1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
|
# Owner(s): ["module: autograd"]
import importlib
import inspect
import json
import logging
import os
import pkgutil
import unittest
from typing import Callable
import torch
from torch._utils_internal import get_file_path_2 # @manual
from torch.testing._internal.common_utils import (
IS_JETSON,
IS_MACOS,
IS_WINDOWS,
run_tests,
skipIfTorchDynamo,
TestCase,
)
log = logging.getLogger(__name__)
class TestPublicBindings(TestCase):
def test_no_new_reexport_callables(self):
"""
This test aims to stop the introduction of new re-exported callables into
torch whose names do not start with _. Such callables are made available as
torch.XXX, which may not be desirable.
"""
reexported_callables = sorted(
k
for k, v in vars(torch).items()
if callable(v) and not v.__module__.startswith("torch")
)
self.assertTrue(
all(k.startswith("_") for k in reexported_callables), reexported_callables
)
def test_no_new_bindings(self):
"""
This test aims to stop the introduction of new JIT bindings into torch._C
whose names do not start with _. Such bindings are made available as
torch.XXX, which may not be desirable.
If your change causes this test to fail, add your new binding to a relevant
submodule of torch._C, such as torch._C._jit (or other relevant submodule of
torch._C). If your binding really needs to be available as torch.XXX, add it
to torch._C and add it to the allowlist below.
If you have removed a binding, remove it from the allowlist as well.
"""
# This allowlist contains every binding in torch._C that is copied into torch at
# the time of writing. It was generated with
#
# {elem for elem in dir(torch._C) if not elem.startswith("_")}
torch_C_allowlist_superset = {
"AggregationType",
"AliasDb",
"AnyType",
"Argument",
"ArgumentSpec",
"AwaitType",
"autocast_decrement_nesting",
"autocast_increment_nesting",
"AVG",
"BenchmarkConfig",
"BenchmarkExecutionStats",
"Block",
"BoolType",
"BufferDict",
"StorageBase",
"CallStack",
"Capsule",
"ClassType",
"clear_autocast_cache",
"Code",
"CompilationUnit",
"CompleteArgumentSpec",
"ComplexType",
"ConcreteModuleType",
"ConcreteModuleTypeBuilder",
"cpp",
"CudaBFloat16TensorBase",
"CudaBoolTensorBase",
"CudaByteTensorBase",
"CudaCharTensorBase",
"CudaComplexDoubleTensorBase",
"CudaComplexFloatTensorBase",
"CudaDoubleTensorBase",
"CudaFloatTensorBase",
"CudaHalfTensorBase",
"CudaIntTensorBase",
"CudaLongTensorBase",
"CudaShortTensorBase",
"DeepCopyMemoTable",
"default_generator",
"DeserializationStorageContext",
"device",
"DeviceObjType",
"DictType",
"DisableTorchFunction",
"DisableTorchFunctionSubclass",
"DispatchKey",
"DispatchKeySet",
"dtype",
"EnumType",
"ErrorReport",
"ExcludeDispatchKeyGuard",
"ExecutionPlan",
"FatalError",
"FileCheck",
"finfo",
"FloatType",
"fork",
"FunctionSchema",
"Future",
"FutureType",
"Generator",
"GeneratorType",
"get_autocast_cpu_dtype",
"get_autocast_dtype",
"get_autocast_ipu_dtype",
"get_default_dtype",
"get_num_interop_threads",
"get_num_threads",
"Gradient",
"Graph",
"GraphExecutorState",
"has_cuda",
"has_cudnn",
"has_lapack",
"has_mkl",
"has_mkldnn",
"has_mps",
"has_openmp",
"has_spectral",
"iinfo",
"import_ir_module_from_buffer",
"import_ir_module",
"InferredType",
"init_num_threads",
"InterfaceType",
"IntType",
"SymFloatType",
"SymBoolType",
"SymIntType",
"IODescriptor",
"is_anomaly_enabled",
"is_anomaly_check_nan_enabled",
"is_autocast_cache_enabled",
"is_autocast_cpu_enabled",
"is_autocast_ipu_enabled",
"is_autocast_enabled",
"is_grad_enabled",
"is_inference_mode_enabled",
"JITException",
"layout",
"ListType",
"LiteScriptModule",
"LockingLogger",
"LoggerBase",
"memory_format",
"merge_type_from_type_comment",
"ModuleDict",
"Node",
"NoneType",
"NoopLogger",
"NumberType",
"OperatorInfo",
"OptionalType",
"OutOfMemoryError",
"ParameterDict",
"parse_ir",
"parse_schema",
"parse_type_comment",
"PyObjectType",
"PyTorchFileReader",
"PyTorchFileWriter",
"qscheme",
"read_vitals",
"RRefType",
"ScriptClass",
"ScriptClassFunction",
"ScriptDict",
"ScriptDictIterator",
"ScriptDictKeyIterator",
"ScriptList",
"ScriptListIterator",
"ScriptFunction",
"ScriptMethod",
"ScriptModule",
"ScriptModuleSerializer",
"ScriptObject",
"ScriptObjectProperty",
"SerializationStorageContext",
"set_anomaly_enabled",
"set_autocast_cache_enabled",
"set_autocast_cpu_dtype",
"set_autocast_dtype",
"set_autocast_ipu_dtype",
"set_autocast_cpu_enabled",
"set_autocast_ipu_enabled",
"set_autocast_enabled",
"set_flush_denormal",
"set_num_interop_threads",
"set_num_threads",
"set_vital",
"Size",
"StaticModule",
"Stream",
"StreamObjType",
"Event",
"StringType",
"SUM",
"SymFloat",
"SymInt",
"TensorType",
"ThroughputBenchmark",
"TracingState",
"TupleType",
"Type",
"unify_type_list",
"UnionType",
"Use",
"Value",
"set_autocast_gpu_dtype",
"get_autocast_gpu_dtype",
"vitals_enabled",
"wait",
"Tag",
"set_autocast_xla_enabled",
"set_autocast_xla_dtype",
"get_autocast_xla_dtype",
"is_autocast_xla_enabled",
}
torch_C_bindings = {elem for elem in dir(torch._C) if not elem.startswith("_")}
# torch.TensorBase is explicitly removed in torch/__init__.py, so included here (#109940)
explicitly_removed_torch_C_bindings = {"TensorBase"}
torch_C_bindings = torch_C_bindings - explicitly_removed_torch_C_bindings
# Check that the torch._C bindings are all in the allowlist. Since
# bindings can change based on how PyTorch was compiled (e.g. with/without
# CUDA), the two may not be an exact match but the bindings should be
# a subset of the allowlist.
difference = torch_C_bindings.difference(torch_C_allowlist_superset)
msg = f"torch._C had bindings that are not present in the allowlist:\n{difference}"
self.assertTrue(torch_C_bindings.issubset(torch_C_allowlist_superset), msg)
@staticmethod
def _is_mod_public(modname):
split_strs = modname.split(".")
for elem in split_strs:
if elem.startswith("_"):
return False
return True
@unittest.skipIf(
IS_WINDOWS or IS_MACOS,
"Inductor/Distributed modules hard fail on windows and macos",
)
@skipIfTorchDynamo("Broken and not relevant for now")
def test_modules_can_be_imported(self):
failures = []
def onerror(modname):
failures.append(
(modname, ImportError("exception occurred importing package"))
)
for mod in pkgutil.walk_packages(torch.__path__, "torch.", onerror=onerror):
modname = mod.name
try:
if "__main__" in modname:
continue
importlib.import_module(modname)
except Exception as e:
# Some current failures are not ImportError
log.exception("import_module failed")
failures.append((modname, e))
# It is ok to add new entries here but please be careful that these modules
# do not get imported by public code.
private_allowlist = {
"torch._inductor.codegen.cuda.cuda_kernel",
# TODO(#133647): Remove the onnx._internal entries after
# onnx and onnxscript are installed in CI.
"torch.onnx._internal.exporter",
"torch.onnx._internal.exporter._analysis",
"torch.onnx._internal.exporter._building",
"torch.onnx._internal.exporter._capture_strategies",
"torch.onnx._internal.exporter._compat",
"torch.onnx._internal.exporter._core",
"torch.onnx._internal.exporter._decomp",
"torch.onnx._internal.exporter._dispatching",
"torch.onnx._internal.exporter._fx_passes",
"torch.onnx._internal.exporter._ir_passes",
"torch.onnx._internal.exporter._isolated",
"torch.onnx._internal.exporter._onnx_program",
"torch.onnx._internal.exporter._registration",
"torch.onnx._internal.exporter._reporting",
"torch.onnx._internal.exporter._schemas",
"torch.onnx._internal.exporter._tensors",
"torch.onnx._internal.exporter._verification",
"torch.onnx._internal.fx._pass",
"torch.onnx._internal.fx.analysis",
"torch.onnx._internal.fx.analysis.unsupported_nodes",
"torch.onnx._internal.fx.decomposition_skip",
"torch.onnx._internal.fx.diagnostics",
"torch.onnx._internal.fx.fx_onnx_interpreter",
"torch.onnx._internal.fx.fx_symbolic_graph_extractor",
"torch.onnx._internal.fx.onnxfunction_dispatcher",
"torch.onnx._internal.fx.op_validation",
"torch.onnx._internal.fx.passes",
"torch.onnx._internal.fx.passes._utils",
"torch.onnx._internal.fx.passes.decomp",
"torch.onnx._internal.fx.passes.functionalization",
"torch.onnx._internal.fx.passes.modularization",
"torch.onnx._internal.fx.passes.readability",
"torch.onnx._internal.fx.passes.type_promotion",
"torch.onnx._internal.fx.passes.virtualization",
"torch.onnx._internal.fx.type_utils",
"torch.testing._internal.common_distributed",
"torch.testing._internal.common_fsdp",
"torch.testing._internal.dist_utils",
"torch.testing._internal.distributed.common_state_dict",
"torch.testing._internal.distributed._shard.sharded_tensor",
"torch.testing._internal.distributed._shard.test_common",
"torch.testing._internal.distributed._tensor.common_dtensor",
"torch.testing._internal.distributed.ddp_under_dist_autograd_test",
"torch.testing._internal.distributed.distributed_test",
"torch.testing._internal.distributed.distributed_utils",
"torch.testing._internal.distributed.fake_pg",
"torch.testing._internal.distributed.multi_threaded_pg",
"torch.testing._internal.distributed.nn.api.remote_module_test",
"torch.testing._internal.distributed.rpc.dist_autograd_test",
"torch.testing._internal.distributed.rpc.dist_optimizer_test",
"torch.testing._internal.distributed.rpc.examples.parameter_server_test",
"torch.testing._internal.distributed.rpc.examples.reinforcement_learning_rpc_test",
"torch.testing._internal.distributed.rpc.faulty_agent_rpc_test",
"torch.testing._internal.distributed.rpc.faulty_rpc_agent_test_fixture",
"torch.testing._internal.distributed.rpc.jit.dist_autograd_test",
"torch.testing._internal.distributed.rpc.jit.rpc_test",
"torch.testing._internal.distributed.rpc.jit.rpc_test_faulty",
"torch.testing._internal.distributed.rpc.rpc_agent_test_fixture",
"torch.testing._internal.distributed.rpc.rpc_test",
"torch.testing._internal.distributed.rpc.tensorpipe_rpc_agent_test_fixture",
"torch.testing._internal.distributed.rpc_utils",
"torch._inductor.codegen.cuda.cuda_template",
"torch._inductor.codegen.cuda.gemm_template",
"torch._inductor.codegen.cpp_template",
"torch._inductor.codegen.cpp_gemm_template",
"torch._inductor.codegen.cpp_micro_gemm",
"torch._inductor.codegen.cpp_template_kernel",
"torch._inductor.runtime.triton_helpers",
"torch.ao.pruning._experimental.data_sparsifier.lightning.callbacks.data_sparsity",
"torch.backends._coreml.preprocess",
"torch.contrib._tensorboard_vis",
"torch.distributed._composable",
"torch.distributed._functional_collectives",
"torch.distributed._functional_collectives_impl",
"torch.distributed._shard",
"torch.distributed._sharded_tensor",
"torch.distributed._sharding_spec",
"torch.distributed._spmd.api",
"torch.distributed._spmd.batch_dim_utils",
"torch.distributed._spmd.comm_tensor",
"torch.distributed._spmd.data_parallel",
"torch.distributed._spmd.distribute",
"torch.distributed._spmd.experimental_ops",
"torch.distributed._spmd.parallel_mode",
"torch.distributed._tensor",
"torch.distributed.algorithms._checkpoint.checkpoint_wrapper",
"torch.distributed.algorithms._optimizer_overlap",
"torch.distributed.rpc._testing.faulty_agent_backend_registry",
"torch.distributed.rpc._utils",
"torch.ao.pruning._experimental.data_sparsifier.benchmarks.dlrm_utils",
"torch.ao.pruning._experimental.data_sparsifier.benchmarks.evaluate_disk_savings",
"torch.ao.pruning._experimental.data_sparsifier.benchmarks.evaluate_forward_time",
"torch.ao.pruning._experimental.data_sparsifier.benchmarks.evaluate_model_metrics",
"torch.ao.pruning._experimental.data_sparsifier.lightning.tests.test_callbacks",
"torch.csrc.jit.tensorexpr.scripts.bisect",
"torch.csrc.lazy.test_mnist",
"torch.distributed._shard.checkpoint._fsspec_filesystem",
"torch.distributed._tensor.examples.visualize_sharding_example",
"torch.distributed.checkpoint._fsspec_filesystem",
"torch.distributed.examples.memory_tracker_example",
"torch.testing._internal.distributed.rpc.fb.thrift_rpc_agent_test_fixture",
"torch.utils._cxx_pytree",
"torch.utils.tensorboard._convert_np",
"torch.utils.tensorboard._embedding",
"torch.utils.tensorboard._onnx_graph",
"torch.utils.tensorboard._proto_graph",
"torch.utils.tensorboard._pytorch_graph",
"torch.utils.tensorboard._utils",
}
# No new entries should be added to this list.
# All public modules should be importable on all platforms.
public_allowlist = {
"torch.distributed.algorithms.ddp_comm_hooks",
"torch.distributed.algorithms.model_averaging.averagers",
"torch.distributed.algorithms.model_averaging.hierarchical_model_averager",
"torch.distributed.algorithms.model_averaging.utils",
"torch.distributed.checkpoint",
"torch.distributed.constants",
"torch.distributed.distributed_c10d",
"torch.distributed.elastic.agent.server",
"torch.distributed.elastic.rendezvous",
"torch.distributed.fsdp",
"torch.distributed.launch",
"torch.distributed.launcher",
"torch.distributed.nn",
"torch.distributed.nn.api.remote_module",
"torch.distributed.optim",
"torch.distributed.optim.optimizer",
"torch.distributed.rendezvous",
"torch.distributed.rpc.api",
"torch.distributed.rpc.backend_registry",
"torch.distributed.rpc.constants",
"torch.distributed.rpc.internal",
"torch.distributed.rpc.options",
"torch.distributed.rpc.rref_proxy",
"torch.distributed.elastic.rendezvous.etcd_rendezvous",
"torch.distributed.elastic.rendezvous.etcd_rendezvous_backend",
"torch.distributed.elastic.rendezvous.etcd_store",
"torch.distributed.rpc.server_process_global_profiler",
"torch.distributed.run",
"torch.distributed.tensor.parallel",
"torch.distributed.utils",
"torch.utils.tensorboard",
"torch.utils.tensorboard.summary",
"torch.utils.tensorboard.writer",
"torch.ao.quantization.experimental.fake_quantize",
"torch.ao.quantization.experimental.linear",
"torch.ao.quantization.experimental.observer",
"torch.ao.quantization.experimental.qconfig",
}
errors = []
for mod, exc in failures:
if mod in public_allowlist:
# TODO: Ensure this is the right error type
continue
if mod in private_allowlist:
continue
errors.append(
f"{mod} failed to import with error {type(exc).__qualname__}: {str(exc)}"
)
self.assertEqual("", "\n".join(errors))
# AttributeError: module 'torch.distributed' has no attribute '_shard'
@unittest.skipIf(IS_WINDOWS or IS_JETSON or IS_MACOS, "Distributed Attribute Error")
@skipIfTorchDynamo("Broken and not relevant for now")
def test_correct_module_names(self):
"""
An API is considered public, if its `__module__` starts with `torch.`
and there is no name in `__module__` or the object itself that starts with "_".
Each public package should either:
- (preferred) Define `__all__` and all callables and classes in there must have their
`__module__` start with the current submodule's path. Things not in `__all__` should
NOT have their `__module__` start with the current submodule.
- (for simple python-only modules) Not define `__all__` and all the elements in `dir(submod)` must have their
`__module__` that start with the current submodule.
"""
failure_list = []
with open(
get_file_path_2(os.path.dirname(__file__), "allowlist_for_publicAPI.json")
) as json_file:
# no new entries should be added to this allow_dict.
# New APIs must follow the public API guidelines.
allow_dict = json.load(json_file)
# Because we want minimal modifications to the `allowlist_for_publicAPI.json`,
# we are adding the entries for the migrated modules here from the original
# locations.
for modname in allow_dict["being_migrated"]:
if modname in allow_dict:
allow_dict[allow_dict["being_migrated"][modname]] = allow_dict[
modname
]
def test_module(modname):
try:
if "__main__" in modname:
return
mod = importlib.import_module(modname)
except Exception:
# It is ok to ignore here as we have a test above that ensures
# this should never happen
return
if not self._is_mod_public(modname):
return
# verifies that each public API has the correct module name and naming semantics
def check_one_element(elem, modname, mod, *, is_public, is_all):
obj = getattr(mod, elem)
# torch.dtype is not a class nor callable, so we need to check for it separately
if not (
isinstance(obj, (Callable, torch.dtype)) or inspect.isclass(obj)
):
return
elem_module = getattr(obj, "__module__", None)
# Only used for nice error message below
why_not_looks_public = ""
if elem_module is None:
why_not_looks_public = (
"because it does not have a `__module__` attribute"
)
# If a module is being migrated from foo.a to bar.a (that is entry {"foo": "bar"}),
# the module's starting package would be referred to as the new location even
# if there is a "from foo import a" inside the "bar.py".
modname = allow_dict["being_migrated"].get(modname, modname)
elem_modname_starts_with_mod = (
elem_module is not None
and elem_module.startswith(modname)
and "._" not in elem_module
)
if not why_not_looks_public and not elem_modname_starts_with_mod:
why_not_looks_public = (
f"because its `__module__` attribute (`{elem_module}`) is not within the "
f"torch library or does not start with the submodule where it is defined (`{modname}`)"
)
# elem's name must NOT begin with an `_` and it's module name
# SHOULD start with it's current module since it's a public API
looks_public = not elem.startswith("_") and elem_modname_starts_with_mod
if not why_not_looks_public and not looks_public:
why_not_looks_public = f"because it starts with `_` (`{elem}`)"
if is_public != looks_public:
if modname in allow_dict and elem in allow_dict[modname]:
return
if is_public:
why_is_public = (
f"it is inside the module's (`{modname}`) `__all__`"
if is_all
else "it is an attribute that does not start with `_` on a module that "
"does not have `__all__` defined"
)
fix_is_public = (
f"remove it from the modules's (`{modname}`) `__all__`"
if is_all
else f"either define a `__all__` for `{modname}` or add a `_` at the beginning of the name"
)
else:
assert is_all
why_is_public = (
f"it is not inside the module's (`{modname}`) `__all__`"
)
fix_is_public = (
f"add it from the modules's (`{modname}`) `__all__`"
)
if looks_public:
why_looks_public = (
"it does look public because it follows the rules from the doc above "
"(does not start with `_` and has a proper `__module__`)."
)
fix_looks_public = "make its name start with `_`"
else:
why_looks_public = why_not_looks_public
if not elem_modname_starts_with_mod:
fix_looks_public = (
"make sure the `__module__` is properly set and points to a submodule "
f"of `{modname}`"
)
else:
fix_looks_public = (
"remove the `_` at the beginning of the name"
)
failure_list.append(f"# {modname}.{elem}:")
is_public_str = "" if is_public else " NOT"
failure_list.append(
f" - Is{is_public_str} public: {why_is_public}"
)
looks_public_str = "" if looks_public else " NOT"
failure_list.append(
f" - Does{looks_public_str} look public: {why_looks_public}"
)
# Swap the str below to avoid having to create the NOT again
failure_list.append(
" - You can do either of these two things to fix this problem:"
)
failure_list.append(
f" - To make it{looks_public_str} public: {fix_is_public}"
)
failure_list.append(
f" - To make it{is_public_str} look public: {fix_looks_public}"
)
if hasattr(mod, "__all__"):
public_api = mod.__all__
all_api = dir(mod)
for elem in all_api:
check_one_element(
elem, modname, mod, is_public=elem in public_api, is_all=True
)
else:
all_api = dir(mod)
for elem in all_api:
if not elem.startswith("_"):
check_one_element(
elem, modname, mod, is_public=True, is_all=False
)
for mod in pkgutil.walk_packages(torch.__path__, "torch."):
modname = mod.name
test_module(modname)
test_module("torch")
msg = (
"All the APIs below do not meet our guidelines for public API from "
"https://github.com/pytorch/pytorch/wiki/Public-API-definition-and-documentation.\n"
)
msg += (
"Make sure that everything that is public is expected (in particular that the module "
"has a properly populated `__all__` attribute) and that everything that is supposed to be public "
"does look public (it does not start with `_` and has a `__module__` that is properly populated)."
)
msg += "\n\nFull list:\n"
msg += "\n".join(map(str, failure_list))
# empty lists are considered false in python
self.assertTrue(not failure_list, msg)
if __name__ == "__main__":
run_tests()
|