1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
# Owner(s): ["module: scatter & gather ops"]
import random
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_utils import \
(parametrize, run_tests, TestCase, DeterministicGuard)
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA,
toleranceOverride, tol,)
from torch.testing._internal.common_dtype import \
(get_all_dtypes,)
# Protects against includes accidentally setting the default dtype
assert torch.get_default_dtype() is torch.float32
# Note: test_scatter_gather_ops.py
# This test file tests scatter and gather operations,
# like torch.scatter and torch.gather.
class TestScatterGather(TestCase):
# Fills an index tensor with valid indices
def _fill_indices(self, idx, dim, dim_size, elems_per_row, m, n, o, unique_indices=True):
for i in range(1 if dim == 0 else m):
for j in range(1 if dim == 1 else n):
for k in range(1 if dim == 2 else o):
ii = [i, j, k]
ii[dim] = slice(0, idx.size(dim) + 1)
if unique_indices:
idx[tuple(ii)] = torch.randperm(dim_size)[0:elems_per_row]
else:
idx[tuple(ii)] = torch.randint(dim_size, (elems_per_row,))
@dtypes(torch.float32, torch.complex64)
def test_gather(self, device, dtype):
m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20)
elems_per_row = random.randint(1, 10)
dim = random.randrange(3)
src = make_tensor((m, n, o), device=device, dtype=dtype)
idx_size = [m, n, o]
idx_size[dim] = elems_per_row
idx = make_tensor(idx_size, device=device, dtype=torch.long)
self._fill_indices(idx, dim, src.size(dim), elems_per_row, m, n, o)
actual = torch.gather(src, dim, idx)
expected = torch.zeros(idx_size, device=device, dtype=dtype)
for i in range(idx_size[0]):
for j in range(idx_size[1]):
for k in range(idx_size[2]):
ii = [i, j, k]
ii[dim] = idx[i, j, k]
expected[i, j, k] = src[tuple(ii)]
self.assertEqual(actual, expected, atol=0, rtol=0)
# Guarded because torch.max isn't defined for complex types
if not dtype.is_complex:
src = make_tensor((3, 4, 5), device=device, dtype=dtype)
expected, idx = src.max(2, True)
actual = torch.gather(src, 2, idx)
self.assertEqual(actual, expected, atol=0, rtol=0)
@dtypes(torch.bool)
def test_gather_bool(self, device, dtype):
src = torch.tensor(((False, True), (True, True)), device=device, dtype=dtype)
idx = torch.tensor(((0, 0), (1, 0)), device=device, dtype=torch.long)
actual = torch.gather(src, 1, idx)
expected = torch.tensor(((False, False), (True, True)), device=device, dtype=dtype)
self.assertEqual(actual, expected, atol=0, rtol=0)
@parametrize("sparse_grad", [False, True])
@dtypes(torch.float32, torch.float64)
def test_gather_backward_with_empty_index_tensor(self, device, dtype, sparse_grad):
dim = -1
input = torch.rand([10, 5], dtype=dtype, device=device, requires_grad=True)
index = torch.randint(0, 2, [3, 0], dtype=torch.int64, device=device)
res = torch.gather(input, dim, index, sparse_grad=sparse_grad)
res.sum().backward()
grad = input.grad.to_dense() if sparse_grad else input.grad
expected_grad = torch.zeros_like(input, requires_grad=False)
self.assertEqual(grad, expected_grad, atol=0, rtol=0)
def _test_scatter_base(self, fn, *, device, dtype, is_scalar, reduction,
unique_indices=True, include_self=True):
m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20)
elems_per_row = random.randint(1, 10)
dim = random.randrange(3)
idx_size = [m, n, o]
idx_size[dim] = elems_per_row
idx = torch.empty(tuple(idx_size), device=device, dtype=torch.long)
self._fill_indices(idx, dim, ([m, n, o])[dim], elems_per_row, m, n, o, unique_indices)
if is_scalar:
src = random.random()
else:
src_size = [random.randint(1, 5) + s for s in idx_size]
src = make_tensor(tuple(src_size), device=device, dtype=dtype)
base = make_tensor((m, n, o), device=device, dtype=dtype)
if reduction is not None:
if fn is torch.Tensor.scatter_reduce_:
actual = fn(base.clone(), dim, idx, src, reduce=reduction, include_self=include_self)
else:
actual = fn(base.clone(), dim, idx, src, reduce=reduction)
else:
actual = fn(base.clone(), dim, idx, src)
expected = base.clone()
counts = torch.zeros(base.shape, dtype=torch.long, device=device) + include_self
for i in range(idx_size[0]):
for j in range(idx_size[1]):
for k in range(idx_size[2]):
ii = [i, j, k]
ii[dim] = idx[i, j, k]
if fn is torch.Tensor.scatter_add_:
expected[tuple(ii)] += src[i, j, k]
else:
# method may be 'scatter_', 'scatter', 'scatter_reduce'
# or 'scatter_reduce_', the former two might have a reduction argument
# while the latter two always do
value = src if is_scalar else src[i, j, k]
if ((not include_self) and counts[tuple(ii)] == 0):
expected[tuple(ii)] = value
else:
if reduction == "add" or reduction == "sum":
expected[tuple(ii)] += value
elif reduction == "multiply" or reduction == "prod":
expected[tuple(ii)] *= value
elif reduction == "amax":
expected[tuple(ii)] = max(expected[tuple(ii)], value)
elif reduction == "amin":
expected[tuple(ii)] = min(expected[tuple(ii)], value)
elif reduction == "mean":
expected[tuple(ii)] += value
else:
expected[tuple(ii)] = value
counts[tuple(ii)] += 1
if (reduction == "mean"):
counts.masked_fill_(counts == 0, 1)
if (dtype.is_floating_point or dtype.is_complex):
expected /= counts
else:
expected.div_(counts, rounding_mode="floor")
if dtype == torch.float16 or dtype == torch.bfloat16:
# Some CUDA kernels (e.g. indexing_backward_kernel_stride_1) that are called during
# the test use fp32 for internal accumulation for improved accuracy. When using 16 bit
# precision types can be small differences
self.assertEqual(actual, expected, atol=0.04, rtol=0.05)
else:
self.assertEqual(actual, expected, atol=0, rtol=0)
# Tests empty index
dst = make_tensor((2, 2), device=device, dtype=dtype)
idx = torch.tensor((), device=device, dtype=torch.long)
src = make_tensor((2, 2), device=device, dtype=dtype)
if reduction is not None:
actual = fn(dst, 0, idx, src, reduce=reduction)
else:
actual = fn(dst, 0, idx, src)
self.assertEqual(actual, dst, atol=0, rtol=0)
@dtypes(torch.float16, torch.float32, torch.complex64)
def test_scatter_(self, device, dtype):
for deterministic in [False, True]:
with DeterministicGuard(deterministic):
self._test_scatter_base(torch.Tensor.scatter_, device=device, dtype=dtype,
is_scalar=False, reduction=None)
@dtypes(torch.float16, torch.float32, torch.complex64)
def test_scatter__scalar(self, device, dtype):
self._test_scatter_base(torch.Tensor.scatter_, device=device, dtype=dtype,
is_scalar=True, reduction=None)
# FIXME: RuntimeError: "cuda_scatter_gather_base_kernel_reduce_multiply" not implemented for 'ComplexFloat'
@toleranceOverride({torch.float16: tol(atol=1e-2, rtol=0)})
@dtypesIfCUDA(torch.float16, torch.float32)
@dtypes(torch.float16, torch.float32, torch.complex64)
def test_scatter__reductions(self, device, dtype):
for reduction in ("add", "multiply"):
self._test_scatter_base(torch.Tensor.scatter_, device=device, dtype=dtype,
is_scalar=False, reduction=reduction)
self._test_scatter_base(torch.Tensor.scatter_, device=device, dtype=dtype,
is_scalar=True, reduction=reduction)
@dtypes(torch.float16, torch.float32, torch.complex64)
def test_scatter_add_(self, device, dtype):
for deterministic in [False, True]:
with DeterministicGuard(deterministic):
self._test_scatter_base(torch.Tensor.scatter_add_, device=device, dtype=dtype,
is_scalar=False, reduction=None)
@dtypes(torch.float32)
def test_scatter_add_mult_index_base(self, device, dtype):
for deterministic in [False, True]:
with DeterministicGuard(deterministic):
m, n = 30, 40
idx = torch.zeros(m, n, device=device, dtype=torch.long)
src = torch.ones(m, n, device=device, dtype=dtype)
res0 = torch.zeros(m, n, device=device, dtype=dtype).scatter_add_(0, idx, src)
res1 = torch.zeros(m, n, device=device, dtype=dtype).scatter_add_(1, idx, src)
self.assertEqual(res0[0, :], m * torch.ones(n, device=device, dtype=dtype), atol=0, rtol=0)
self.assertEqual(res1[:, 0], n * torch.ones(m, device=device, dtype=dtype), atol=0, rtol=0)
# FIXME: discrepancy between bool ReduceAdd on CUDA and CPU (a + b on CPU and buggy a && b on CUDA)
@dtypes(*get_all_dtypes(include_half=True, include_bfloat16=True, include_bool=False))
def test_scatter_reduce_sum(self, device, dtype):
for include_self in (True, False):
for deterministic in [False, True]:
with DeterministicGuard(deterministic):
self._test_scatter_base(torch.Tensor.scatter_reduce_, device=device, dtype=dtype,
is_scalar=False, reduction='sum', unique_indices=False,
include_self=include_self)
@dtypes(*get_all_dtypes(include_half=True, include_bfloat16=True))
@dtypesIfCUDA(*get_all_dtypes(include_half=True, include_bfloat16=True, include_complex=False, include_bool=False))
def test_scatter_reduce_prod(self, device, dtype):
for include_self in (True, False):
self._test_scatter_base(torch.Tensor.scatter_reduce_, device=device, dtype=dtype,
is_scalar=False, reduction='prod', unique_indices=False,
include_self=include_self)
@dtypes(*get_all_dtypes(include_half=True, include_bfloat16=True, include_bool=False))
@dtypesIfCUDA(*get_all_dtypes(include_half=True, include_bfloat16=True, include_complex=False, include_bool=False))
def test_scatter_reduce_mean(self, device, dtype):
for include_self in (True, False):
for deterministic in [False, True]:
with DeterministicGuard(deterministic):
self._test_scatter_base(torch.Tensor.scatter_reduce_, device=device, dtype=dtype,
is_scalar=False, reduction='mean', unique_indices=False,
include_self=include_self)
@dtypes(*get_all_dtypes(include_half=True, include_bfloat16=True, include_complex=False))
@dtypesIfCUDA(*get_all_dtypes(include_half=True, include_bfloat16=True, include_complex=False, include_bool=False))
def test_scatter_reduce_amax(self, device, dtype):
for include_self in (True, False):
self._test_scatter_base(torch.Tensor.scatter_reduce_, device=device, dtype=dtype,
is_scalar=False, reduction='amax', unique_indices=False,
include_self=include_self)
# simple test for nan/inf propagation
if (dtype.is_floating_point):
input = torch.zeros(3, device=device, dtype=dtype)
src = torch.tensor([1, float('nan'), -float('inf'), -float('inf'), 2, float('inf')], device=device, dtype=dtype)
idx = torch.tensor([0, 0, 1, 1, 2, 2], device=device)
input.scatter_reduce_(0, idx, src, 'amax', include_self=include_self)
expected_result = torch.tensor([float('nan'), -float('inf'), float('inf')], device=device, dtype=dtype)
if (include_self):
expected_result[1] = 0
self.assertEqual(input, expected_result)
@dtypes(*get_all_dtypes(include_half=True, include_bfloat16=True, include_complex=False))
@dtypesIfCUDA(*get_all_dtypes(include_half=True, include_bfloat16=True, include_complex=False, include_bool=False))
def test_scatter_reduce_amin(self, device, dtype):
for include_self in (True, False):
self._test_scatter_base(torch.Tensor.scatter_reduce_, device=device, dtype=dtype,
is_scalar=False, reduction='amin', unique_indices=False,
include_self=include_self)
# simple test for nan/inf propagation
if (dtype.is_floating_point):
input = torch.zeros(3, device=device, dtype=dtype)
src = torch.tensor([1, float('nan'), -2, -float('inf'), float('inf'), float('inf')], device=device, dtype=dtype)
idx = torch.tensor([0, 0, 1, 1, 2, 2], device=device)
input.scatter_reduce_(0, idx, src, 'amin', include_self=include_self)
expected_result = torch.tensor([float('nan'), -float('inf'), float('inf')], device=device, dtype=dtype)
if (include_self):
expected_result[2] = 0
self.assertEqual(input, expected_result)
@onlyCPU
@dtypes(torch.float32, torch.float64, torch.bfloat16, torch.float16)
def test_scatter_expanded_index(self, device, dtype):
def helper(input_size, idx_size):
input = torch.randn(input_size, device=device).to(dtype=dtype)
input2 = input.clone()
shape = [1] * len(input_size)
shape[0] = idx_size
dim_size = input_size[0]
idx = torch.randint(0, dim_size, shape)
# The fast path on scatter when index is expanded
# will depend on sorted index where the collected src indice
# for each row in input will be mapped to rowptrs in a CSR format.
# Create some empty rows by masking:
mask = (idx > 1) * (idx < 4)
idx[mask] = 0
expanded_shape = input_size
expanded_shape[0] = idx_size
idx = idx.expand(expanded_shape)
idx2 = idx.contiguous()
src = torch.randn(expanded_shape, device=device).to(dtype=dtype)
out = input.scatter_add(0, idx, src)
out2 = input2.scatter_add(0, idx2, src)
self.assertEqual(out, out2)
for reduce in ["sum", "prod", "mean", "amax", "amin"]:
for include_self in [True, False]:
out = input.scatter_reduce(0, idx, src, reduce=reduce, include_self=include_self)
out2 = input2.scatter_reduce(0, idx2, src, reduce=reduce, include_self=include_self)
self.assertEqual(out, out2)
helper([50, 17], 100)
helper([50, 1], 100)
helper([50, 8, 7], 100)
helper([50, 3, 4, 5], 100)
@onlyCPU
@dtypes(torch.float32, torch.float64, torch.bfloat16)
def test_gather_expanded_index(self, device, dtype):
# Test when index is [N, 1], which would have stride [1, 0]
# should be excluded from the fast path when index ix expanded
input = torch.arange(25).view(5, 5)
input2 = input.to(dtype=dtype)
idx = torch.arange(5).view(5, 1)
out = torch.gather(input, 0, idx)
out2 = torch.gather(input2, 0, idx)
self.assertEqual(out.to(dtype=dtype), out2)
def helper(input_size, idx_size):
input = torch.randn(input_size, device=device).to(dtype=dtype)
input2 = input.clone()
shape = [1] * len(input_size)
shape[0] = idx_size
dim_size = input_size[0]
idx = torch.randint(0, dim_size, shape)
# Test the fast path on gather when index is expanded
expanded_shape = input_size
expanded_shape[0] = idx_size
idx = idx.expand(expanded_shape)
idx2 = idx.contiguous()
out = torch.gather(input, 0, idx)
out2 = torch.gather(input2, 0, idx2)
self.assertEqual(out, out2)
# test unsqueezed index
# expanded_index kernel can not handle the case:
# the size > 1 and stride == 1 at a dimension.
# for example: the index with size of [1, 8, 7], stride of [1, 1, 0].
# see https://github.com/pytorch/pytorch/issues/129093
def unsqueeze_helper(idx, dim):
if dim == 2:
return idx.unsqueeze(1).t()
else:
return unsqueeze_helper(idx, dim - 1).unsqueeze(dim - 1)
idx = torch.randint(0, dim_size, (input.shape[1],))
idx = unsqueeze_helper(idx, len(input_size))
expanded_shape[0] = 1
idx = idx.expand(expanded_shape)
idx2 = idx.contiguous()
out = torch.gather(input, 0, idx)
out2 = torch.gather(input2, 0, idx2)
self.assertEqual(out, out2)
helper([50, 17], 100)
helper([50, 1], 100)
helper([50, 8, 7], 100)
helper([50, 3, 4, 5], 100)
# Generic Device Test Framework instantation, see
# https://github.com/pytorch/pytorch/wiki/Running-and-writing-tests
# for details.
instantiate_device_type_tests(TestScatterGather, globals())
if __name__ == '__main__':
run_tests()
|