bwd(self):
        class Foo(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.linear = torch.nn.Linear(5, 5)

            def forward(self, x):
                return self.linear(x).relu()

        model = Foo()

        def f(x, params):
            out = torch.func.functional_call(model, params, x).sum()
            out.backward()
            return list(params.values())
        input = torch.randn(3, 5, requires_grad=True)
        params = dict(model.named_parameters())
        fx_f = make_fx(f, tracing_mode=self.tracing_mode)(input, params)
        # fx may change the order of parameters in list, so using set() to compare
        self.assertTrue(
            torch.allclose(fx_f(input, params)[0], f(input, params)[0])
            or
            torch.allclose(fx_f(input, params)[0], f(input, params)[1])
        )
        self.assertTrue(
            torch.allclose(fx_f(input, params)[1], f(input, params)[0])
            or
            torch.allclose(fx_f(input, params)[1], f(input, params)[1])
        )

    def test_make_fx_model_double_param(self):
        class Emformer(torch.nn.Module):
            def __init__(
                self,
                input_dim: int = 256,
            ) -> None:
                super().__init__()

                self.layer_norm = torch.nn.LayerNorm(input_dim)

            def forward(mod_self, x):  # noqa: B902
                self.assertTrue(isinstance(mod_self.layer_norm.weight, torch.Tensor))
                y = mod_self.layer_norm(x)
                self.assertTrue(isinstance(mod_self.layer_norm.weight, torch.Tensor))
                z = mod_self.layer_norm(y)
                return z


        gm = make_fx(Emformer())(torch.randn(16, 1, 256))
        ops = {n.target for n in gm.graph.nodes if n.op == 'call_function'}
        self.assertEqual(len(ops), 2)


    def test_make_fx_model_fwd_bwd_wgtupdate(self):
        class Foo(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.linear = torch.nn.Linear(5, 5)

            def forward(self, x):
                return self.linear(x).relu()

        model = Foo()

        def f(args, params, buffers):
            for p in params.values():
                p.grad = None
            if not isinstance(args, Iterable):
                args = [args]
            params_and_buffers = {**params, **buffers}
            out = torch.func.functional_call(model, params_and_buffers, args)
            out.sum().backward()
            return [p - 1e-4 * p.grad for p in params.values()]

        input = torch.randn(3, 5, requires_grad=True)
        params = dict(model.named_parameters())
        buffers = dict(model.named_buffers())
        fx_f = make_fx(f, tracing_mode=self.tracing_mode)(input, params, buffers)
        # fx may change the order of parameters in list, so using set() to compare
        # also there is a numerical difference in results so changing atol from 1e-08 to 1e-03
        self.assertTrue(
            torch.allclose(fx_f(input, params, buffers)[0], f(input, params, buffers)[0], atol=1e-03)
            or
            torch.allclose(fx_f(input, params, buffers)[0], f(input, params, buffers)[1], atol=1e-03)
        )
        self.assertTrue(
            torch.allclose(fx_f(input, params, buffers)[1], f(input, params, buffers)[0], atol=1e-03)
            or
            torch.allclose(fx_f(input, params, buffers)[1], f(input, params, buffers)[1], atol=1e-03)
        )

    def test_trace_subclasses(self):
        def f1(x):
            x = UnwrapTensor(x)
            y = x * 2
            return y

        def f2(x):
            wrapped = UnwrapTensor(x)
            y = x * wrapped
            return y

        inp = [torch.randn(5)]
        self._test(f1, inp)
        self._test(f2, inp)

    def test_partial_decomp(self):
        def f(a, b, c):
            x = torch.addmm(a, b, c)
            y = torch.addmm(a, b, c, beta=2, alpha=1)
            return x + y
        inps = [torch.randn(5, 5), torch.randn(5, 5), torch.randn(5, 5)]
        fx_g = make_fx(f)(*inps)

        def addmm(a, b, c, beta=1, alpha=1):
            if beta == 1 and alpha == 1:
                return NotImplemented
            return beta * a + alpha * (b @ c)

        decomposed_fx = make_fx(f, decomposition_table={aten.addmm.default: addmm})(*inps)

        self.assertEqual(fx_g(*inps), decomposed_fx(*inps))
        self.assertEqual(len([n for n in fx_g.graph.nodes if n.target == aten.addmm.default]), 2)
        self.assertEqual(len([n for n in decomposed_fx.graph.nodes if n.target == aten.addmm.default]), 1)

    def test_decomp_of_capture(self):
        val = torch.randn(5)

        def f(x):
            return x.t() + val.t()

        def nop(x):
            return x.cos()

        traced = make_fx(f, decomposition_table={torch.ops.aten.t.default: nop})(torch.randn(5))
        self.assertEqual(len([n for n in traced.graph.nodes if n.target == torch.ops.aten.t.default]), 0)


    @unittest.skipIf(not HAS_CUDA, 'CUDA-only test')
    def test_amp_cache(self):
        layer = torch.nn.Conv2d(3, 3, 3).cuda()

        def f(x, w):
            return torch.nn.functional.conv2d(x, w, stride=layer.stride)

        inp = torch.randn(4, 3, 10, 10, device='cuda')
        with torch.autocast('cuda'):
            out_graph = make_fx(f)(inp, layer.weight).graph
            out_graph2 = make_fx(f)(inp, layer.weight).graph

        self.assertEqual(len(out_graph.nodes), len(out_graph2.nodes))
        for a, b in zip(out_graph.nodes, out_graph2.nodes):
            self.assertEqual(a.op, b.op)

    def test_strides(self):
        def f(x):
            self.assertTrue(x.is_contiguous())
            self.assertFalse(x.is_contiguous(memory_format=torch.channels_last))
            x = x.permute(0, 3, 1, 2)
            self.assertFalse(x.is_contiguous())
            self.assertTrue(x.is_contiguous(memory_format=torch.channels_last))
            return x
        make_fx(f)(torch.randn(2, 3, 4, 5))

        def f(x):
            self.assertTrue(x.is_contiguous())
            y = x[:, 1]
            self.assertFalse(y.is_contiguous())
            y = x[:, ::2]
            self.assertFalse(y.is_contiguous())
            return x.cos()

        make_fx(f)(torch.randn(2, 3, 4, 5))

    def test_pr_86917(self):
        # Tests the issue brought up here https://github.com/pytorch/pytorch/pull/86917#issuecomment-1283155344
        def f(a, b):
            return torch.ops.aten.nll_loss_forward(a, b, None, 1, 10)

        self._test(f, [torch.randn(1, 10), torch.zeros(1, dtype=torch.long)])

class TestGenericProxyTensorReal(TestGenericProxyTensor):
    tracing_mode = "real"


class TestGenericProxyTensorFake(TestGenericProxyTensor):
    tracing_mode = "fake"


class TestGenericProxyTensorSymbolic(TestGenericProxyTensor):
    tracing_mode = "symbolic"


del TestGenericProxyTensor


class TestRealProxyTensor(TestCase):
    def test_error_on_data_dependent_ops(self):
        def f():
            x = torch.randn([])
            y = torch.randn([])
            assert torch.allclose(x * y, y * x)
            z = float(x)
            z2 = float(y)

        # Smoke tests
        make_fx(f, _error_on_data_dependent_ops=False)()
        make_fx(f, pre_dispatch=True, _error_on_data_dependent_ops=False)()

class TestFakeProxyTensor(TestCase):
    def test_issue82547(self):
        x = nn.Parameter(torch.randn(3, 3))

        def f():
            return torch.ops.aten.t.default(x)
        self.assertRaisesRegex(Exception, "Please convert all Tensors", lambda: make_fx(f, tracing_mode="fake")())

        class A(torch.Tensor):
            pass

        x = A(torch.randn(3, 3))
        self.assertRaisesRegex(TypeError, "Multiple dispatch failed", lambda: make_fx(f, tracing_mode="fake")())

    def test_use_fake_and_tensor(self):
        def f(x, y):
            z = torch.tensor([2.0, 3.0])
            return x + y + z

        g = make_fx(f, tracing_mode="fake")(torch.randn(2), torch.randn(2))
        x, y = torch.randn(2), torch.randn(2)
        self.assertEqual(g(x, y), f(x, y))

    def test_free_fake(self):
        def f(x):
            return torch.add(x, y)

        with FakeTensorMode() as fake_mode:
            y = torch.randn(2)
            make_fx(f, tracing_mode="real")(torch.randn(2))

    def test_fused_adam(self):
        # See https://github.com/pytorch/pytorch/issues/99356
        params = [torch.randn(10, 10) for _ in range(10)]
        grads = [torch.randn(10, 10) for _ in range(10)]
        exp_avgs = [torch.randn(10, 10) for _ in range(10)]
        exp_avg_sqs = [torch.randn(10, 10) for _ in range(10)]
        max_exp_avg_sqs = [torch.randn(10, 10) for _ in range(10)]
        state_steps = [torch.tensor(0) for _ in range(10)]

        def fused_adam(params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps):
            (new_params, _, _, _, _) = aten._fused_adam.default(
                params,
                grads,
                exp_avgs,
                exp_avg_sqs,
                max_exp_avg_sqs,
                state_steps,
                lr=0.1,
                beta1=0.9,
                beta2=0.999,
                weight_decay=0.01,
                eps=1e-8,
                amsgrad=False,
                maximize=False,
            )

            for p, new_p in zip(params, new_params):
                p.copy_(new_p)

            return params

        gm = make_fx(fused_adam, tracing_mode='fake')(
            params,
            grads,
            exp_avgs,
            exp_avg_sqs,
            max_exp_avg_sqs,
            state_steps,
        )
        ensure_ops_have_val = [aten._fused_adam.default, operator.getitem]
        for n in gm.graph.nodes:
            if n.op == "call_function" and n.target in ensure_ops_have_val:
                self.assertIn('val', n.meta)

    def test_alias(self):
        def f(x):
            return torch.ops.aten.alias(x)

        r = str(make_fx(f, tracing_mode="fake")(torch.randn(2)).code).strip()
        # NB: this should not have a detach call
        self.assertExpectedInline(r, """\
def forward(self, x_1):
    alias = torch.ops.aten.alias.default(x_1);  x_1 = None
    return alias""")

    def test_meta(self):
        def f(x):
            a = x.cos()
            b = torch.var_mean(a, dim=0)
            c = b * 2
            return c

        out = make_fx(f, tracing_mode="fake")(torch.randn(5, 5))
        for n in out.graph.nodes:
            if n.op == 'output':
                continue
            self.assertTrue('val' in n.meta)

def _get_node(fx_g, cond):
    for n in fx_g.graph.nodes:
        if cond(n):
            return n
    raise AssertionError

def _get_free_symbols(shape_env):
    vars = tuple(shape_env.var_to_val.keys())
    return len([var for var in vars if var not in shape_env.replacements])

def _trace(f, *args):
    inps = [torch.randn(arg) for arg in args]
    return make_fx(f, tracing_mode="symbolic")(*inps)

# TODO: Need to test the guards themselves specifically as well
class TestSymbolicTracing(TestCase):
    def _test_dynamic(self, fn, trace_inputs, test_inputs, assert_eq=True):
        """
        Tests fn traced with trace_inputs against test_inputs
        Also returns shape env
        """
        trace_inputs = [torch.randn(shape) for shape in trace_inputs]
        traced_f = make_fx(fn, tracing_mode="symbolic")(*trace_inputs)
        for input in test_inputs:
            input = [torch.randn(shape) for shape in input]
            rx, ry = traced_f(*input), fn(*input)
            if assert_eq:
                self.assertEqual(rx, ry)
        return traced_f


    def test_debug_interpreter(self):
        import torch.library
        from torch.library import Library

        foo = Library("foo", "DEF")  # noqa: TOR901
        foo.define("foo(Tensor self) -> Tensor")

        # Operator where meta and cpu disagree on strides
        @torch.library.impl(foo, "foo", "CPU")
        def foo_cpu(x):
            return x.clone().T

        @torch.library.impl(foo, "foo", "Meta")
        def foo_meta(x):
            return x.clone()

        def f(x):
            return torch.ops.foo.foo.default(x)

        gm = make_fx(f, tracing_mode="symbolic")(torch.randn(2, 2))
        from torch._functorch.compilers import DebugInterpreter

        interp = DebugInterpreter(gm)

        # input mismatch is caught (indicates guard problem)
        self.assertRaisesRegex(
            AssertionError, r"3 != 1",
            lambda: interp.run(torch.randn(3, 3).T),
        )

        # Catch the incorrect meta
        self.assertRaisesRegex(
            AssertionError, r"\(3, 1\) != \(1, 3\)",
            lambda: interp.run(torch.randn(3, 3))
        )

    def test_int_input(self):
        def f(x, y):
            return x.view(y)

        r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(3, 4), 12).code).strip()
        self.assertExpectedInline(r, """\
def forward(self, x_1, y_1):
    view = torch.ops.aten.view.default(x_1, [y_1]);  x_1 = y_1 = None
    return view""")

    def test_resize_from_zero(self):
        def f(x, y):
            x.resize_(y.size(0))

        r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(0), torch.empty(2)).code).strip()
        self.assertExpectedInline(r, """\
def forward(self, x_1, y_1):
    sym_size_int = torch.ops.aten.sym_size.int(y_1, 0);  y_1 = None
    resize_ = torch.ops.aten.resize_.default(x_1, [sym_size_int]);  x_1 = sym_size_int = resize_ = None
    return None""")

    def test_broadcast_shapes(self):
        def f(x, y):
            return torch.functional.broadcast_shapes(x.size(), y.size()[0])

        r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(3, 1), torch.empty(5)).code).strip()
        self.assertExpectedInline(r, """\
def forward(self, x_1, y_1):
    sym_size_int = torch.ops.aten.sym_size.int(x_1, 0);  x_1 = None
    sym_size_int_1 = torch.ops.aten.sym_size.int(y_1, 0);  y_1 = None
    return (sym_size_int, sym_size_int_1)""")

    def test_deduped_shape(self):
        def f(s0, s1, x, y):
            return torch.functional.broadcast_shapes(x.size(), y.size()[0]), torch.empty(x.shape[0])

        x = torch.empty(3, 1)
        y = torch.empty(5)
        from torch.fx.experimental.symbolic_shapes import ShapeEnv
        shape_env = ShapeEnv()

        with FakeTensorMode(shape_env=shape_env, static_shapes=False) as fake_mode:
            x = fake_mode.from_tensor(x)
            y = fake_mode.from_tensor(y)
            r = str(make_fx(f, tracing_mode="real")(x.shape[0], y.shape[0], x, y).code).strip()
            self.assertExpectedInline(r, """\
def forward(self, s0_1, s1_1, x_1, y_1):
    empty = torch.ops.aten.empty.memory_format([s0_1], device = device(type='cpu'), pin_memory = False)
    return ((s0_1, s1_1), empty)""")

    def test_non_deduped_shape(self):
        def f(x, y):
            return torch.functional.broadcast_shapes(x.size(), y.size()[0]), torch.empty(x.shape[0])

        x = torch.empty(3, 1)
        y = torch.empty(5)
        from torch.fx.experimental.symbolic_shapes import ShapeEnv
        shape_env = ShapeEnv()

        with FakeTensorMode(shape_env=shape_env, static_shapes=False) as fake_mode:
            x = fake_mode.from_tensor(x)
            y = fake_mode.from_tensor(y)
            r = str(make_fx(f, tracing_mode="real")(x, y).code).strip()
            self.assertExpectedInline(r, """\
def forward(self, x_1, y_1):
    sym_size_int = torch.ops.aten.sym_size.int(x_1, 0);  x_1 = None
    sym_size_int_1 = torch.ops.aten.sym_size.int(y_1, 0);  y_1 = None
    empty = torch.ops.aten.empty.memory_format([sym_size_int], device = device(type='cpu'), pin_memory = False)
    return ((sym_size_int, sym_size_int_1), empty)""")

    def test_unary(self):
        def f(x):
            assert x.shape[0] < 20
            return x.cos()
        test_inputs = []
        test_inputs.append([(2, 5)])
        test_inputs.append([(6, 8)])
        gm = self._test_dynamic(f, [(3, 4)], test_inputs)
        self.assertTrue(eval_guards(gm, torch.randn(4, 5)))
        self.assertEqual(repr(bind_symbols(gm, torch.randn(4, 5))), "{s0: 4, s1: 5}")
        self.assertFalse(eval_guards(gm, torch.randn(25, 5)))
        self.assertExpectedInline(show_guards(gm), """L['x'].size()[0] <= 19""")

    def test_repeat_interleave(self):
        def f(src_tokens, beam_size_src):
            return src_tokens.repeat_interleave(beam_size_src.size(0), 0)

        prompt_size = 64
        vocab_size = 64
        batch_size = 4
        src_tokens = torch.randint(1, vocab_size, (batch_size, prompt_size))
        gm = make_fx(f, tracing_mode="symbolic")(src_tokens, torch.randn(5))
        self.assertEqual(len(gm.shape_env.guards), 0)

    def test_non_symint_size_spec(self):
        # this isn't really a proxy tensor test, but it's the most convenient
        # way to get a fake tensor with symbolic sizes
        def f(x):
            torch._C._non_sym_sizes(x)
            return x + 1

        x = torch.randn(2, 3)
        make_fx(f, tracing_mode="symbolic")(x)

    # https://github.com/pytorch/pytorch/issues/108195
    def test_symbolic_repeat_interleave(self):
        def f(y, x):
            return y.repeat_interleave(x, dim=1)

        y = torch.tensor([[1, 2], [3, 4]])
        x = torch.tensor([2, 3])
        r = str(make_fx(f, tracing_mode="symbolic")(y, x).code).strip()
        self.assertExpectedInline(r, """\
def forward(self, y_1, x_1):
    repeat_interleave = torch.ops.aten.repeat_interleave.Tensor(x_1);  x_1 = None
    index_select = torch.ops.aten.index_select.default(y_1, 1, repeat_interleave);  y_1 = repeat_interleave = None
    return index_select""")

    def test_mod_gcd_unbacked(self):
        def f(_a, _b, _stride):
            a = _a.item()
            b = _b.item()
            stride = _stride.item()
            torch._check_is_size(a)
            torch._check_is_size(b)
            torch._check_is_size(stride)
            ta = torch.randn(a * stride)
            tb = torch.randn(b * stride)
            r = torch.cat([ta, tb])
            return r.view(a + b, stride)

        _a = torch.tensor(30)
        _b = torch.tensor(20)
        _stride = torch.tensor(10)
        r = str(make_fx(f, tracing_mode="symbolic")(_a, _b, _stride).code).strip()
        self.assertExpectedInline(r, """\
def forward(self, _a_1, _b_1, _stride_1):
    _local_scalar_dense = torch.ops.aten._local_scalar_dense.default(_a_1);  _a_1 = None
    _local_scalar_dense_1 = torch.ops.aten._local_scalar_dense.default(_b_1);  _b_1 = None
    _local_scalar_dense_2 = torch.ops.aten._local_scalar_dense.default(_stride_1);  _stride_1 = None
    mul = _local_scalar_dense * _local_scalar_dense_2
    randn = torch.ops.aten.randn.default([mul], device = device(type='cpu'), pin_memory = False);  mul = None
    mul_1 = _local_scalar_dense_1 * _local_scalar_dense_2
    randn_1 = torch.ops.aten.randn.default([mul_1], device = device(type='cpu'), pin_memory = False);  mul_1 = None
    cat = torch.ops.aten.cat.default([randn, randn_1]);  randn = randn_1 = None
    add = _local_scalar_dense + _local_scalar_dense_1;  _local_scalar_dense = _local_scalar_dense_1 = None
    view = torch.ops.aten.view.default(cat, [add, _local_scalar_dense_2]);  cat = add = _local_scalar_dense_2 = None
    return view""")

    def test_cumsum_unbacked(self):
        def f(x):
            y = x.item()
            z = torch.randn((3, y, 3))
            return z.cumsum(0)

        r = str(make_fx(f, tracing_mode="symbolic")(torch.tensor([5])).code).strip()
        self.assertExpectedInline(
            r, """\
def forward(self, x_1):
    _local_scalar_dense = torch.ops.aten._local_scalar_dense.default(x_1);  x_1 = None
    randn = torch.ops.aten.randn.default([3, _local_scalar_dense, 3], device = device(type='cpu'), pin_memory = False);  _local_scalar_dense = None
    cumsum = torch.ops.aten.cumsum.default(randn, 0);  randn = None
    return cumsum"""  # noqa: B950
        )


    def test_repeat_interleave_unbacked_output_size(self):
        def f(x, y):
            s = x.sum().item()
            return y.repeat_interleave(x, dim=0, output_size=s)

        r = str(make_fx(f, tracing_mode="symbolic")(torch.tensor([2, 3]), torch.randn(2)).code).strip()
        self.assertExpectedInline(
            r, """\
def forward(self, x_1, y_1):
    sum_1 = torch.ops.aten.sum.default(x_1)
    _local_scalar_dense = torch.ops.aten._local_scalar_dense.default(sum_1);  sum_1 = None
    repeat_interleave = torch.ops.aten.repeat_interleave.Tensor(x_1, output_size = _local_scalar_dense);  x_1 = _local_scalar_dense = None
    index_select = torch.ops.aten.index_select.default(y_1, 0, repeat_interleave);  y_1 = repeat_interleave = None
    return index_select"""  # noqa: B950
        )

    def test_arange_unbacked_output_size(self):
        def f(x):
            return torch.arange(0, x)

        r = str(make_fx(f, tracing_mode="symbolic")(torch.tensor(10)).code).strip()
        self.assertExpectedInline(
            r, """\
def forward(self, x_1):
    _local_scalar_dense = torch.ops.aten._local_scalar_dense.default(x_1);  x_1 = None
    arange = torch.ops.aten.arange.start(0, _local_scalar_dense, device = device(type='cpu'), pin_memory = False);  _local_scalar_dense = None
    return arange"""  # noqa: B950
        )

    def test_adv_index_batch(self):
        def f(src_tokens):
            bsz, src_len = src_tokens.size()[:2]
            start_step = src_tokens.shape[1]
            beam_size = 1
            generate_size = 64
            max_len = src_len + generate_size
            tokens = torch.zeros(bsz * beam_size, max_len).to(src_tokens).long().fill_(0)
            tokens[:, :start_step] = src_tokens.repeat_interleave(beam_size, 0)
            return tokens

        prompt_size = 64
        vocab_size = 64
        batch_size = 4
        src_tokens = torch.randint(1, vocab_size, (batch_size, prompt_size))
        gm = make_fx(f, tracing_mode="symbolic")(src_tokens)
        # Guards to rule out batch_size == sys.maxsize (wobbling between 2 and
        # 1 ok)
        self.assertEqual(len(gm.shape_env.guards), 1)

    @unittest.skipIf(not HAS_CUDA, 'CUDA-only test')
    def test_cpu_scalar_cuda(self):
        # Extracted from wave2vec2
        def f(a, b):
            return (a * b) @ b

        r = str(
            make_fx(f, tracing_mode="symbolic")(
                torch.tensor(1.0), torch.randn(2, 2, device='cuda')
            ).code
        ).strip()
        self.assertExpectedInline(r, """\
def forward(self, a_1, b_1):
    mul = torch.ops.aten.mul.Tensor(a_1, b_1);  a_1 = None
    mm = torch.ops.aten.mm.default(mul, b_1);  mul = b_1 = None
    return mm""")

    def test_binary_broadcast(self):
        def f(a, b):
            c = a * b
            return c

        test_inputs = []
        test_inputs.append([(1, 5), (3, 1)])
        test_inputs.append([(1, 4), (4, 1)])
        shape_env = self._test_dynamic(f, [(1, 2), (3, 1)], test_inputs).shape_env
        assert len(shape_env.guards) == 0

    def test_multiply_shape(self):
        def f(a):
            return torch.empty(a.shape[0] * 2)

        r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(4)).code).strip()
        self.assertExpectedInline(r, """\
def forward(self, a_1):
    sym_size_int = torch.ops.aten.sym_size.int(a_1, 0);  a_1 = None
    mul = sym_size_int * 2;  sym_size_int = None
    empty = torch.ops.aten.empty.memory_format([mul], device = device(type='cpu'), pin_memory = False);  mul = None
    return empty""")

    def test_item(self):
        def f(a):
            r = a.item()
            return r * a

        r = str(make_fx(f, tracing_mode="symbolic")(torch.randn(1)).code).strip()
        self.assertExpectedInline(r, """\
def forward(self, a_1):
    _local_scalar_dense = torch.ops.aten._local_scalar_dense.default(a_1)
    mul = torch.ops.aten.mul.Tensor(a_1, _local_scalar_dense);  a_1 = _local_scalar_dense = None
    return mul""")

    def test_tensor_symfloat(self):
        def f(a):
            r = torch.tensor(a.size(0) ** 2.0)
            assert r.dtype is torch.float
            return r

        gm = make_fx(f, tracing_mode="symbolic")(torch.randn(2))
        r = str(gm.code).strip()
        # NB: this specializes, which is fine, the point is to make sure the
        # dtype inference is correct
        self.assertExpectedInline(r, """\
def forward(self, a_1):
    _tensor_constant0 = self._tensor_constant0
    lift_fresh_copy = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0);  _tensor_constant0 = None
    return lift_fresh_copy""")
        self.assertEqual(gm._tensor_constant0, torch.tensor(4.0))

    def test_item_to_constructor(self):
        def f(a):
            r = a.item()
            return torch.empty(r)

        r = str(make_fx(f, tracing_mode="symbolic")(torch.randint(5, (1,))).code).strip()
        self.assertExpectedInline(
            r, """\
def forward(self, a_1):
    _local_scalar_dense = torch.ops.aten._local_scalar_dense.default(a_1);  a_1 = None
    empty = torch.ops.aten.empty.memory_format([_local_scalar_dense], device = device(type='cpu'), pin_memory = False);  _local_scalar_dense = None
    return empty"""  # noqa: B950
        )


    def test_setitem_symint(self):
        # from moco
        # https://github.com/pytorch/pytorch/issues/101939
        def f(x):
            x[0] = x.size(0)
            return x

        r = str(make_fx(f, tracing_mode="symbolic")(torch.randn(10)).code).strip()
        self.assertExpectedInline(
            r, """\
def forward(self, x_1):
    sym_size_int = torch.ops.aten.sym_size.int(x_1, 0)
    scalar_tensor = torch.ops.aten.scalar_tensor.default(sym_size_int, dtype = torch.float32, layout = torch.strided, device = device(type='cpu'));  sym_size_int = None
    select = torch.ops.aten.select.int(x_1, 0, 0)
    copy_ = torch.ops.aten.copy_.default(select, scalar_tensor);  select = scalar_tensor = copy_ = None
    return x_1"""  # noqa: B950
        )

    def test_dynamic_pointwise_scalar(self):
        def f(gravity, mask):
            gravity[mask, 0] = gravity[mask, 0] * -1

        r = str(make_fx(f, tracing_mode="symbolic")(
            torch.randn((12, 4)),
            torch.randint(0, 2, (12,), dtype=torch.bool)
        ).code).strip()
        self.assertExpectedInline(r, """\
def forward(self, gravity_1, mask_1):
    select = torch.ops.aten.select.int(gravity_1, 1, 0)
    index = torch.ops.aten.index.Tensor(select, [mask_1]);  select = None
    mul = torch.ops.aten.mul.Tensor(index, -1);  index = None
    select_1 = torch.ops.aten.select.int(gravity_1, 1, 0);  gravity_1 = None
    index_put_ = torch.ops.aten.index_put_.default(select_1, [mask_1], mul);  select_1 = mask_1 = mul = index_put_ = None
    return None""")

    def test_reflect_r_over_x(self):
        def reflect_R_over_x(R):
            reflect = torch.eye(3, device=R.device)
            reflect[0, 0] = -1
            return reflect @ R @ reflect

        def f(crop_camera, mask):
            crop_camera[mask] = reflect_R_over_x(crop_camera[mask])

        r = str(make_fx(f, tracing_mode="symbolic")(
            torch.randn((12, 3, 3)),
            torch.randint(0, 2, (12,), dtype=torch.bool)
        ).code).strip()
        self.assertExpectedInline(r, """\
def forward(self, crop_camera_1, mask_1):
    index = torch.ops.aten.index.Tensor(crop_camera_1, [mask_1])
    eye = torch.ops.aten.eye.default(3, device = device(type='cpu'), pin_memory = False)
    _tensor_constant0 = self._tensor_constant0
    lift_fresh_copy = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0);  _tensor_constant0 = None
    select = torch.ops.aten.select.int(eye, 0, 0)
    select_1 = torch.ops.aten.select.int(select, 0, 0);  select = None
    copy_ = torch.ops.aten.copy_.default(select_1, lift_fresh_copy);  select_1 = lift_fresh_copy = copy_ = None
    sym_size_int = torch.ops.aten.sym_size.int(index, 0)
    expand = torch.ops.aten.expand.default(eye, [sym_size_int, 3, 3])
    view = torch.ops.aten.view.default(expand, [sym_size_int, 3, 3]);  expand = None
    sym_size_int_1 = torch.ops.aten.sym_size.int(crop_camera_1, 1)
    sym_size_int_2 = torch.ops.aten.sym_size.int(crop_camera_1, 2)
    expand_1 = torch.ops.aten.expand.default(index, [sym_size_int, sym_size_int_1, sym_size_int_2]);  index = None
    view_1 = torch.ops.aten.view.default(expand_1, [sym_size_int, sym_size_int_1, sym_size_int_2]);  expand_1 = sym_size_int_1 = sym_size_int_2 = None
    bmm = torch.ops.aten.bmm.default(view, view_1);  view = view_1 = None
    view_2 = torch.ops.aten.view.default(bmm, [sym_size_int, 3, 3]);  bmm = None
    mul_4 = sym_size_int * 3
    view_3 = torch.ops.aten.view.default(view_2, [mul_4, 3]);  view_2 = mul_4 = None
    mm = torch.ops.aten.mm.default(view_3, eye);  view_3 = eye = None
    _unsafe_view = torch.ops.aten._unsafe_view.default(mm, [sym_size_int, 3, 3]);  mm = sym_size_int = None
    index_put_ = torch.ops.aten.index_put_.default(crop_camera_1, [mask_1], _unsafe_view);  crop_camera_1 = mask_1 = _unsafe_view = index_put_ = None
    return None""")  # noqa: B950

    def test_unbacked_slice(self):
        def f(x, m):
            x = x[m]
            return x[slice(None, None, None), slice(None, None, None), slice(None, 2, None)]

        make_fx(f, tracing_mode="symbolic")(
            torch.randn((12, 3, 3)),
            torch.randint(0, 2, (12,), dtype=torch.bool)
        )

    @unittest.skipIf(not USE_TORCHVISION, "test requires torchvision")
    def test_unbacked_batch_resnet(self):
        mod = torchvision.models.resnet18()

        def f(x, mask, params, buffers):
            for p in itertools.chain([x, mask], params.values(), buffers.values()):
                for s in p.shape:
                    guard_int(s)
            x = x[mask]
            torch._check(x.shape[0] >= 1)
            for p in params.values():
                p.grad = None
            return torch.func.functional_call(mod, {**params, **buffers}, (x,)).sum()

        make_fx(f, tracing_mode="symbolic")(
            torch.randn(3, 3, 250, 250),
            torch.randint(0, 2, (3,), dtype=torch.bool),
            dict(mod.named_parameters()),
            dict(mod.named_buffers()),
        )

    def test_boolean_index(self):
        def f(images, handedness, valid):
            images = images[valid]
            handedness = handedness[valid]
            right_hand_mask = handedness == 1
            images[right_hand_mask] = images[right_hand_mask].flip(-1)

        r = str(make_fx(f, tracing_mode="symbolic")(
            torch.randint(0, 256, (512, 1, 96, 96)),
            torch.randint(0, 1, (512,)),
            torch.randint(0, 2, (512,), dtype=torch.bool)
        ).code).strip()
        self.assertExpectedInline(r, """\
def forward(self, images_1, handedness_1, valid_1):
    index = torch.ops.aten.index.Tensor(images_1, [valid_1]);  images_1 = None
    index_1 = torch.ops.aten.index.Tensor(handedness_1, [valid_1]);  handedness_1 = valid_1 = None
    eq = torch.ops.aten.eq.Scalar(index_1, 1);  index_1 = None
    index_2 = torch.ops.aten.index.Tensor(index, [eq])
    flip = torch.ops.aten.flip.default(index_2, [-1]);  index_2 = None
    index_put_ = torch.ops.aten.index_put_.default(index, [eq], flip);  index = eq = flip = index_put_ = None
    return None""")

    def test_neg_shape(self):
        def f(a):
            return torch.empty(-a.shape[0] + 10)

        r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(2)).code).strip()
        self.assertExpectedInline(r, """\
def forward(self, a_1):
    sym_size_int = torch.ops.aten.sym_size.int(a_1, 0);  a_1 = None
    neg = -sym_size_int;  sym_size_int = None
    add = neg + 10;  neg = None
    empty = torch.ops.aten.empty.memory_format([add], device = device(type='cpu'), pin_memory = False);  add = None
    return empty""")

    def test_unbacked_unification(self):
        def f(x, y):
            z = torch.zeros(x.item())
            return z + y

        r = str(make_fx(f, tracing_mode="symbolic")(torch.tensor(10), torch.randn(10)).code).strip()
        self.assertExpectedInline(r, """\
def forward(self, x_1, y_1):
    _local_scalar_dense = torch.ops.aten._local_scalar_dense.default(x_1);  x_1 = None
    zeros = torch.ops.aten.zeros.default([_local_scalar_dense], device = device(type='cpu'), pin_memory = False);  _local_scalar_dense = None
    add = torch.ops.aten.add.Tensor(zeros, y_1);  zeros = y_1 = None
    return add""")  # noqa: B950

    def test_reshape_divisibility_unbacked(self):
        def f(x):
            i0 = x.item()
            r = torch.zeros(i0, 4, 20)
            r = r.transpose(2, 1)
            return r.reshape(-1, 80)
        make_fx(f, tracing_mode="symbolic")(torch.tensor(24))

    def test_view_divisibility_unbacked(self):
        def f(x):
            i0 = x.item()
            r = torch.zeros(i0, 192)
            return r.view(12, -1, 192)
        make_fx(f, tracing_mode="symbolic")(torch.tensor(24))

    @unittest.skipIf(not HAS_CUDA, 'CUDA-only test')
    def test_view_divisibility_unbacked_relatively_prime(self):
        # See https://github.com/pytorch/pytorch/issues/123651
        def f(x):
            i0 = x.item()
            torch._check_is_size(i0)
            # To trigger the original issue, the max bound has to
            # be chosen such that 448 / 447 < 2 (which it is.)
            torch._check(i0 <= 448)
            return torch.zeros(256 * i0).view(-1, 447)
        make_fx(f, tracing_mode="symbolic")(torch.tensor(256 * 447, device="cuda"))

    def test_unbacked_unify_guard(self):
        def f(x, y):
            z = torch.zeros(x.item())
            torch._check(z.size(0) == y.size(0))  # refines i0 = s0
            if z.size(0) == 4:
                return y * 2
            else:
                return y + 2

        r = str(make_fx(f, tracing_mode="symbolic")(torch.tensor(10), torch.randn(10)).code).strip()
        self.assertExpectedInline(r, """\
def forward(self, x_1, y_1):
    _local_scalar_dense = torch.ops.aten._local_scalar_dense.default(x_1);  x_1 = None
    zeros = torch.ops.aten.zeros.default([_local_scalar_dense], device = device(type='cpu'), pin_memory = False);  _local_scalar_dense = zeros = None
    add = torch.ops.aten.add.Tensor(y_1, 2);  y_1 = None
    return add""")  # noqa: B950

    @unittest.skipIf(not HAS_CUDA, 'CUDA-only test')
    @unittest.expectedFailure
    def test_unbacked_unify_guard_transitivity(self):
        def f(x1, x2, y):
            z1 = torch.zeros(x1.item())
            z2 = torch.zeros(x2.item())
            torch._check(z1.size(0) == z2.size(0))  # refines i0 = i1
            torch._check(z2.size(0) == y.size(0))  # refines i0 = s0
            if z1.size(0) == 4:
                return y * 2
            else:
                return y + 2

        gm = make_fx(f, tracing_mode="symbolic")(
            torch.tensor(10, device="cuda"),
            torch.tensor(10, device="cuda"),
            torch.randn(10, device="cuda")
        )
        insert_deferred_runtime_asserts(gm, gm.shape_env, "test")
        gm.recompile()
        r = str(gm.code).strip()
        # self.assertExpectedInline(
        #     r, """"""  # noqa: B950
        # )

    @unittest.skipIf(not HAS_CUDA, 'CUDA-only test')
    def test_unbacked_unify_dependency_violation(self):
        def f(x1, x2, x3, y):
            z1 = x1.item()
            torch._check(z1 // 9 == 1)
            z2 = x2.item()
            z3 = x3.item()
            torch._check(z1 == z2 + z3)
            return y * 2
        # NB: inputs are done as CUDA to ensure they aren't queried to be
        # backed

        gm = make_fx(f, tracing_mode="symbolic")(
            torch.tensor(10, device="cuda"), torch.tensor(5, device="cuda"),
            torch.tensor(5, device="cuda"), torch.randn(1, device="cuda")
        )
        insert_deferred_runtime_asserts(gm, gm.shape_env, "test")
        gm.recompile()
        self.assertEqual(gm(
            torch.tensor(12, device="cuda"), torch.tensor(6, device="cuda"),
            torch.tensor(6, device="cuda"), torch.tensor([1.0], device="cuda")),
            torch.tensor([2.0], device="cuda")
        )
        with self.assertRaises(RuntimeError):
            gm(
                torch.tensor(20, device="cuda"), torch.tensor(10, device="cuda"),
                torch.tensor(10, device="cuda"), torch.tensor([1.0], device="cuda")
            )


    def test_split_unbacked_sizes(self):
        def f(lengths, values):
            # tolist not directly supported atm
            sizes = [lengths[i].item() for i in range(lengths.size(0))]
            for s in sizes:
                # TODO(avik): no assertion generated with torch._check_is_size?
                torch._constrain_as_size(s)
            return torch.split(values, sizes)

        r = str(make_fx(f, tracing_mode="symbolic")(
            torch.tensor([2, 3, 4]),
            torch.randn(9)
        ).code).strip()
        self.assertExpectedInline(r, """\
def forward(self, lengths_1, values_1):
    select = torch.ops.aten.select.int(lengths_1, 0, 0)
    _local_scalar_dense = torch.ops.aten._local_scalar_dense.default(select);  select = None
    select_1 = torch.ops.aten.select.int(lengths_1, 0, 1)
    _local_scalar_dense_1 = torch.ops.aten._local_scalar_dense.default(select_1);  select_1 = None
    select_2 = torch.ops.aten.select.int(lengths_1, 0, 2);  lengths_1 = None
    _local_scalar_dense_2 = torch.ops.aten._local_scalar_dense.default(select_2);  select_2 = None
    sym_constrain_range_for_size = torch.ops.aten.sym_constrain_range_for_size.default(_local_scalar_dense);  sym_constrain_range_for_size = None
    sym_constrain_range_for_size_1 = torch.ops.aten.sym_constrain_range_for_size.default(_local_scalar_dense_1);  sym_constrain_range_for_size_1 = None
    sym_constrain_range_for_size_2 = torch.ops.aten.sym_constrain_range_for_size.default(_local_scalar_dense_2);  sym_constrain_range_for_size_2 = None
    split_with_sizes = torch.ops.aten.split_with_sizes.default(values_1, [_local_scalar_dense, _local_scalar_dense_1, _local_scalar_dense_2]);  values_1 = _local_scalar_dense = _local_scalar_dense_1 = _local_scalar_dense_2 = None
    getitem = split_with_sizes[0]
    getitem_1 = split_with_sizes[1]
    getitem_2 = split_with_sizes[2];  split_with_sizes = None
    return (getitem, getitem_1, getitem_2)""")  # noqa: B950

    def test_invalidate_nonzero(self):
        ok = False

        def f(a):
            nonlocal ok
            b = a.clone()
            x = b.nonzero()
            x1 = b.nonzero()
            x2 = b.nonzero()
            assert x1.shape[0] == x2.shape[0]
            ok = True
            b.normal_()
            y = b.nonzero()
            try:
                bool(x1.shape[0] == y.shape[0])
                self.fail("didn't raise exception")
            except GuardOnDataDependentSymNode:
                pass

        make_fx(f, tracing_mode="symbolic")(torch.randn(4))

    @torch._functorch.config.patch(fake_tensor_propagate_real_tensors=True)
    def test_invalidate_nonzero_propagate_real_tensors(self):
        def f(a):
            b = a.clone()
            x = b.nonzero()
            x1 = b.nonzero()
            x2 = b.nonzero()
            assert x1.shape[0] == x2.shape[0]
            b.normal_()
            y = b.nonzero()
            # Because you're not actually going to generate exactly zero with
            # normal_ lol
            assert x1.shape[0] == y.shape[0]

        make_fx(f, tracing_mode="symbolic")(torch.randn(4))

    def test_sqrt_size(self):
        def f(a):
            return a / a.size(-1) ** 0.5

        r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(4)).code).strip()
        self.assertExpectedInline(r, """\
def forward(self, a_1):
    sym_size_int = torch.ops.aten.sym_size.int(a_1, 0)
    sym_float = torch.sym_float(sym_size_int);  sym_size_int = None
    pow_1 = sym_float ** 0.5;  sym_float = None
    div = torch.ops.aten.div.Tensor(a_1, pow_1);  a_1 = pow_1 = None
    return div""")

    def test_make_fx_with_custom_tracer_preserving_nn_module_stack(self):

        class Bar(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()

            def forward(self, x):
                return x + 1

        class Foo(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.bar = Bar()

            def forward(self, x):
                return x + self.bar(x)

        gm = make_fx(Foo())(torch.randn(4, 4))
        for node in gm.graph.nodes:
            self.assertTrue("nn_module_stack" not in node.meta)

        foo = Foo()

        def functional_call(*args, **kwargs):
            with stateless._reparametrize_module(foo, {}):
                return foo(*args, **kwargs)

        functional_call._orig_mod = foo

        gm_with_stack = make_fx(functional_call, record_module_stack=True)(torch.randn(4, 4))
        found = False
        for node in gm_with_stack.graph.nodes:
            if "nn_module_stack" in node.meta:
                if len(node.meta["nn_module_stack"]) == 1:
                    self.assertTrue("custom_tracer_preserving_nn_module_stack.<locals>.Foo" in str(node.meta["nn_module_stack"]))
                    found = True
                elif len(node.meta["nn_module_stack"]) == 2:
                    self.assertTrue("preserving_nn_module_stack.<locals>.Bar" in str(node.meta["nn_module_stack"]))
                    found = True
                else:
                    # there can be at most 2 level
                    self.assertTrue(False)

        self.assertTrue(found)

        gm_without_stack = make_fx(functional_call)(torch.randn(4, 4))
        for node in gm_without_stack.graph.nodes:
            self.assertTrue("nn_module_stack" not in node.meta)

    def test_symint_to_tensor(self):
        def f(a):
            return a / a.shape[0]

        r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(4)).code).strip()
        self.assertExpectedInline(r, """\
def forward(self, a_1):
    sym_size_int = torch.ops.aten.sym_size.int(a_1, 0)
    div = torch.ops.aten.div.Tensor(a_1, sym_size_int);  a_1 = sym_size_int = None
    return div""")

        r = str(make_fx(f, tracing_mode="symbolic", decomposition_table=decomposition_table)(torch.empty(4)).code).strip()
        self.assertExpectedInline(r, """\
def forward(self, a_1):
    sym_size_int = torch.ops.aten.sym_size.int(a_1, 0)
    sym_float = torch.sym_float(sym_size_int);  sym_size_int = None
    div = torch.ops.prims.div.default(a_1, sym_float);  a_1 = sym_float = None
    return div""")

    def test_cat(self):
        def f(a, b):
            val = torch.mul(a, b)
            out = torch.cat([val, val])
            if out.shape[0] * out.shape[1] > 20:
                out = out.cos()
            return out

        test_inputs = []
        test_inputs.append([(1, 5), (6, 1)])
        test_inputs.append([(1, 4), (3, 1)])
        gm = self._test_dynamic(f, [(1, 6), (8, 1)], test_inputs)
        self.assertTrue(eval_guards(gm, torch.randn(1, 10), torch.randn(6, 1)))
        self.assertFalse(eval_guards(gm, torch.randn(1, 2), torch.randn(4, 1)))
        self.assertExpectedInline(show_guards(gm), """2*L['a'].size()[1]*L['b'].size()[0] > 20""")

    def test_new_empty(self):
        def f(a, b):
            return a.new_empty(b.shape[0], b.shape[1] * 2)

        self._test_dynamic(f, [(2, 4), (4, 5)], [[(2, 3), (5, 7)], [(3, 7), (9, 3)]], assert_eq=False).shape_env

    def test_size_with_tensor(self):
        # I think I messed up writing this test case originally, I think
        # I'm supposed to hit an error case, but the code here works in both
        # eager and tracing
        def f(tensor):
            max_size = torch.tensor([800, 1216], dtype=torch.int64)
            batch_shape = [2] + list(tensor.shape[:-2]) + list(max_size)
            return tensor.new_empty(batch_shape)

        a = torch.randn(3, 800, 1199)
        f(a)
        make_fx(f, tracing_mode="symbolic")(a)

    def test_fake_tensor_as_size(self):
        def f(x):
            r = torch.zeros([x])
            return r

        fx_g = make_fx(f, tracing_mode="symbolic")(torch.tensor(4))
        self.assertExpectedInline(fx_g.code.strip(), """\
def forward(self, x_1):
    _local_scalar_dense = torch.ops.aten._local_scalar_dense.default(x_1);  x_1 = None
    zeros = torch.ops.aten.zeros.default([_local_scalar_dense], device = device(type='cpu'), pin_memory = False);  _local_scalar_dense = None
    return zeros""")  # noqa: B950

    def test_expand(self):
        def f(a):
            b = torch.mul(a, a)
            c = b.expand(a.shape)
            return c

        self._test_dynamic(f, [(3,)], [[(3,)], [(4,)], [(2,)]])
        self._test_dynamic(f, [(5, 1)], [[(4, 1)], [(3, 1)], [(6, 1)]])

    def test_metadata(self):
        def f(a, b):
            d = a.new_empty(a.shape[0] + b.shape[0])
            return d
        fx_g = make_fx(f, tracing_mode="symbolic")(torch.randn(5), torch.randn(4))
        meta_c = _get_node(fx_g, lambda x: x.target == aten.new_empty.default)
        meta_d = _get_node(fx_g, lambda x: x.target == operator.add)
        self.assertTrue(meta_c.meta['val'].shape[0].node.expr == meta_d.meta['val'].node.expr)

    def test_metadata_fresh(self):
        def f(x):
            assert x.shape[0] == 3
            return x.cos()

        fx_g = make_fx(f, tracing_mode="symbolic")(torch.randn(3))
        meta_cos = _get_node(fx_g, lambda x: x.target == aten.cos.default)
        meta_inp = _get_node(fx_g, lambda x: x.op == 'placeholder')
        self.assertTrue(meta_cos.meta['val'].shape[0] == 3)
        # Checks if the input expr has been updated even though the constraint
        # happened afterwards
        self.assertTrue(meta_inp.meta['val'].shape[0] == 3)

    def test_elementwise_meta_with_sym_numbers(self):
        def f(x, offset, as_sym_float=False):
            x0 = x.size()[0]
            if as_sym_float:
                x0 = torch.sym_float(x0)
            return torch.add(x0, offset)

        fx_g = make_fx(f, tracing_mode="symbolic")(torch.rand(2, 3), 2.0, False)
        meta_add = _get_node(fx_g, lambda x: x.target == aten.add.Tensor)
        self.assertEqual(meta_add.meta['val'].shape, ())
        self.assertEqual(meta_add.meta['val'].dtype, torch.float32)

        fx_g = make_fx(f, tracing_mode="symbolic")(torch.rand(2, 3), 2, False)
        meta_add = _get_node(fx_g, lambda x: x.target == aten.add.Tensor)
        self.assertEqual(meta_add.meta['val'].shape, ())
        self.assertEqual(meta_add.meta['val'].dtype, torch.int64)

        fx_g = make_fx(f, tracing_mode="symbolic")(torch.rand(2, 3), 2, True)
        meta_add = _get_node(fx_g, lambda x: x.target == aten.add.Tensor)
        self.assertEqual(meta_add.meta['val'].shape, ())
        self.assertEqual(meta_add.meta['val'].dtype, torch.float32)

    def test_return_symint(self):
        def f(x):
            return x.shape[0], x.cos(), x.shape[0] / 5
        self._test_dynamic(f, [(5,)], [[(4,)], [(12,)]])

        def f(x):
            return x.shape
        self._test_dynamic(f, [(5, 3)], [[(4, 6)]])

    def test_rmethod(self):
        def f(x):
            return x.size(0) + x
        self._test_dynamic(f, [(5,)], [[(4,)], [(12,)]])

    def test_mega_guard(self):
        def f(a, b):
            assert a.shape[0] == b.shape[0] * 2
            return a.cos()
        fx_g = make_fx(f, tracing_mode="symbolic")(torch.randn(16), torch.randn(8))
        from torch._dynamo.source import LocalSource
        self.assertExpectedInline(
            str(fx_g.shape_env.produce_guards(fx_placeholder_vals(fx_g), [LocalSource("a"), LocalSource("b")], ignore_static=False)),  # noqa: B950
            """["L['a'].size()[0] == 2*L['b'].size()[0]", "L['a'].stride()[0] == 1", "L['a'].storage_offset() == 0", "L['b'].stride()[0] == 1", "L['b'].storage_offset() == 0", "2 <= L['b'].size()[0]"]"""  # noqa: B950
        )
        self.assertExpectedInline(
            str(fx_g.shape_env.produce_guards(fx_placeholder_vals(fx_g), [LocalSource("a"), LocalSource("b")], ignore_static=True)),  # noqa: B950
            """["L['a'].size()[0] == 2*L['b'].size()[0]", "2 <= L['b'].size()[0]"]"""  # noqa: B950
        )

    def test_guard_upperbound_range_refinement(self):
        def f(a):
            assert a.shape[0] > 5 and a.shape[0] > 12
            return a.cos()
        tensor = make_fx(f, tracing_mode="symbolic")(torch.randn(15))
        self.assertExpectedInline(show_guards(tensor), """13 <= L['a'].size()[0]""")

    def test_guard_lowerbound_range_refinement(self):
        def f(a):
            assert a.shape[0] < 20 and a.shape[0] < 30
            return a.cos()
        tensor = make_fx(f, tracing_mode="symbolic")(torch.randn(15))
        self.assertExpectedInline(show_guards(tensor), """L['a'].size()[0] <= 19""")

    def test_guard_upperbound_range_refinement_multivariate(self):
        def f(a):
            assert a.shape[0] > 5 and a.shape[0] > 12
            assert a.shape[1] > 5 and a.shape[1] > a.shape[0]
            return a.cos()
        tensor = make_fx(f, tracing_mode="symbolic")(torch.randn((15, 20)))
        self.assertExpectedInline(show_guards(tensor), """\
L['a'].size()[1] > L['a'].size()[0]
13 <= L['a'].size()[0]
14 <= L['a'].size()[1]""")

    def test_guard_lowerbound_range_refinement_multivariate(self):
        def f(a):
            assert a.shape[0] < 20 and a.shape[0] < 30
            assert a.shape[1] < 30 and a.shape[1] < a.shape[0]
            return a.cos()
        tensor = make_fx(f, tracing_mode="symbolic")(torch.randn((15, 5)))
        self.assertExpectedInline(
            show_guards(tensor),
            """\
L['a'].size()[1] < L['a'].size()[0]
L['a'].size()[0] <= 19
L['a'].size()[1] <= 18""")

    def test_sym_storage_offset(self):
        def f(x, y):
            return x + y

        inp = (torch.randn(8)[3:], torch.randn(5))
        fx_g = make_fx(f, tracing_mode="symbolic")(*inp)
        inp = (torch.randn(8)[3:], torch.randn(5))
        self.assertEqual(fx_g(*inp), f(*inp))

    def _assert_no_guards(self, fx_g, free_symbols):
        assert _get_free_symbols(fx_g.shape_env) == free_symbols, fx_g.shape_env.var_to_val
        assert len(fx_g.shape_env.get_nontrivial_guards()) == 0, fx_g.shape_env.format_guards()

    def test_guards_equal(self):
        def f(a, b):
            return a * b

        # NB: Numbers are carefully chosen to avoid duck shaping from applying

        fx_g = _trace(f, (5, 6), (5, 6))
        self._assert_no_guards(fx_g, 2)

        fx_g = _trace(f, (5, 6, 7), (5, 6, 7))
        self._assert_no_guards(fx_g, 3)

        fx_g = _trace(f, (5, 1), (1, 6))
        self._assert_no_guards(fx_g, 2)

        def f(a, b, c, d):
            a = a + b
            cat = torch.cat([c, d])
            return a + cat

        fx_g = _trace(f, 7, 7, 4, 3)
        self._assert_no_guards(fx_g, 2)

        def f(a, b, c, d, e):
            vals = [a, b, c, d, e]
            x = a
            for idx in range(len(vals) - 1):
                x = torch.cat([x, vals[idx]]) + vals[idx + 1]
            return x

        fx_g = _trace(f, 2, 4, 8, 16, 32)
        self._assert_no_guards(fx_g, 1)

        def f(a, b):
            a = a.view(b.shape[0])
            return a + b.sum()

        fx_g = _trace(f, (4, 2), 8)
        self._assert_no_guards(fx_g, 2)

        fx_g = _trace(f, (4, 2), (8, 5))
        self._assert_no_guards(fx_g, 3)

        fx_g = _trace(f, (2, 3, 4), 24)
        self._assert_no_guards(fx_g, 3)

    def test_nonidentity_transitive_guards(self):
        def f(a, b, c, d, e):
            vals = [a, b, c, d, e]
            cat_vals = []
            for idx in range(len(vals) - 1):
                cat_vals.append(torch.cat([vals[idx], vals[idx]]))
            final_vals = []
            for a, b in reversed(list(zip(cat_vals, vals[1:]))):
                final_vals.append(a + b)
            return final_vals

        fx_g = _trace(f, 2, 4, 8, 16, 32)
        self.assertExpectedInline(show_guards(fx_g), """""")

    @torch.fx.experimental._config.patch(translation_validation=True)
    def test_constant_specialization(self):
        def f(t):
            assert t.shape[0] == 10
            return t

        tensor = make_fx(f, tracing_mode="symbolic")(torch.randn(10))
        self.assertExpectedInline(show_guards(tensor), """""")


make_fx_failures = {
    # unknown
    xfail('allclose'),
    xfail('equal'),
    # empty
    skip('new_empty'),
    skip('empty_like'),
    skip('empty'),
    skip('empty_permuted'),
    # flaky
    skip('linalg.lstsq', 'grad_oriented'),
    skip('nn.functional.max_unpool1d', '', device_type='cpu'),
    skip('nn.functional.max_unpool2d', '', device_type='cpu'),
    skip('nn.functional.max_unpool3d', '', device_type='cpu'),
    skip('linalg.lstsq'),  # flaky, probably just a precision issue

    # data-dependent control flow
    skip('item'),
    xfail('cov'),
    xfail('nn.functional.gaussian_nll_loss'),
    xfail('tensor_split'),
    xfail('corrcoef'),
    xfail('quantile'),
    xfail('nanquantile'),

    # Seems like it's creating a sparse tensor that isn't captured by tensor.is_sparse
    xfail('sparse.sampled_addmm'),
    xfail('sparse.mm', 'reduce'),

    # proxy tensor doesn't support sparse correctly right now
    skip('to_sparse'),
    # segfaults
    skip('block_diag'),

    # AssertionError: Tensor-likes are not close!
    skip('empty_strided', '', device_type='cpu'),
}

only_real_tensor_failures = {
    xfail('narrow'),
}

only_fake_tensor_failures = {
    xfail('narrow'),
}

fake_tensor_failures = set()

symbolic_tensor_failures = {
    xfail('combinations', ''),
    xfail('geqrf', ''),  # aten.geqrf.default - couldn't find symbolic meta function/decomposition
    xfail('histogram', ''),  # Could not run 'aten::histogram.bin_ct' with arguments from the 'Meta' backend. This c...
    xfail('histogramdd', ''),  # aten._histogramdd_bin_edges.default - couldn't find symbolic meta function/decomposition
    xfail('nanquantile', ''),  # Could not run 'aten::equal' with arguments from the 'Meta' backend.
    xfail('nn.functional.binary_cross_entropy', ''),  # aten.new_empty.default - couldn't find symbolic meta function/decom...
    xfail('nn.functional.cross_entropy', ''),  # aten.size.default - couldn't find symbolic meta function/decomposition
    xfail('nn.functional.ctc_loss'),  # aten._ctc_loss.Tensor - couldn't find symbolic meta function/decomposition
    xfail('quantile', ''),  # Could not run 'aten::equal' with arguments from the 'Meta' backend.
    xfail('unique_consecutive', ''),  # aten.unique_consecutive.default - couldn't find symbolic meta function/decomposition

    xfail('max_pool2d_with_indices_backward', ''),  # Expected a value of type 'List[int]' for argument 'kernel_size' but...

    # many complex operators incorrect striding, metadata
    xfail('fft.fft', ''),
    xfail('fft.hfft2', ''),
    xfail('fft.hfft', ''),
    xfail('fft.hfftn', ''),
    xfail('fft.ifft', ''),
    xfail('fft.ihfft2', ''),
    xfail('fft.ihfft', ''),
    xfail('fft.ihfftn', ''),
    xfail('fft.ihfft2', ''),
    xfail('fft.irfft2', ''),
    xfail('fft.irfft', ''),
    xfail('fft.irfftn', ''),
    xfail('fft.rfft2', ''),
    xfail('fft.rfft', ''),
    xfail('fft.rfftn', ''),
    xfail('stft', '')
}
symbolic_tensor_segfaults = {
    skip('nn.functional.batch_norm')  # Segfault??
}

symbolic_tensor_failures.update(symbolic_tensor_segfaults)

inplace_symbolic_tensor_failures = {
    # bugs
    xfail('float_power', ''),  # base given to float_power_ has dtype Float but the operation's result requires dtype Double
}

out_symbolic_tensor_failures = {
    # Cast error details: Unable to cast (...) to Tensor
    #
    # This happens because the test is set up to call the out variant using the `out` kwarg:
    #   torch._some_op(arg1, arg2, out=(out1, out2, out3))
    #
    # However, this only works on torch ops, not aten ops. For `_batch_norm_with_update`,
    # this fails because the op has no python bindings, so it doesn't support the `out` kwarg
    # way of calling its out variant.
    xfail('_batch_norm_with_update', ''),
    xfail('_native_batch_norm_legit', ''),
    xfail('angle', ''),
    xfail('argmax', ''),
    xfail('argmin', ''),
    xfail('fft.fft2', ''),
    xfail('fft.fftn', ''),
    xfail('fft.ifft2', ''),
    xfail('fft.ifftn', ''),
    xfail('gather', ''),
    xfail('linalg.pinv', ''),
    xfail('linalg.pinv', 'hermitian'),
    xfail('lu', ''),
    xfail('scatter_add', ''),
    xfail('scatter', ''),
    xfail('take_along_dim', ''),

    # SymIntArrayRef expected to contain only concrete
    xfail('ones', ''),
    xfail('randn', ''),
    xfail('zeros', ''),

    # RuntimeError: Cannot call numel() on tensor with symbolic sizes/strides
    xfail('index_reduce', 'prod'),
    xfail('index_reduce', 'mean'),
    xfail('index_reduce', 'amax'),
    xfail('index_reduce', 'amin'),
}

out_symbolic_tensor_segfaults = {
    skip('nanmean', ''),
}

out_symbolic_tensor_failures.update(out_symbolic_tensor_segfaults)

# Copies inputs to inplace operations to avoid inplace modifications
#   to leaves requiring gradient
def _get_safe_inplace(inplace_variant):
    @functools.wraps(inplace_variant)
    def _fn(t, *args, **kwargs):
        return inplace_variant(t.clone(), *args, **kwargs)

    return _fn

def _test_make_fx_helper(self, device, dtype, op, tracing_mode, inplace=False, out=False):
    fn = _get_safe_inplace(op.get_inplace()) if inplace else op.op
    sample_inputs_itr = op.sample_inputs(device, dtype, requires_grad=False)

    # Limit ourselves to first 100 inputs so symbolic tracing tests don't take too long
    count = 100
    if out:
        count = 5
    for sample_input in itertools.islice(sample_inputs_itr, count):
        if inplace and sample_input.broadcasts_input:
            continue
        args = [sample_input.input] + list(sample_input.args)
        kwargs = sample_input.kwargs
        if out:
            expected = fn(*args, **kwargs)
            kwargs['out'] = expected

        try:
            optests.make_fx_check(fn, args, kwargs, tracing_mode, self.assertEqual,
                                  randomize_data=True)
        except DynamicOutputShapeException:
            self.skipTest("Dynamic output shape operation in trace")


def skipIfNameMatches(pattern):
    """
    Decorator to skip a test if its name matches the given pattern.
    """
    def decorator(test_func):
        def wrapper(*args, **kwargs):
            if re.match(pattern, test_func.__name__):
                raise unittest.SkipTest(f"Test '{test_func.__name__}' skipped because its name matches the pattern '{pattern}'")
            return test_func(*args, **kwargs)
        return wrapper
    return decorator

# Auto functionalize shouldn't work with make_fx directly
filtered_hop_db = [op for op in hop_db if op.name != "auto_functionalize"]

@unittest.skipIf(not torch._dynamo.is_dynamo_supported(), "Cond requires dynamo")
class TestProxyTensorOpInfo(TestCase):
    @ops(op_db + filtered_hop_db + custom_op_db, allowed_dtypes=(torch.float,))
    @skipOps('TestProxyTensorOpInfo', 'test_make_fx_exhaustive', make_fx_failures.union(only_real_tensor_failures))
    def test_make_fx_exhaustive(self, device, dtype, op):
        _test_make_fx_helper(self, device, dtype, op, "real")

    @ops(op_db + filtered_hop_db + custom_op_db, allowed_dtypes=(torch.float,))
    @skipOps('TestProxyTensorOpInfo', 'test_make_fx_fake_exhaustive',
             make_fx_failures.union(fake_tensor_failures, only_fake_tensor_failures))
    def test_make_fx_fake_exhaustive(self, device, dtype, op):
        _test_make_fx_helper(self, device, dtype, op, "fake")

    @ops(op_db + filtered_hop_db + custom_op_db, allowed_dtypes=(torch.float,))
    @skipOps('TestProxyTensorOpInfo', 'test_make_fx_symbolic_exhaustive',
             make_fx_failures | fake_tensor_failures | symbolic_tensor_failures)
    def test_make_fx_symbolic_exhaustive(self, device, dtype, op):
        _test_make_fx_helper(self, device, dtype, op, "symbolic")

    @ops(op_db + custom_op_db, allowed_dtypes=(torch.float,))
    @skipOps('TestProxyTensorOpInfo', 'test_make_fx_symbolic_exhaustive_inplace',
             make_fx_failures | fake_tensor_failures | symbolic_tensor_failures | inplace_symbolic_tensor_failures)
    def test_make_fx_symbolic_exhaustive_inplace(self, device, dtype, op):
        if not op.get_inplace():
            self.skipTest("No inplace variable for this op")
        _test_make_fx_helper(self, device, dtype, op, "symbolic", inplace=True)

    @ops(op_db + custom_op_db, allowed_dtypes=(torch.float,))
    @skipOps('TestProxyTensorOpInfo', 'test_make_fx_symbolic_exhaustive_out',
             make_fx_failures | fake_tensor_failures | symbolic_tensor_failures | out_symbolic_tensor_failures)
    def test_make_fx_symbolic_exhaustive_out(self, device, dtype, op):
        if not op.supports_out:
            self.skipTest("Op doesn't support out")
        _test_make_fx_helper(self, device, dtype, op, "symbolic", out=True)


only_for = ("cpu")
instantiate_device_type_tests(TestProxyTensorOpInfo, globals(), only_for=only_for)


if __name__ == '__main__':
    run_tests()