1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
|
# Owner(s): ["module: sparse"]
import torch
import random
import io
import itertools
import unittest
import functools
from contextlib import redirect_stderr
from torch.testing import make_tensor, FileCheck
from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC
from torch.testing._internal.common_utils import \
(TEST_WITH_TORCHINDUCTOR, TEST_WITH_ROCM, TEST_CUDA_CUDSS, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase,
run_tests, load_tests, coalescedonoff, parametrize, subtest, skipIfTorchDynamo, skipIfRocm, IS_FBCODE, IS_REMOTE_GPU,
suppress_warnings)
from torch.testing._internal.common_device_type import \
(ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric,
precisionOverride, skipMeta, skipCUDAIf, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan,
largeTensorTest)
from torch.testing._internal.common_methods_invocations import \
(op_db, sparse_csr_unary_ufuncs, ReductionOpInfo)
from torch.testing._internal.common_cuda import _get_torch_cuda_version, TEST_CUDA
from torch.testing._internal.common_dtype import (
floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and,
all_types_and_complex, floating_and_complex_types_and)
from torch.testing._internal.opinfo.definitions.linalg import sample_inputs_linalg_solve
from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse
from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED, HIPSPARSE_SPMM_COMPLEX128_SUPPORTED
import operator
if TEST_SCIPY:
import scipy.sparse as sp
if TEST_NUMPY:
import numpy as np
# load_tests from torch.testing._internal.common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests
no_mkl_sparse = IS_WINDOWS or not TEST_MKL
def _check_cusparse_triangular_solve_available():
version = _get_torch_cuda_version()
# cusparseSpSM was added in 11.3.1 but we don't have access to patch version
min_supported_version = (11, 4)
return version >= min_supported_version
def _check_cusparse_spgemm_available():
# cusparseSpGEMM was added in 11.0
return not TEST_WITH_ROCM
def _check_cusparse_sddmm_available():
if TEST_WITH_ROCM:
return True
version = _get_torch_cuda_version()
# cusparseSDDMM was added in 11.2.1 but we don't have access to patch version
min_supported_version = (11, 3)
return version >= min_supported_version
_sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db))
_sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc
or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db))
binary_functions_with_dense_output = ['mm', 'mv', ]
binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db))
UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [
'abs',
'conj_physical',
'deg2rad',
'neg',
'positive',
'frac',
'nn.functional.relu',
'log1p',
'rad2deg'
]
# This should be just an import from test_linalg instead of code duplication
# but https://github.com/pytorch/pytorch/pull/63511#discussion_r733989701
def _test_addmm_addmv(
test_case,
f,
t,
m,
v,
*,
alpha=None,
beta=None,
transpose_out=False,
layout=torch.strided,
mode=None
):
"""
Unified test for checking `f(t, m, v, alpha=alpha, beta=beta)` computation,
where f is `torch.addmv` or `torch.addmm`.
`transpose_out` controls whether the out argument is in column-major order.
`layout` controls whether `m` is converted to specified layout or not.
Custom behaviour is implemented only for torch.sparse_csr layout.
"""
dtype = t.dtype
numpy_dtype = dtype
if dtype in {torch.bfloat16}:
numpy_dtype = torch.float
if dtype.is_complex:
alpha = 0.9 + 0.3j if alpha is None else alpha
beta = 0.5 + 0.6j if beta is None else beta
else:
alpha = 1.2 if alpha is None else alpha
beta = 0.8 if beta is None else beta
def convert_layout(mat):
if layout == torch.sparse_csr:
return mat.to_sparse_csr()
elif layout == torch.sparse_csc:
return mat.to_sparse_csc()
else:
assert mat.layout == layout
return mat
if mode == "all_sparse":
res1 = f(*map(convert_layout, (t, m, v)), alpha=alpha, beta=beta)
test_case.assertEqual(res1.layout, layout)
res1 = res1.to_dense()
elif mode == "dense_result":
res1 = f(t, convert_layout(m), convert_layout(v), alpha=alpha, beta=beta)
else:
res1 = f(t, convert_layout(m), v, alpha=alpha, beta=beta)
res2 = torch.full_like(res1, float('nan'))
if transpose_out:
res2 = res2.t().clone(memory_format=torch.contiguous_format).t()
f(t, convert_layout(m), v, alpha=alpha, beta=beta, out=res2)
res3 = alpha * (m.to(numpy_dtype).cpu().numpy() @ v.to(numpy_dtype).cpu().numpy())
if beta != 0:
res3 += (beta * t).to(numpy_dtype).cpu().numpy()
res3 = torch.from_numpy(res3).to(dtype)
test_case.assertEqual(res1, res2)
test_case.assertEqual(res1, res3)
class TestSparseCSRSampler(TestCase):
def test_make_crow_indices(self):
# Here we test the correctness of the crow_indices algorithm
# and testing it on CPU and with int32 dtype will be
# sufficient.
device = torch.device('cpu')
index_dtype = torch.int32
for n_rows in range(1, 10):
for n_cols in range(1, 10):
for nnz in range(0, n_rows * n_cols + 1):
crow_indices = self._make_crow_indices(
n_rows, n_cols, nnz,
device=device, dtype=index_dtype)
self.assertEqual(len(crow_indices), n_rows + 1)
counts = crow_indices[1:] - crow_indices[:-1]
self.assertEqual(counts.sum(), nnz)
self.assertGreaterEqual(counts.min(), 0)
self.assertLessEqual(counts.max(), n_cols)
def all_sparse_compressed_layouts(test_name='layout'):
return parametrize(test_name, [
subtest(torch.sparse_csr, name='SparseCSR'),
subtest(torch.sparse_csc, name='SparseCSC'),
subtest(torch.sparse_bsr, name='SparseBSR'),
subtest(torch.sparse_bsc, name='SparseBSC')])
def sparse_compressed_nonblock_layouts(test_name='layout'):
return parametrize(test_name, [
subtest(torch.sparse_csr, name='SparseCSR'),
subtest(torch.sparse_csc, name='SparseCSC')])
sparse_compressed_indices_methods = {
torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices),
torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices),
torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices),
torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices),
}
def batched_nonbatched(test_name='batched'):
return parametrize(test_name, [
subtest(True, name="Batched"),
subtest(False, name="NonBatched")
])
def hybrid_nonhybrid(test_name='hybrid'):
return parametrize(test_name, [
subtest(True, name="Hybrid"),
subtest(False, name="NonHybrid")
])
class TestSparseCompressed(TestCase):
"""Testing sparse compressed (CSR, CSC, BSR, BSC) tensor generic features.
"""
def genTensor(self, size, nnz, *, layout, device=None, dtype=torch.float, index_dtype=torch.int64):
if device is None:
device = self.device_type
return self.genSparseCompressedTensor(size, nnz, device=device, dtype=dtype, index_dtype=index_dtype, layout=layout)
@all_sparse_compressed_layouts()
@onlyCPU
def test_layout(self, layout):
self.assertIn(str(layout), {'torch.sparse_csr', 'torch.sparse_csc', 'torch.sparse_bsr', 'torch.sparse_bsc'})
self.assertEqual(type(layout), torch.layout)
@parametrize('shape_and_device_inference', [subtest(False, name='_'), subtest(True, name='shape_and_device_inference')])
@parametrize('use_factory_function', [subtest(False, name='_'), subtest(True, name='factory')])
@parametrize('input_kind', [subtest('tensor', name='from_tensor'), subtest('list', name='from_list')])
@all_sparse_compressed_layouts()
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
def test_sparse_compressed_constructor(self, layout, device, dtype,
use_factory_function, shape_and_device_inference, input_kind):
if input_kind == 'list' and shape_and_device_inference:
if torch.device(device).type == 'cuda':
# list inputs to factory/constructor function without
# specifying device will result a sparse compressed tensor
# on CPU. So, skip testing against cuda device as unused.
self.skipTest("nothing to test")
if dtype not in {torch.float32, torch.complex64, torch.int64, torch.bool}:
self.skipTest("dtype not supported with list values")
expected_devices = [torch.device(device)]
if TEST_CUDA and torch.device(device).type == 'cuda' and torch.cuda.device_count() >= 2 and not shape_and_device_inference:
expected_devices.append(torch.device('cuda:1'))
factory_function = {
torch.sparse_csr: torch.sparse_csr_tensor,
torch.sparse_csc: torch.sparse_csc_tensor,
torch.sparse_bsr: torch.sparse_bsr_tensor,
torch.sparse_bsc: torch.sparse_bsc_tensor,
}[layout]
compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[layout]
if input_kind == 'list':
index_dtypes = [torch.int64]
else:
index_dtypes = [torch.int32, torch.int64]
if dtype.is_floating_point or dtype.is_complex:
requires_grad_lst = [False, True]
else:
requires_grad_lst = [False]
for index_dtype in index_dtypes:
for expected_device in expected_devices:
for (compressed_indices, plain_indices, values), kwargs in self.generate_simple_inputs(
layout, device=expected_device, dtype=dtype, index_dtype=index_dtype,
# skip zero-sized tensors for list inputs:
enable_zero_sized=input_kind != 'list',
output_tensor=False):
size = kwargs['size']
if shape_and_device_inference and 0 in size:
# skip shape inference for zero-sized tensor
# inputs because (i) the shape determined from
# an empty list is ambiguous, and (ii) the
# size of the plain dimension defined as
# max(plain_indices) is undefined if
# plain_indices has no values
continue
compressed_indices_expect = compressed_indices
plain_indices_expect = plain_indices
values_expect = values
if input_kind == 'list':
compressed_indices = compressed_indices.tolist()
plain_indices = plain_indices.tolist()
values = values.tolist()
for requires_grad in requires_grad_lst:
if use_factory_function:
if shape_and_device_inference:
sparse = factory_function(
compressed_indices, plain_indices, values, requires_grad=requires_grad)
else:
sparse = factory_function(
compressed_indices, plain_indices, values, size,
dtype=dtype, device=expected_device, requires_grad=requires_grad)
else:
if shape_and_device_inference:
sparse = torch.sparse_compressed_tensor(
compressed_indices, plain_indices, values,
layout=layout, requires_grad=requires_grad)
else:
sparse = torch.sparse_compressed_tensor(
compressed_indices, plain_indices, values, size,
dtype=dtype, layout=layout, device=expected_device, requires_grad=requires_grad)
self.assertEqual(layout, sparse.layout)
self.assertEqual(size, sparse.shape)
self.assertEqual(compressed_indices_expect, compressed_indices_mth(sparse))
self.assertEqual(plain_indices_expect, plain_indices_mth(sparse))
self.assertEqual(values_expect, sparse.values())
self.assertEqual(sparse.device, sparse.values().device)
self.assertEqual(sparse.device, expected_device)
self.assertEqual(sparse.values().requires_grad, requires_grad)
self.assertEqual(sparse.requires_grad, requires_grad)
self.assertFalse(compressed_indices_mth(sparse).requires_grad)
self.assertFalse(plain_indices_mth(sparse).requires_grad)
@skipMeta
@sparse_compressed_nonblock_layouts()
@dtypes(*all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half))
def test_empty(self, layout, device, dtype):
ns = [5, 2, 0]
batch_shapes = [(), (2,), (2, 3)]
compressed_dim = {
torch.sparse_csr: -2,
torch.sparse_csc: -1,
}[layout]
compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[layout]
for m, n, b in itertools.product(ns, ns, batch_shapes):
shape = (*b, m, n)
with torch.sparse.check_sparse_tensor_invariants(enable=False):
# torch.empty may return invalid sparse compressed tensors
result = torch.empty(shape, dtype=dtype, device=device, layout=layout)
self.assertEqual(result.shape, shape)
self.assertEqual(result.dtype, dtype)
self.assertEqual(result.device, torch.device(device))
self.assertEqual(result.layout, layout)
self.assertEqual(compressed_indices_mth(result).shape, (*b, shape[compressed_dim] + 1,))
self.assertEqual(plain_indices_mth(result).shape, (*b, 0,))
self.assertEqual(result.values().shape, (*b, 0,))
self.assertEqual(result._nnz(), 0)
self.assertEqual(compressed_indices_mth(result).device, torch.device(device))
self.assertEqual(plain_indices_mth(result).device, torch.device(device))
self.assertEqual(result.values().device, torch.device(device))
self.assertEqual(compressed_indices_mth(result).dtype, torch.int64)
self.assertEqual(plain_indices_mth(result).dtype, torch.int64)
self.assertEqual(result.values().dtype, dtype)
@skipMeta
@sparse_compressed_nonblock_layouts()
@dtypes(*all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16))
def test_empty_errors(self, layout, device, dtype):
with self.assertRaisesRegex(RuntimeError,
"torch.empty: Only batched sparse compressed \\(non-block\\) tensors are supported"
", but got size"):
torch.empty((5,), dtype=dtype, device=device, layout=layout)
@skipMeta
@all_sparse_compressed_layouts()
@dtypes(*all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half))
def test_sparse_compressed_tensor_with_dims(self, layout, device, dtype):
def get_sparse_compressed_tensor_properties(s):
if layout in {torch.sparse_csr, torch.sparse_bsr}:
compressed_indices, plain_indices = s.crow_indices(), s.col_indices()
else:
compressed_indices, plain_indices = s.ccol_indices(), s.row_indices()
values = s.values()
return dict(shape=s.shape, dtype=s.dtype, device=s.device, nnz=s._nnz(), layout=s.layout,
compressed_indices_shape=compressed_indices.shape,
compressed_indices_dtype=compressed_indices.dtype,
compressed_indices_device=compressed_indices.device,
plain_indices_shape=plain_indices.shape,
plain_indices_dtype=plain_indices.dtype,
plain_indices_device=plain_indices.device,
values_shape=values.shape,
values_dtype=values.dtype,
values_device=values.device)
for index_dtype in [torch.int32, torch.int64]:
for t in self.generate_simple_inputs(layout, device=device, dtype=dtype, index_dtype=index_dtype):
dense_dim = t.dense_dim()
sparse_dim = t.sparse_dim()
batch_dim = t.ndim - sparse_dim - dense_dim
nnz = t.values().shape[batch_dim]
if layout in {torch.sparse_bsr, torch.sparse_bsc}:
blocksize = t.values().shape[batch_dim + 1: batch_dim + 1 + sparse_dim]
else:
blocksize = ()
e = torch.ops.aten._sparse_compressed_tensor_with_dims(nnz, dense_dim, t.shape, blocksize, index_dtype,
dtype=dtype, layout=layout, device=device)
e_prop, t_prop = get_sparse_compressed_tensor_properties(e), get_sparse_compressed_tensor_properties(t)
for k, v in e_prop.items():
self.assertEqual(v, t_prop[k], lambda msg: f'{msg} when comparing {k}, expected {t_prop[k]}, got {v}')
@skipMeta
@all_sparse_compressed_layouts()
@dtypes(*all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16))
def test_clone(self, layout, device, dtype):
for sparse in self.generate_simple_inputs(
layout, device=device, dtype=dtype, index_dtype=torch.int32):
cloned_sparse = sparse.clone()
self.assertEqual(sparse, cloned_sparse)
@all_sparse_compressed_layouts()
def test_print(self, layout, device):
compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[layout]
printed = []
for enable_hybrid in [False, True]:
# using local patterns for test_print stability
patterns = [
# 2 x 3 batch of 3 x 2 tensors, trivial blocksize, non-hybrid/hybrid:
([[[[1, 2, 0],
[1, 0, 3]],
[[1, 2, 3],
[1, 0, 0]],
[[1, 0, 0],
[1, 2, 3]]],
[[[0, 2, 0],
[1, 2, 3]],
[[1, 0, 3],
[1, 2, 0]],
[[1, 2, 3],
[0, 2, 0]]]], [(2, 1)], [(), (4,)] if enable_hybrid else [()]),
# tensor with non-trivial blocksize, non-hybrid/hybrid:
([[0, 1, 0, 2, 0, 2],
[0, 1, 0, 0, 2, 0],
[3, 3, 3, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 5, 0, 6, 6, 6],
[5, 0, 5, 6, 6, 6],
[0, 0, 0, 0, 8, 8],
[7, 7, 7, 0, 8, 8]], [(2, 3)], [(), (4, 2)] if enable_hybrid else [()]),
]
for index_dtype in [torch.int32, torch.int64]:
for dtype in [torch.float32, torch.float64]:
for (compressed_indices, plain_indices, values), kwargs in self.generate_simple_inputs(
layout, device=device, dtype=dtype, index_dtype=index_dtype, enable_hybrid=enable_hybrid,
enable_non_contiguous_indices=False, enable_non_contiguous_values=False,
enable_zero_sized=False, output_tensor=False, patterns=patterns):
size = tuple(kwargs['size'])
block_ndim = 2 if layout in {torch.sparse_bsr, torch.sparse_bsc} else 0
base_ndim = 2
batch_ndim = compressed_indices.dim() - 1
dense_ndim = values.dim() - batch_ndim - block_ndim - 1
if enable_hybrid and dense_ndim == 0:
# non-hybrid cases are covered by the enable_hybrid==False loop
continue
batchsize = size[:batch_ndim]
basesize = size[batch_ndim:batch_ndim + base_ndim]
densesize = size[batch_ndim + base_ndim:]
assert len(densesize) == dense_ndim
printed.append(f"########## {dtype}/{index_dtype}/size={batchsize}+{basesize}+{densesize} ##########")
x = torch.sparse_compressed_tensor(compressed_indices,
plain_indices,
values, size, dtype=dtype, layout=layout, device=device)
printed.append("# sparse tensor")
printed.append(str(x))
printed.append(f"# _{compressed_indices_mth.__name__}")
printed.append(str(compressed_indices_mth(x)))
printed.append(f"# _{plain_indices_mth.__name__}")
printed.append(str(plain_indices_mth(x)))
printed.append("# _values")
printed.append(str(x.values()))
printed.append('')
printed.append('')
orig_maxDiff = self.maxDiff
self.maxDiff = None
try:
self.assertExpected('\n'.join(printed))
self.maxDiff = orig_maxDiff
except Exception:
self.maxDiff = orig_maxDiff
raise
@skipMeta
@all_sparse_compressed_layouts()
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
def test_copy(self, layout, device, dtype):
def run_test(shape, blocksize, nnz, index_type):
a = self.genSparseCompressedTensor(shape, nnz, dtype=dtype, layout=layout, device=device,
index_dtype=index_dtype, blocksize=blocksize)
b = self.genSparseCompressedTensor(shape, nnz, dtype=dtype, layout=layout, device=device,
index_dtype=index_dtype, blocksize=blocksize)
a.copy_(b)
self.assertEqual(a, b)
ns = [(9, 3), (2, 1), (0, 0)] # (number of dimensions, the corresponding block size)
batch_shapes = [(), (2,), (2, 3)]
for ((m, bm), (n, bn), b), index_dtype in zip(itertools.product(ns, ns, batch_shapes), [torch.int32, torch.int64]):
blocksize = (bm, bn) if layout in {torch.sparse_bsr, torch.sparse_bsc} else ()
run_test((*b, m, n), blocksize, 0, index_dtype)
run_test((*b, m, n), blocksize, m * n, index_dtype)
@skipMeta
@all_sparse_compressed_layouts()
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
def test_copy_errors(self, layout, device, dtype):
blocksize = (2, 3) if layout in {torch.sparse_bsr, torch.sparse_bsc} else ()
nnz = 6 if layout in {torch.sparse_bsr, torch.sparse_bsc} else 1
shape1 = (2 * 6, 3 * 6) if layout in {torch.sparse_bsr, torch.sparse_bsc} else (2, 3)
for index_dtype in [torch.int32, torch.int64]:
a = self.genSparseCompressedTensor(shape1, 0, dtype=dtype, layout=layout, device=device,
index_dtype=index_dtype, blocksize=blocksize)
with self.assertRaisesRegex(RuntimeError,
"copy of sparse compressed tensors having different layouts is not supported."):
a.copy_(torch.empty(a.shape, dtype=dtype, device=device))
b = self.genSparseCompressedTensor(shape1, nnz, dtype=dtype, layout=layout, device=device,
index_dtype=index_dtype, blocksize=blocksize)
assert a._nnz() != b._nnz(), (a._nnz(), b._nnz())
with self.assertRaisesRegex(RuntimeError,
"only sparse compressed tensors with the same number of specified elements are supported."):
a.copy_(b)
shape2 = tuple(reversed(shape1))
c = self.genSparseCompressedTensor(shape2, nnz, dtype=dtype, layout=layout, device=device,
index_dtype=index_dtype, blocksize=blocksize)
with self.assertRaisesRegex(
RuntimeError,
"expected shapes of self and src to match along dimension"):
b.copy_(c)
if blocksize:
blocksize1 = tuple(reversed(blocksize))
d = self.genSparseCompressedTensor(shape1, nnz, dtype=dtype, layout=layout, device=device,
index_dtype=index_dtype, blocksize=blocksize1)
with self.assertRaisesRegex(RuntimeError,
"copy of sparse compressed tensors having different block sizes is not supported"):
b.copy_(d)
def _smallest_divisor(self, n):
for i in range(2, int(n ** 0.5) + 1):
if n % i == 0:
return i
return n
@skipIfTorchDynamo("Not a TorchDynamo suitable test")
@all_sparse_compressed_layouts()
@ops(_sparse_compressed_ops)
@precisionOverride({torch.bfloat16: 1e-2, torch.float16: 1e-2})
def test_consistency(self, layout, device, dtype, op):
"""Checks that the op on a strided and on a sparse tensors will
produce the same results.
"""
if not op.supports_sparse_layout(layout):
self.skipTest(f"{op.name} does not support input with {layout} layout")
# FIXME: remove in followup once integer support is landed for segment_reduce
if (layout == torch.sparse_csr and not dtype.is_floating_point
and op.name in ('masked.mean', 'masked.amax', 'masked.amin')):
self.skipTest(f"{op.name} does not support input with {layout} layout and {dtype} dtype")
require_mask = isinstance(op, ReductionOpInfo) and 'masked.' in op.name
samples = []
for sample in op.sample_inputs(device, dtype):
if sample.input.ndim < 2:
continue
dense_dim = sample.input.ndim - 2
blocksize = (tuple(map(self._smallest_divisor, sample.input.shape[:2]))
if layout in {torch.sparse_bsr, torch.sparse_bsc} else None)
def _to_sparse(x):
if isinstance(x, torch.Tensor):
if blocksize is None:
if x.ndim != sample.input.ndim:
return x
elif x.ndim != sample.input.ndim + 2 or x.shape[-3] % blocksize[0] or x.shape[-2] % blocksize[1]:
return x
return x.clone().to_sparse(layout=layout, blocksize=blocksize, dense_dim=dense_dim)
return x
sparse_sample = sample.transform(_to_sparse)
# Some strided samples (with inf, nan elements) appear to share
# storage, so we must clone:
sample = sample.transform(lambda x: (x.clone() if isinstance(x, torch.Tensor) else x))
if validate_sample_input_sparse(op, sparse_sample, check_validate=False) is not sparse_sample:
# that is, the validation returns the sparse sample
# wrapped within ErrorInput instance
continue
samples.append((sample, sparse_sample))
# Fail early to prevent silent success with this test
if len(samples) == 0:
raise ValueError("Expected at least one 2 or higher D tensor in samples.")
# Re-define atol and rtol for operations that result values
# are random (and hence, non-comparable) be we still want to
# check the shape, dtype, etc attributes of the results:
atol = rtol = None
if op.name == 'randn_like':
atol = 1e300
rtol = 1
for sample, sparse_sample in samples:
expected = op(sample.input, *sample.args, **sample.kwargs)
assert torch.is_tensor(expected)
output = op(sparse_sample.input, *sparse_sample.args, **sparse_sample.kwargs)
assert torch.is_tensor(output)
strided_output = output.to_dense()
if require_mask and sample.kwargs.get('mask') is not None:
output_mask = torch.masked._output_mask(op.op, sample.input, *sample.args, **sample.kwargs)
expected.masked_fill_(~output_mask, 0)
self.assertEqual(strided_output, expected, atol=atol, rtol=rtol)
@skipMeta
@all_sparse_compressed_layouts()
@all_sparse_compressed_layouts('layout2')
@dtypes(*all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16))
def test_empty_like(self, layout, layout2, device, dtype):
for sparse in self.generate_simple_inputs(layout):
if layout == layout2:
result = torch.empty_like(sparse, layout=layout2)
compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[result.layout]
torch._validate_sparse_compressed_tensor_args(compressed_indices_mth(result),
plain_indices_mth(result),
result.values(),
result.shape,
result.layout)
self.assertEqual(sparse.shape, result.shape)
else:
self.assertRaisesRegex(
RuntimeError,
"empty_like with different sparse layout is not supported",
lambda: torch.empty_like(sparse, layout=layout2)
)
@skipMeta
@all_sparse_compressed_layouts()
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
def test_validate(self, layout, device, dtype):
def make_zero_batched(t):
return torch.empty(*((0,) + t.shape), dtype=t.dtype, device=t.device)
for index_dtype in [torch.int32, torch.int64]:
for (compressed_indices, plain_indices, values), kwargs in self.generate_simple_inputs(
layout, device=device, dtype=dtype, index_dtype=index_dtype, output_tensor=False):
size = kwargs['size']
torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, values, size, layout)
# check empty batch
torch._validate_sparse_compressed_tensor_args(
*(make_zero_batched(t) for t in (compressed_indices, plain_indices, values)),
(0,) + size,
layout
)
compressed_indices = torch.tensor([0, 0], dtype=index_dtype)
plain_indices = torch.tensor([], dtype=index_dtype)
torch._validate_compressed_sparse_indices(layout in {torch.sparse_csr, torch.sparse_bsr},
compressed_indices, plain_indices, 1, 1, 0)
def _generate_invalid_input(self, layout, device):
from functools import partial
def shape(shape, basedim=0):
blocksize = (1, 1)
if layout is torch.sparse_csc:
shape = shape[:basedim] + (shape[basedim + 1], shape[basedim]) + shape[basedim + 2:]
elif layout is torch.sparse_bsc:
shape = shape[:basedim] + (shape[basedim + 1] * blocksize[1], shape[basedim] * blocksize[0]) + shape[basedim + 2:]
elif layout is torch.sparse_bsr:
shape = shape[:basedim] + (shape[basedim] * blocksize[0], shape[basedim + 1] * blocksize[1]) + shape[basedim + 2:]
return shape
def values(lst, device=device):
if layout in {torch.sparse_bsr, torch.sparse_bsc}:
lst = [[[item]] for item in lst]
return torch.tensor(lst, device=device)
tensor = partial(torch.tensor, device=device)
values = partial(values, device=device)
yield ('incontiguous compressed_indices',
tensor([0, -1, 2, -1, 4, -1])[::2],
tensor([0, 1, 0, 2]),
values([1, 2, 3, 4]),
shape((2, 3)),
'expected compressed_indices to be a contiguous tensor per batch')
yield ('incontiguous plain_indices',
tensor([0, 2, 4]),
tensor([0, -1, 1, -1, 0, -1, 2, -1])[::2],
values([1, 2, 3, 4]),
shape((2, 3)),
'expected plain_indices to be a contiguous tensor per batch')
yield ('0-D compressed_indices',
tensor(0),
tensor([0, 1, 0, 2]),
values([1, 2, 3, 4]),
shape((2, 3)),
'compressed_indices must have dimensionality >= 1 but got 0')
yield ('compressed/plain_indices mismatch of dimensionalities',
tensor([[0, 2, 4]]),
tensor([0, 1, 0, 2]),
values([1, 2, 3, 4]),
shape((2, 3)),
'compressed_indices and plain_indices dimensionalities must be equal but got 2 and 1, respectively')
if layout in {torch.sparse_csr, torch.sparse_csc}:
yield ('indices and values mismatch of dimensionalities',
tensor([[0, 2, 4]]),
tensor([[0, 1, 0, 2]]),
values([1, 2, 3, 4]),
shape((2, 3)),
r'values must have dimensionality > sum of batch and block dimensionalities \(=1 \+ 0\) but got 1')
else:
yield ('indices and values mismatch of dimensionalities',
tensor([[0, 2, 4]]),
tensor([[0, 1, 0, 2]]),
values([1, 2, 3, 4]),
shape((2, 3)),
r'values must have dimensionality > sum of batch and block dimensionalities \(=1 \+ 2\) but got 3')
yield ('invalid size',
tensor([0, 2, 4]),
tensor([0, 1, 0, 2]),
values([1, 2, 3, 4]),
(2,),
r'tensor dimensionality must be sum of batch, base, and dense dimensionalities \(=0 \+ 2 \+ 0\) but got 1')
yield ('invalid batchsize',
tensor([[0, 2, 4]]),
tensor([[0, 1, 0, 2]]),
values([[1, 2, 3, 4]]),
shape((2, 2, 3), 1),
r'all batch dimensions of compressed_indices \(=\[1\]\), plain_indices \(=\[1\]\), '
r'and values \(=\[1\]\) must be equal to tensor batch dimensions \(=\[2\]\)')
if layout is torch.sparse_bsr:
yield ('invalid blocksize',
tensor([0, 2, 4]),
tensor([0, 1, 0, 2]),
tensor([[[1, 11]], [[2, 22]], [[3, 33]], [[4, 33]]]),
shape((2, 3)),
r'tensor shape\[1\] \(=3\) must be divisible with blocksize\[1\] \(=2\) as defined by values shape')
if layout is torch.sparse_bsc:
yield ('invalid blocksize',
tensor([0, 2, 4]),
tensor([0, 1, 0, 2]),
tensor([[[1, 11]], [[2, 22]], [[3, 33]], [[4, 33]]]),
shape((3, 2)),
r'tensor shape\[1\] \(=3\) must be divisible with blocksize\[1\] \(=2\) as defined by values shape')
yield ('invalid compressed_indices shape',
tensor([0, 2, 3, 4]),
tensor([0, 1, 0, 2]),
values([1, 2, 3, 4]),
shape((2, 3)),
r'compressed_indices.shape\[-1\] must be equal to the number of compressed_indices_names \+ 1 \(=3\), but got 4')
yield ('invalid compressed_indices shape',
tensor([0, 2, 4]),
tensor([0, 1, 0, 1, 2]),
values([1, 2, 3, 4]),
shape((2, 3)),
r'plain_indices.shape\[-1\] must be equal to nnz \(=4\) as defined by values.shape\[0\], but got 5')
yield ('compressed/plain_indices mismatch of dtype',
tensor([0, 2, 4], dtype=torch.int32),
tensor([0, 1, 0, 2], dtype=torch.int64),
values([1, 2, 3, 4]),
shape((2, 3)),
r'compressed_indices and plain_indices must have the same dtype, bot got Int and Long, respectively')
yield ('invalid compressed/plain_indices dtype',
tensor([0, 2, 4], dtype=torch.int16),
tensor([0, 1, 0, 2], dtype=torch.int16),
values([1, 2, 3, 4]),
shape((2, 3)),
r'compressed_indices and plain_indices dtype must be Int or Long, but got Short')
# CUDA kernel asserts are not recoverable, so we skip these for now
if torch.device(device).type == 'cpu':
yield ('invalid compressed_indices[0]',
tensor([1, 2, 4]),
tensor([0, 1, 0, 2]),
values([1, 2, 3, 4]),
shape((2, 3)),
r'`compressed_indices\[..., 0\] == 0` is not satisfied.')
yield ('invalid compressed_indices[0] when nnz == 0',
tensor([1, 0], dtype=torch.int64),
tensor([], dtype=torch.int64),
values([1])[:0],
shape((1, 1)),
r'`compressed_indices\[..., 0\] == 0` is not satisfied.')
yield ('invalid compressed_indices[-1]',
tensor([0, 2, 5]),
tensor([0, 1, 0, 2]),
values([1, 2, 3, 4]),
shape((2, 3)),
r'`compressed_indices\[..., -1\] == nnz` is not satisfied.')
yield ('invalid compressed_indices[-1] when nnz == 0',
tensor([0, 1], dtype=torch.int64),
tensor([], dtype=torch.int64),
values([1])[:0],
shape((1, 1)),
r'`compressed_indices\[..., -1\] == nnz` is not satisfied.')
yield ('invalid compressed_indices.diff(dim=-1)',
tensor([0, 0, 4]),
tensor([0, 1, 0, 2]),
values([1, 2, 3, 4]),
shape((2, 3)),
r'0 <= compressed_indices\[..., 1:\] - compressed_indices\[..., :\-1\] <= plain_dim` is not satisfied.')
yield ('invalid compressed_indices.diff(dim=-1)',
tensor([0, 5, 4]),
tensor([0, 1, 0, 2]),
values([1, 2, 3, 4]),
shape((2, 3)),
r'0 <= compressed_indices\[..., 1:\] - compressed_indices\[..., :\-1\] <= plain_dim` is not satisfied.')
yield ('invalid min(plain_indices)',
tensor([0, 2, 4]),
tensor([0, -1, 0, 3]),
values([1, 2, 3, 4]),
shape((2, 3)),
r'`0 <= plain_indices < plain_dim` is not satisfied.')
yield ('invalid max(plain_indices)',
tensor([0, 2, 4]),
tensor([0, 1, 0, 3]),
values([1, 2, 3, 4]),
shape((2, 3)),
r'`0 <= plain_indices < plain_dim` is not satisfied.')
yield ('non-coalesced',
tensor([0, 2, 4]),
tensor([1, 0, 0, 2]),
values([1, 2, 3, 4]),
shape((2, 3)),
r'`plain_indices\[..., compressed_indices\[..., i - 1\]:compressed_indices\[..., i\]\] '
'for all i = 1, ..., compressed_dim '
'are sorted and distinct along the last dimension values` is not satisfied.')
if TEST_CUDA and torch.device(device).type == 'cpu':
yield ('indices and values mismatch of device',
torch.tensor([0, 2, 4]),
torch.tensor([0, 1, 0, 1]),
values([1, 2, 3, 4], device='cuda'),
shape((2, 3)),
r'device of compressed_indices \(=cpu\) must match device of values \(=cuda:0\)')
yield ('compressed_indices and values mismatch of device',
torch.tensor([0, 2, 4], device='cuda'),
torch.tensor([0, 1, 0, 1]),
values([1, 2, 3, 4]),
shape((2, 3)),
r'Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!')
yield ('compressed/plain_indices mismatch of device',
torch.tensor([0, 2, 4], device='cuda'),
torch.tensor([0, 1, 0, 1]),
values([1, 2, 3, 4], device='cuda'),
shape((2, 3)),
r'Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!')
if TEST_CUDA and torch.device(device).type == 'cuda' and torch.cuda.device_count() >= 2:
yield ('indices and values mismatch of device index',
torch.tensor([0, 2, 4], device='cuda:0'),
torch.tensor([0, 1, 0, 1], device='cuda:0'),
values([1, 2, 3, 4], device='cuda:1'),
shape((2, 3)),
r'device of compressed_indices \(=cuda:0\) must match device of values \(=cuda:1\)')
yield ('compressed_indices and values mismatch of device index',
torch.tensor([0, 2, 4], device='cuda:0'),
torch.tensor([0, 1, 0, 1], device='cuda:1'),
values([1, 2, 3, 4], device='cuda:0'),
shape((2, 3)),
r'Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cuda:1!')
@skipMeta
@all_sparse_compressed_layouts()
@parametrize('target', [subtest('validate_sparse_compressed_tensor_args'),
subtest('sparse_compressed_tensor'),
subtest('sparse_compressed_tensor_no_size')])
def test_invalid_input(self, layout, device, target):
for label, compressed_indices, plain_indices, values, size, errmsg in self._generate_invalid_input(layout, device):
if layout is torch.sparse_bsr:
errmsg = errmsg.replace('compressed_indices_name', 'row block').replace('plain_indices_name', 'column block')
elif layout is torch.sparse_bsc:
errmsg = errmsg.replace('compressed_indices_name', 'column block').replace('plain_indices_name', 'row block')
elif layout is torch.sparse_csr:
errmsg = errmsg.replace('compressed_indices_name', 'row').replace('plain_indices_name', 'column')
elif layout is torch.sparse_csc:
errmsg = errmsg.replace('compressed_indices_name', 'column').replace('plain_indices_name', 'row')
if layout in {torch.sparse_csr, torch.sparse_bsr}:
errmsg = errmsg.replace('compressed_indices', 'crow_indices') \
.replace('plain_indices', 'col_indices') \
.replace('plain_dim', 'ncols') \
.replace('compressed_dim', 'nrows')
else:
errmsg = errmsg.replace('compressed_indices', 'ccol_indices') \
.replace('plain_indices', 'row_indices') \
.replace('plain_dim', 'nrows') \
.replace('compressed_dim', 'ncols')
if target == 'sparse_compressed_tensor_no_size' and label in {
'invalid size', 'invalid batchsize', 'invalid compressed_indices shape', 'invalid max(plain_indices)',
'invalid blocksize'}:
# Skip invalid size input as a valid size is estimated for other inputs
continue
with self.assertRaisesRegex(RuntimeError, errmsg):
if target == 'validate_sparse_compressed_tensor_args':
torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, values, size, layout)
elif target == 'sparse_compressed_tensor':
torch.sparse_compressed_tensor(compressed_indices, plain_indices, values, size, layout=layout)
elif target == 'sparse_compressed_tensor_no_size':
torch.sparse_compressed_tensor(compressed_indices, plain_indices, values, layout=layout)
else:
raise NotImplementedError(target)
@skipMeta
@onlyCPU
@largeTensorTest("30GB", "cpu")
def test_invalid_input_csr_large(self):
rows = 2 ** 31
with self.assertRaisesRegex(RuntimeError, '32-bit integer overflow in row dimension'):
torch.sparse_csr_tensor(torch.arange(rows + 1, dtype=torch.int32) // rows,
torch.tensor([0], dtype=torch.int32),
torch.tensor([1]), (rows, 1))
torch.sparse_csr_tensor(torch.arange(rows + 1, dtype=torch.int64) // rows,
torch.tensor([0], dtype=torch.int64),
torch.tensor([1]), (rows, 1))
cols = 2 ** 31
with self.assertRaisesRegex(RuntimeError, '32-bit integer overflow in column dimension'):
torch.sparse_csr_tensor(torch.arange(2, dtype=torch.int32),
torch.tensor([0], dtype=torch.int32),
torch.tensor([1]), (1, cols))
torch.sparse_csr_tensor(torch.arange(2, dtype=torch.int64),
torch.tensor([0], dtype=torch.int64),
torch.tensor([1]), (1, cols))
nnz = 2 ** 31
with self.assertRaisesRegex(RuntimeError, '32-bit integer overflow in nnz'):
# nnz cannot be stored in int32 crow_indices
# but the `crow_indices[..., -1] == nnz`` check happens after the overflow validation
# So we can use `nnz - 1` here to avoid `value cannot be converted to type int32 without overflow`
# during construction of crow_indices
torch.sparse_csr_tensor(torch.tensor([0, nnz // 2, nnz - 1], dtype=torch.int32),
torch.arange(nnz // 2, dtype=torch.int32).repeat(2),
torch.ones(nnz, dtype=torch.int8), (2, nnz // 2))
torch.sparse_csr_tensor(torch.tensor([0, nnz // 2, nnz], dtype=torch.int64),
torch.arange(nnz // 2, dtype=torch.int64).repeat(2),
torch.ones(nnz, dtype=torch.int8), (2, nnz // 2))
@skipMeta
@onlyCPU
@all_sparse_compressed_layouts()
def test_dim(self, layout):
for (compressed_indices, plain_indices, values), kwargs in self.generate_simple_inputs(layout, output_tensor=False):
size = kwargs['size']
batch_dim = compressed_indices.dim() - 1
sparse_dim = 2
block_dim = 2 if layout in {torch.sparse_bsr, torch.sparse_bsc} else 0
dense_dim = values.dim() - batch_dim - block_dim - 1
sparse = torch.sparse_compressed_tensor(compressed_indices, plain_indices, values, size, layout=layout)
self.assertEqual(sparse.sparse_dim(), sparse_dim)
self.assertEqual(sparse.dense_dim(), dense_dim)
@skipMeta
@all_sparse_compressed_layouts()
@dtypes(*all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16))
def test_to_dtype(self, layout, device, dtype):
# to_dense does not support hybrid inputs
for sparse in self.generate_simple_inputs(layout, dtype=dtype, device=device, enable_hybrid=False):
for to_dtype in all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16):
sparse_to_dtype = sparse.to(to_dtype)
dense_to_dtype = sparse.to_dense().to(to_dtype)
self.assertEqual(sparse_to_dtype.to_dense(), dense_to_dtype)
@skipMeta
@all_sparse_compressed_layouts()
@dtypes(torch.double)
def test_pickle(self, layout, dtype, device):
import pickle
for sparse in self.generate_simple_inputs(layout, device=device, dtype=dtype):
serialized = pickle.dumps(sparse)
sparse_loaded = pickle.loads(serialized)
self.assertEqual(sparse, sparse_loaded)
@all_sparse_compressed_layouts()
@parametrize("index_dtype", [torch.int32, torch.int64])
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_select_copy(self, device, dtype, index_dtype, layout):
def is_view_of(base, other):
# a shameless copy of TestViewOps.is_view_of
if (
not other._is_view() or
other is base or
other._base is not base or
base.device != other.device
):
return False
if base.device.type in ('cpu', 'cuda'):
if base.untyped_storage().data_ptr() != other.untyped_storage().data_ptr():
return False
return True
kwargs = dict(device=device, dtype=dtype, index_dtype=index_dtype)
for sparse, dense in zip(self.generate_simple_inputs(layout, **kwargs),
self.generate_simple_inputs(torch.strided, **kwargs)):
if layout in {torch.sparse_csr, torch.sparse_bsr}:
n_batchdim = sparse.crow_indices().ndim - 1
elif layout in {torch.sparse_csc, torch.sparse_bsc}:
n_batchdim = sparse.ccol_indices().ndim - 1
else:
assert 0 # unreachable
self.assertEqual(sparse, dense)
for dim in range(sparse.ndim):
if sparse.shape[dim] == 0:
with self.assertRaisesRegex(IndexError, "index 0 out of range for tensor of size"):
torch.select_copy(sparse, dim, 0)
with self.assertRaisesRegex(IndexError, "index 0 out of range for tensor of size"):
torch.select_copy(dense, dim, 0)
elif n_batchdim and dim >= n_batchdim and dim < n_batchdim + 2:
with self.assertRaisesRegex(
RuntimeError,
"selecting sparse dimensions is not supported for batched sparse compressed tensors"):
torch.select_copy(sparse, dim, 0)
else:
for index in {0, sparse.shape[dim] // 2, sparse.shape[dim] - 1}:
dense_select = torch.select_copy(dense, dim, index)
sparse_select = torch.select_copy(sparse, dim, index)
self.assertEqual(sparse_select, dense_select)
self.assertFalse(is_view_of(sparse_select.values(), sparse.values()))
def _npref_block_addmm_addmv(c, a, b, alpha, beta):
return alpha * (a @ b) + beta * c
class TestSparseCSR(TestCase):
def test_csr_stride(self):
a = self.genSparseCSRTensor((3, 3), 3, dtype=torch.float, device=self.device_type, index_dtype=torch.int64)
with self.assertRaisesRegex(RuntimeError, "Sparse CSR tensors do not have strides"):
a.stride()
with self.assertRaisesRegex(RuntimeError, "Sparse CSR tensors do not have strides"):
a.stride(-1)
def test_csr_storage(self):
a = self.genSparseCSRTensor((3, 3), 3, dtype=torch.float, device=self.device_type, index_dtype=torch.int64)
with self.assertRaisesRegex(RuntimeError, "Cannot access storage of SparseCsrTensorImpl"):
a.storage()
def test_csr_is_contiguous(self):
a = self.genSparseCSRTensor((3, 3), 3, dtype=torch.float, device=self.device_type, index_dtype=torch.int64)
with self.assertRaisesRegex(RuntimeError, "Sparse CSR tensors do not have is_contiguous"):
a.is_contiguous()
@onlyCPU
@largeTensorTest("20GB", "cpu")
def test_csr_nnz(self):
# Tests the limits of the number of specified elements in CSR tensors, see gh-102520.
for nnz in [0, 2**31]:
rows, cols = 1, max(nnz, 1)
crow_indices = torch.tensor([0, nnz], dtype=torch.int64)
col_indices = torch.arange(nnz, dtype=torch.int64)
values = torch.ones(nnz, dtype=torch.int8)
a = torch.sparse_csr_tensor(crow_indices, col_indices, values, (rows, cols))
self.assertEqual(a._nnz(), nnz)
def test_csr_double_to_sparse_csr(self):
a = self.genSparseCSRTensor((3, 3), 3, dtype=torch.float, device=self.device_type, index_dtype=torch.int64)
a.to_sparse_csr().to_sparse_csr()
@all_sparse_compressed_layouts()
@parametrize("index_dtype", [torch.int32, torch.int64])
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_select(self, device, dtype, index_dtype, layout):
compressed_indices_mth = {
torch.sparse_csr: torch.Tensor.crow_indices,
torch.sparse_bsr: torch.Tensor.crow_indices,
torch.sparse_csc: torch.Tensor.ccol_indices,
torch.sparse_bsc: torch.Tensor.ccol_indices,
}[layout]
plain_indices_mth = {
torch.sparse_csr: torch.Tensor.col_indices,
torch.sparse_bsr: torch.Tensor.col_indices,
torch.sparse_csc: torch.Tensor.row_indices,
torch.sparse_bsc: torch.Tensor.row_indices,
}[layout]
create_tensor_mth = {
torch.sparse_csr: torch.sparse_csr_tensor,
torch.sparse_bsr: torch.sparse_bsr_tensor,
torch.sparse_csc: torch.sparse_csc_tensor,
torch.sparse_bsc: torch.sparse_bsc_tensor,
}[layout]
shape = (2, 3, 6, 10)
nnz = 6
blocksize = (2, 2) if layout in {torch.sparse_bsr, torch.sparse_bsc} else ()
sparse = self.genSparseCompressedTensor(
shape, nnz, device=device, layout=layout, dtype=dtype, index_dtype=index_dtype, blocksize=blocksize)
comp_indices = compressed_indices_mth(sparse)
plain_indices = plain_indices_mth(sparse)
values = sparse.values()
# select from batch dimensions
sparse_selected12 = sparse.select(1, 2)
expected_sparse_selected12 = create_tensor_mth(comp_indices.select(1, 2).contiguous(),
plain_indices.select(1, 2).contiguous(),
values.select(1, 2).contiguous(),
size=(2, 6, 10),
dtype=dtype,
device=device)
self.assertEqual(expected_sparse_selected12, sparse_selected12)
# selecting rows/col with batch dims not allowed
sparse_non_batched = sparse[0, 0]
# select from sparse dimensions
for select_args in [(0, 0), (1, 1)]:
sparse_selected = sparse_non_batched.select(*select_args)
dense_selected = sparse_non_batched.to_dense().select(*select_args)
self.assertEqual(dense_selected, sparse_selected)
self.assertEqual(sparse[0, 0, 0, 0], sparse.to_dense()[0, 0, 0, 0])
# assigning to sparse through indexing is disabled
with self.assertRaisesRegex(TypeError, "Cannot assign to a sparse tensor"):
sparse[0, 0, 0, 0] = 99.0
# select from sparse dimensions without removing batch dims
msg = "selecting sparse dimensions is not supported for batched sparse compressed tensors."
with self.assertRaisesRegex(RuntimeError, msg):
sparse.select(-2, 0)
with self.assertRaisesRegex(RuntimeError, msg):
sparse.select(-1, 0)
@skipMeta
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
def test_resize(self, device, dtype):
def numel(tensor):
r = 1
for s in tensor.shape:
r *= s
return r
batch_shapes = [(), (2,), (2, 3)]
for index_dtype, b in zip([torch.int32, torch.int64], batch_shapes):
shape = (*b, 2, 3)
nnz = 6
a = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype)
self.assertEqual(a.numel(), numel(a))
new_shape = (*b, 4, 5)
a.resize_(new_shape)
self.assertEqual(a.shape, new_shape)
# resize to larger shape doesn't add specified elements
self.assertEqual(a._nnz(), nnz)
self.assertEqual(a.numel(), numel(a))
new_shape = (*b, 1, 5)
a.resize_(new_shape)
self.assertEqual(a.shape, new_shape)
# resize to smaller shape trims specified elements
self.assertEqual(a._nnz(), 5)
self.assertEqual(a.numel(), numel(a))
# trim batched dimensions
a.resize_(new_shape[-2], new_shape[-1])
self.assertEqual(a.shape, (new_shape[-2], new_shape[-1]))
self.assertEqual(a._nnz(), 5)
self.assertEqual(a.numel(), numel(a))
@skipMeta
@dtypes(torch.float, torch.bool)
@all_sparse_compressed_layouts()
def test_resize_as_sparse_compressed(self, device, dtype, layout):
def _check_resize_b_as_a(b, a):
br = b.clone()
br.resize_as_sparse_(a)
# shape is inherited from a
self.assertEqual(a.shape, br.shape)
# other metadata is not affected
self.assertEqual(b.layout, br.layout)
self.assertEqual(b.device, br.device)
self.assertEqual(b.dtype, br.dtype)
def _get_compressed_plain_inds(t):
compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[t.layout]
return compressed_indices_mth(t), plain_indices_mth(t)
br_compressed_indices, br_plain_indices = _get_compressed_plain_inds(br)
br_values = br.values()
b_compressed_indices, b_plain_indices = _get_compressed_plain_inds(b)
a_compressed_indices, a_plain_indices = _get_compressed_plain_inds(a)
self.assertEqual(a_plain_indices.shape, br_plain_indices.shape)
self.assertEqual(a_compressed_indices.shape, br_compressed_indices.shape)
# We don't check the content of br_plain_indices and br_compressed_indices
# because it is not well-defined (the content depends on the original
# shape of `b` that `resize_as` ought to discard) nor needed (the
# subsequent operation likely updates the indices and values of `b` anyway).
# the device/dtype of indices should always be unaffected
self.assertEqual(b_plain_indices.dtype, br_plain_indices.dtype)
self.assertEqual(b_plain_indices.device, br_plain_indices.device)
self.assertEqual(b_compressed_indices.dtype, br_compressed_indices.dtype)
self.assertEqual(b_compressed_indices.device, br_compressed_indices.device)
# values are generated empty, shape is updated
self.assertEqual(a.values().shape, br_values.shape)
# the device/dtype of indices should always be unaffected
b_values = b.values()
self.assertEqual(b_values.dtype, br_values.dtype)
self.assertEqual(b_values.device, br_values.device)
# nnz will be picked up from a via new shape of values
self.assertEqual(a._nnz(), br._nnz())
# post resize the invariants of the layout are respected
torch._validate_sparse_compressed_tensor_args(br_compressed_indices, br_plain_indices, br_values, br.shape,
br.layout)
block_sparse = layout in (torch.sparse_bsr, torch.sparse_bsc)
shape = (2, 1, 6, 4)
nnz = 4
blocksize = (2, 1) if block_sparse else ()
for index_dtype in [torch.int32, torch.int64]:
a = self.genSparseCompressedTensor(shape,
layout=layout,
device=device,
index_dtype=index_dtype,
dtype=dtype,
nnz=nnz,
blocksize=blocksize)
# same size, resize should not trigger
b = self.genSparseCompressedTensor(shape,
layout=layout,
device=device,
index_dtype=index_dtype,
dtype=dtype,
nnz=nnz,
blocksize=blocksize)
# This test will not always trigger a resize, if the layouts are the same nothing should happen to b.
# The invariants of the function as checked should still hold
_check_resize_b_as_a(b, a)
# same ndim, but bigger, more nnz, different dtype, different blocksize if blocked
b = self.genSparseCompressedTensor(tuple(s * 2 for s in shape),
layout=layout,
device=device,
dtype=torch.chalf,
index_dtype=torch.int64 if index_dtype == torch.int32 else torch.int32,
nnz=nnz * 2,
blocksize=tuple(2 * bi for bi in blocksize))
_check_resize_b_as_a(b, a)
# different device, only check on cuda pass as we know we are testing in an environment
# that has multiple devices
# TODO: .cpu() does not seem to work correctly for sparse. Causes a call to `copy_` which
# complains about incompatible nnz between src and self?
if torch.device(device).type == 'cuda' and (layout not in (torch.sparse_bsc, torch.sparse_bsr)):
a_cpu = self.genSparseCompressedTensor(shape,
layout=layout,
device='cpu',
index_dtype=index_dtype,
dtype=dtype,
nnz=nnz,
blocksize=blocksize)
_check_resize_b_as_a(b, a)
# error on a strided
a_strided = a.to_dense()
with self.assertRaisesRegex(
RuntimeError, r'resize_as_sparse_compressed_: src expected sparse compressed tensor layout'):
b.resize_as_sparse_(a_strided)
# error on b strided
b_strided = b.to_dense()
with self.assertRaisesRegex(
RuntimeError, r'resize_as_sparse_compressed_: self expected sparse compressed tensor layout'):
b_strided.resize_as_sparse_(a)
# error if layout does not match, transpose induces layout flip
with self.assertRaisesRegex(RuntimeError,
r"resize_as_sparse_compressed_tensor_: self and src must have the same layout"):
b.transpose(-2, -1).resize_as_sparse_(a)
with self.assertRaisesRegex(RuntimeError,
r"resize_as_sparse_compressed_tensor_: self and src must have the same layout"):
b.resize_as_sparse_(a.transpose(-2, -1))
@skipMeta
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
def test_resize_errors(self, device, dtype):
for index_dtype in [torch.int32, torch.int64]:
shape = (2, 3)
nnz = 6
a = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype)
with self.assertRaisesRegex(RuntimeError, "torch.resize_: Only batched sparse CSR matrices are supported"):
new_shape = (4,)
a.resize_(new_shape)
# resizing of columns to smaller size is not implemented
with self.assertRaisesRegex(
RuntimeError,
"torch.resize_: Resizing columns of sparse CSR tensors to a smaller value is not supported.",
):
new_shape = (2, 2)
a.resize_(new_shape)
@skipIfTorchDynamo()
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
def test_sparse_csr_from_dense(self, device, dtype):
dense = torch.tensor([[4, 5, 0], [0, 0, 0], [1, 0, 0]], dtype=dtype, device=device)
sparse = dense.to_sparse_csr()
self.assertEqual(torch.tensor([0, 2, 2, 3], dtype=torch.int64), sparse.crow_indices())
self.assertEqual(torch.tensor([0, 1, 0], dtype=torch.int64), sparse.col_indices())
self.assertEqual(torch.tensor([4, 5, 1], dtype=dtype), sparse.values())
dense = torch.tensor([[0, 0, 0], [0, 0, 1], [1, 0, 0]], dtype=dtype, device=device)
sparse = dense.to_sparse_csr()
self.assertEqual(torch.tensor([0, 0, 1, 2], dtype=torch.int64), sparse.crow_indices())
self.assertEqual(torch.tensor([2, 0], dtype=torch.int64), sparse.col_indices())
self.assertEqual(torch.tensor([1, 1], dtype=dtype), sparse.values())
dense = torch.tensor([[2, 2, 2], [2, 2, 2], [2, 2, 2]], dtype=dtype, device=device)
sparse = dense.to_sparse_csr()
self.assertEqual(torch.tensor([0, 3, 6, 9], dtype=torch.int64), sparse.crow_indices())
self.assertEqual(torch.tensor([0, 1, 2] * 3, dtype=torch.int64), sparse.col_indices())
self.assertEqual(torch.tensor([2] * 9, dtype=dtype), sparse.values())
def _test_sparse_compressed_to_dense(self, device, dtype, layout):
compressed_format_str = str(layout)[-3:]
def to_compressed(t):
return getattr(t, f"to_sparse_{compressed_format_str}")()
def compressed_constructor(*input, **kwargs):
constructor = getattr(torch, f"sparse_{compressed_format_str}_tensor")
return constructor(*input, **kwargs)
def get_dense_shape(shape, batch_ndim):
if layout is torch.sparse_csc:
compressed_dims_slice = slice(batch_ndim + 1, batch_ndim - 1, -1)
else:
compressed_dims_slice = slice(batch_ndim, batch_ndim + 2)
return shape[:batch_ndim] + shape[compressed_dims_slice] + shape[batch_ndim + 2:]
def transpose(t, batch_ndim):
if layout is torch.sparse_csc:
return t.transpose(batch_ndim, batch_ndim + 1)
return t
mn = [5, 2, 0]
for (m, n) in itertools.product(mn, mn):
size = (m, n)
dense = make_tensor(size, dtype=dtype, device=device)
sparse = to_compressed(dense)
self.assertEqual(sparse.to_dense(), dense)
batch_shape = (2, 3)
compressed_indices = torch.tensor([0, 3, 5], device=device).repeat(6, 1).reshape(*batch_shape, -1)
plain_indices = torch.tensor([0, 1, 2, 0, 1], device=device).repeat(6, 1).reshape(*batch_shape, -1)
values = torch.tensor([1, 2, 1, 3, 4], device=device, dtype=dtype).repeat(6, 1).reshape(*batch_shape, -1)
sparse = compressed_constructor(compressed_indices, plain_indices, values, dtype=dtype, device=device)
dense_shape = get_dense_shape(sparse.shape, len(batch_shape))
dense = torch.tensor([[1, 2, 1], [3, 4, 0]], dtype=dtype, device=device).repeat(6, 1).reshape(dense_shape)
self.assertEqual(sparse.to_dense(), transpose(dense, len(batch_shape)))
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
def test_sparse_csr_to_dense(self, device, dtype):
self._test_sparse_compressed_to_dense(device, dtype, torch.sparse_csr)
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
def test_sparse_csc_to_dense(self, device, dtype):
self._test_sparse_compressed_to_dense(device, dtype, torch.sparse_csc)
@skipMeta
@skipCPUIfNoMklSparse
@coalescedonoff
@dtypes(torch.double)
def test_coo_to_csr_convert(self, device, dtype, coalesced):
with self.assertRaisesRegex(RuntimeError, "Input is supposed to be a vector"):
torch._convert_indices_from_coo_to_csr(
torch.randint(100, (5, 5), device=device),
size=100)
size = (5, 5)
sparse_dim = 2
nnz = 10
sparse_coo, _, _ = self.genSparseTensor(size, sparse_dim, nnz, coalesced, device, dtype)
sparse_csr = sparse_coo.to_sparse_csr()
self.assertTrue(sparse_csr.is_sparse_csr)
self.assertEqual(sparse_csr.to_dense(), sparse_coo.to_dense())
vec = torch.randn((5, 1), dtype=dtype, device=device)
coo_product = sparse_coo.matmul(vec)
csr_product = sparse_csr.matmul(vec)
self.assertEqual(coo_product, csr_product)
vec = torch.randn((100, 1), dtype=dtype, device=device)
index = torch.tensor([
[1, 0, 35, 14, 39, 6, 71, 66, 40, 27],
[92, 31, 62, 50, 22, 65, 89, 74, 56, 34],
], dtype=torch.int32)
values = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=dtype, device=device)
coo = torch.sparse_coo_tensor(index, values, torch.Size([100, 100]), dtype=dtype, device=device)
csr = coo.to_sparse_csr()
self.assertEqual(coo.matmul(vec), csr.matmul(vec))
col_indices = torch.tensor([
31, 92, 65, 50, 34, 62, 22, 56, 74, 89
], dtype=torch.int64, device=device)
self.assertEqual(csr.col_indices(), col_indices)
values = torch.tensor([2, 1, 6, 4, 10, 3, 5, 9, 8, 7], dtype=dtype, device=device)
self.assertEqual(csr.values(), values)
@parametrize("blocksize", [2, 4])
@dtypes((torch.double, torch.int32), (torch.double, torch.int64))
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
@skipMeta
def test_csr_to_block_csr(self, device, dtypes, blocksize):
for shape in [(24, 24), (12, 24)]:
dtype, index_dtype = dtypes
m, k = shape
nnz = random.randint(0, m * k)
t = self.genSparseCSRTensor((m * blocksize, k * blocksize), nnz, dtype=dtype,
device=device, index_dtype=index_dtype)
st = sp.csr_matrix((t.values().cpu(), t.col_indices().cpu(), t.crow_indices().cpu()), shape=tuple(t.size()))
block_t = t.to_sparse_bsr((blocksize, blocksize))
self.assertEqual(block_t.values().dim(), 3)
self.assertTrue(block_t.layout == torch.sparse_bsr)
block_st = st.tobsr(blocksize=(blocksize, blocksize))
block_st.sort_indices()
self.assertEqual(block_t.values().cpu(), block_st.data)
self.assertEqual(block_t.col_indices().cpu(), torch.tensor(block_st.indices).to(index_dtype))
self.assertEqual(block_t.crow_indices().cpu(), torch.tensor(block_st.indptr).to(index_dtype))
@dtypes(torch.double)
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
def test_csr_to_block_csr_errors(self, device, dtype):
for index_dtype in [torch.int32, torch.int64]:
nnz = 15
t = self.genSparseCSRTensor((16, 16), nnz, dtype=dtype,
device=device, index_dtype=index_dtype)
with self.assertRaisesRegex(RuntimeError,
r"tensor sparse size \(.*,.*\) must be divisible by given blocksize \(.*,.*\)"):
block_t = t.to_sparse_bsr((5, 5))
# TODO: Support auto generation of device check for sparse tensors
# See: https://github.com/pytorch/pytorch/issues/59058
@onlyCUDA
@dtypes(torch.double)
def test_matmul_device_mismatch(self, device, dtype):
cpu = torch.rand((10, 10))
cuda = cpu.cuda()
for s, m1, m2 in itertools.product((cpu, cuda), repeat=3):
csr = m1.to_sparse()
if s.device == csr.device == m2.device:
torch.addmm(s, csr, m2)
else:
with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"):
torch.addmm(s, csr, m2)
@skipCPUIfNoMklSparse
@skipCUDAIfNoSparseGeneric
@dtypes(*floating_and_complex_types())
@dtypesIfCUDA(*floating_and_complex_types_and(
*[torch.half] if SM53OrLater else [],
*[torch.bfloat16] if SM80OrLater else []))
def test_csr_matvec(self, device, dtype):
if TEST_WITH_ROCM and (dtype == torch.half or dtype == torch.bfloat16):
self.skipTest("ROCm doesn't work with half dtypes correctly.")
side = 100
for index_dtype in [torch.int32, torch.int64]:
csr = self.genSparseCSRTensor((side, side), 1000, device=device, dtype=dtype, index_dtype=index_dtype)
vec = torch.randn(side, dtype=dtype, device=device)
res = csr.matmul(vec)
expected = csr.to_dense().matmul(vec)
self.assertEqual(res, expected)
bad_vec = torch.randn(side + 10, dtype=dtype, device=device)
err_msg = "size mismatch, got"
with self.assertRaisesRegex(RuntimeError, err_msg):
csr.matmul(bad_vec)
@onlyCUDA
# hmm, the test passes ok on CUDA when Rocm is not available:
@skipCUDAIfRocmVersionLessThan((5, 2))
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
def test_baddbmm(self, device, dtype):
# TODO: disable the invariant checks within torch.baddbmm that
# constructs unconventional csr tensors leading to
# RuntimeError: tensor dimensionality must be sum of batch,
# base, and dense dimensionalities (=0 + 2 + 0) but got 3
# when invariant checking is enabled. When done, undecorate run_test.
@torch.sparse.check_sparse_tensor_invariants(enable=False)
def run_test(c, a, a_batched, b, op_b=False, op_out=False, *, dtype=None, device=None):
alpha = complex(random.random(), random.random()) if dtype.is_complex else random.random()
beta = complex(random.random(), random.random()) if dtype.is_complex else random.random()
b = b.mH if (op_b and a.shape == b.shape) else b
actual = torch.baddbmm(c, a_batched, b, alpha=alpha, beta=beta)
out = torch.empty_like(c.mH if op_out and a.shape == b.shape else c)
torch.baddbmm(c, a_batched, b, alpha=alpha, beta=beta, out=out)
expected = [torch.addmm(c[i], a, b[i], alpha=alpha, beta=beta) for i in range(c.shape[0])]
expected = torch.stack(expected, 0)
self.assertEqual(actual, out)
self.assertEqual(actual, expected)
for index_dtype in [torch.int32, torch.int64]:
for (m, n, k), batch_size, noncontiguous in zip(itertools.product([2, 5], repeat=3), [1, 3], [True, False]):
nnz = random.randint(0, m * k)
a = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=index_dtype)
# a_batched is a regular CSR tensor but with a batch dimension in the shape
a_batched = torch.sparse_csr_tensor(
a.crow_indices(), a.col_indices(), a.values(), (batch_size, m, k), check_invariants=False)
b = make_tensor((batch_size, k, n), dtype=dtype, device=device, noncontiguous=noncontiguous)
c = make_tensor((batch_size, m, n), dtype=dtype, device=device, noncontiguous=noncontiguous)
for op_b, op_out in itertools.product([True, False], repeat=2):
run_test(c, a, a_batched, b, op_b, op_out, dtype=dtype, device=device)
@onlyCUDA
@unittest.skipIf(TEST_WITH_ROCM, "Only CUDA 11+ is supported")
@skipCUDAIfNoSparseGeneric
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
def test_bmm(self, device, dtype):
def run_test(a, a_batched, b, op_b=False, op_out=False, *, dtype=None, device=None):
b = b.mH if (op_b and a.shape == b.shape) else b
actual = torch.bmm(a_batched, b)
out = torch.empty_like(actual.mH if op_out and a.shape == b.shape else actual)
torch.bmm(a_batched, b, out=out)
expected = [torch.mm(a, b[i]) for i in range(b.shape[0])]
expected = torch.stack(expected, 0)
self.assertEqual(actual, out)
self.assertEqual(actual, expected)
for index_dtype in [torch.int32, torch.int64]:
for (m, n, k), batch_size, noncontiguous in zip(itertools.product([2, 5], repeat=3), [1, 3], [True, False]):
nnz = random.randint(0, m * k)
a = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=index_dtype)
# a_batched is a regular CSR tensor but with a batch
# dimension in the shape. It is unorthodox in PyTorch
# to represent a batch sparse tensor in this way,
# hence checking the tensor invariants is locally
# turned off.
a_batched = torch.sparse_csr_tensor(
a.crow_indices(), a.col_indices(), a.values(), (batch_size, m, k), check_invariants=False)
b = make_tensor((batch_size, k, n), dtype=dtype, device=device, noncontiguous=noncontiguous)
for op_b, op_out in itertools.product([True, False], repeat=2):
run_test(a, a_batched, b, op_b, op_out, dtype=dtype, device=device)
def run_test_block_addmm_addmv(self,
addmv_addmm,
c,
a,
b,
op_b=False,
op_out=False,
*,
dtype=None,
device=None,
ref=_npref_block_addmm_addmv):
alpha = complex(random.random(), random.random()) if dtype.is_complex else random.random()
beta = complex(random.random(), random.random()) if dtype.is_complex else random.random()
b = b.mH if (op_b and a.shape == b.shape) else b
actual = addmv_addmm(c, a, b, alpha=alpha, beta=beta)
out = torch.empty_like(c.mH if op_out and a.shape == b.shape else c)
addmv_addmm(c, a, b, alpha=alpha, beta=beta, out=out)
expected = ref(c, a, b, alpha, beta)
self.assertEqual(actual, out)
self.assertEqual(actual, expected, lambda msg: f"{msg}\na={a}\nc={c}\nb={b}\nalpha={alpha} beta={beta}")
# TODO: block_size 1 is broken
@parametrize("block_size", [2, 3])
@parametrize("index_dtype", [torch.int32, torch.int64])
@parametrize("noncontiguous", [True, False])
@skipCPUIfNoMklSparse
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
@skipIfTorchDynamo("raises 'sparse matrix length is ambiguous; use getnnz()'")
@dtypes(*floating_and_complex_types())
@dtypesIfCUDA(*floating_and_complex_types_and(
*[torch.half] if SM53OrLater else [],
*[torch.bfloat16] if SM80OrLater else []))
@precisionOverride({torch.float32: 1e-3, torch.complex64: 1e-3,
torch.float64: 1e-5, torch.complex128: 1e-5,
torch.float16: 1e-3, torch.bfloat16: 1e-3})
def test_block_addmm(self, device, dtype, index_dtype, block_size, noncontiguous):
def make_transposed_addmm_op(f):
def tt(t):
if isinstance(t, torch.Tensor):
return t.transpose(-2, -1)
else:
# assume numpy/scipy spmatrix
return t.transpose()
@functools.wraps(f)
def wrapper(c, a, b, alpha=None, beta=None, out=None):
if out is not None:
# the ref takes no out kwarg
assert isinstance(out, torch.Tensor)
# transpose inplace to propagate out to checking context
out.transpose_(-2, -1)
return f(tt(c), tt(b), tt(a), alpha=alpha, beta=beta, out=out)
else:
return f(tt(c), tt(b), tt(a), alpha=alpha, beta=beta)
return wrapper
def ref_sp_numpy(c, a, b, alpha=None, beta=None, out=None):
def prep_input(t):
def to_sp_block_compressed(t):
if t.layout is torch.sparse_bsc:
tt = t.transpose(-1, -2)
else:
tt = t
t_sp_bsr = sp.bsr_matrix(
(
tt.values().cpu().numpy(),
tt.col_indices().cpu().numpy(),
tt.crow_indices().cpu().numpy(),
),
shape=tt.shape,
)
if t.layout is torch.sparse_bsc:
return t_sp_bsr.transpose()
else:
return t_sp_bsr
if t.layout is not torch.strided:
return to_sp_block_compressed(t)
else:
return t.cpu().resolve_conj().numpy()
res = _npref_block_addmm_addmv(
*(prep_input(t) for t in (c, a, b)),
alpha,
beta
)
if out is not None:
out.copy_(res)
return out
else:
return res
def ref_half_bfloat16(c, a, b, alpha=None, beta=None, out=None):
res = alpha * (a.to_dense().to(torch.float32) @ b.to_dense().to(torch.float32)).to(a.dtype) + beta * c
if out is not None:
out.copy_(res)
return out
else:
return res
if dtype in (torch.half, torch.bfloat16):
ref = ref_half_bfloat16
else:
ref = ref_sp_numpy
for (m, n, k) in itertools.product([2, 5], repeat=3):
nnz = random.randint(0, m * k)
a = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=index_dtype)
a_data = make_tensor((nnz, block_size, block_size), dtype=dtype, device=device)
a_data = a_data.mT if noncontiguous else a_data
a = torch.sparse_bsr_tensor(a.crow_indices(), a.col_indices(),
a_data, (m * block_size, k * block_size), check_invariants=False)
b = make_tensor((k * block_size, n * block_size), dtype=dtype, device=device, noncontiguous=noncontiguous)
c = make_tensor((m * block_size, n * block_size), dtype=dtype, device=device, noncontiguous=noncontiguous)
for op_b, op_out in itertools.product([True, False], repeat=2):
self.run_test_block_addmm_addmv(torch.addmm, c, a, b, op_b, op_out, dtype=dtype, device=device, ref=ref)
self.run_test_block_addmm_addmv(make_transposed_addmm_op(torch.addmm),
c,
a,
b,
op_b,
op_out,
dtype=dtype,
device=device,
ref=make_transposed_addmm_op(ref))
@parametrize("block_size", [2, 3])
@parametrize("index_dtype", [torch.int32, torch.int64])
@parametrize("noncontiguous", [True, False])
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
def test_block_addmv(self, device, dtype, index_dtype, block_size, noncontiguous):
# TODO: Explicitly disable block size 1 support
# if (TEST_WITH_ROCM or not TEST_CUSPARSE_GENERIC) and block_size == 1:
# return
def ref_block_addmv(c, a, b, alpha, beta):
return _npref_block_addmm_addmv(c, a.to_dense(), b, alpha, beta)
for (m, k) in itertools.product([2, 5], repeat=2):
nnz = random.randint(0, m * k)
if not noncontiguous:
a = self.genSparseCSRTensor((m * block_size, k * block_size), nnz,
dtype=dtype, device=device, index_dtype=index_dtype)
a = a.to_sparse_bsr((block_size, block_size))
else:
a = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=index_dtype)
a_data = make_tensor((nnz, block_size, block_size), dtype=dtype, device=device)
a_data = a_data.mT if noncontiguous else a_data # Test column-major blocks
a = torch.sparse_bsr_tensor(a.crow_indices(), a.col_indices(),
a_data, (m * block_size, k * block_size), check_invariants=False)
b = make_tensor((k * block_size,), dtype=dtype, device=device, noncontiguous=noncontiguous)
c = make_tensor((m * block_size,), dtype=dtype, device=device, noncontiguous=noncontiguous)
self.run_test_block_addmm_addmv(torch.addmv, c, a, b, dtype=dtype, device=device, ref=ref_block_addmv)
@parametrize("matrix_shape", [(3, 3), (5, 7), (11, 9)], name_fn=lambda x: "shape_{}x{}".format(*x))
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
@onlyCPU
def test_addmv(self, device, dtype, matrix_shape):
mat = torch.randn(matrix_shape, dtype=dtype, device=device)
mat[mat.real < 0] = 0
sparse_mat = mat.to_sparse_csr()
mvec = torch.randn((mat.size(1),), dtype=dtype, device=device)
avec = torch.randn((mat.size(0),), dtype=torch.float64, device=device)
ref_output = torch.addmv(avec, mat, mvec)
output = torch.addmv(avec, sparse_mat, mvec)
self.assertEqual(ref_output, output)
@parametrize("block_size", [2, 3])
@parametrize("index_dtype", [torch.int32, torch.int64])
@parametrize("noncontiguous", [True, False])
@skipCPUIfNoMklSparse
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
def test_block_triangular_solve(self, device, dtype, index_dtype, block_size, noncontiguous):
def run_test(a, b, upper, transpose, unitriangular, op_out):
if unitriangular and self.device_type == 'cpu':
# TODO: When unitriangular=True results are not correct on CPU
return
if not upper and self.device_type == 'cpu':
# TODO: When upper=False some generated inputs might crash on CPU
return
actual = torch.triangular_solve(b, a, upper=upper, unitriangular=unitriangular, transpose=transpose)
actual_X = actual.solution
actual_A_clone = actual.cloned_coefficient
self.assertTrue(actual_A_clone.numel() == 0)
if a._nnz() == 0:
self.assertTrue(actual_X.isnan().all())
return
# TODO: replace with torch method when implemented to_dense() on block sparse tensor
a_bsr = sp.bsr_matrix(
(
a.values().cpu().numpy(),
a.col_indices().cpu().numpy(),
a.crow_indices().cpu().numpy(),
),
shape=a.shape,
)
expected_X, _ = torch.triangular_solve(
b,
torch.tensor(a_bsr.todense(), device=device),
transpose=transpose,
upper=upper,
unitriangular=unitriangular)
if expected_X.isnan().any():
# TODO: zeros on the diagonal are not handled for CPU path
# there's no way to query this info from MKL
if self.device_type == 'cuda' and not TEST_WITH_ROCM:
self.assertTrue(actual_X.isnan().any() or actual_X.isinf().any())
return
self.assertEqual(actual_X, expected_X)
out = torch.empty_like(b.mH if op_out and a.shape == b.shape else b)
torch.triangular_solve(
b, a,
upper=upper, unitriangular=unitriangular, transpose=transpose, out=(out, actual_A_clone)
)
self.assertEqual(out, actual_X)
self.assertEqual(out, expected_X)
for (m, k) in itertools.product([2, 3], [1, 3]):
nnz = random.randint(0, m * m)
if not noncontiguous:
a = self.genSparseCSRTensor((m * block_size, m * block_size), nnz,
dtype=dtype, device=device, index_dtype=index_dtype)
a = a.to_sparse_bsr((block_size, block_size))
else:
a = self.genSparseCSRTensor((m, m), nnz, dtype=dtype, device=device, index_dtype=index_dtype)
a_data = make_tensor((nnz, block_size, block_size), dtype=dtype, device=device)
a_data = a_data.mT if noncontiguous else a_data # Test column-major blocks
a = torch.sparse_bsr_tensor(a.crow_indices(), a.col_indices(),
a_data, (m * block_size, m * block_size), check_invariants=False)
b = make_tensor((m * block_size, k), dtype=dtype, device=device, noncontiguous=noncontiguous)
for (upper, unitriangular, transpose, op_out) in itertools.product([True, False], repeat=4):
run_test(a, b, upper, unitriangular, transpose, op_out)
@skipCPUIfNoMklSparse
@unittest.skipIf(TEST_WITH_ROCM, "Only CUDA 11+ is supported")
@dtypes(torch.double)
def test_mm(self, device, dtype):
def test_shape(di, dj, dk, nnz0=None, nnz1=None):
for index_dtype in [torch.int32, torch.int64]:
alpha = random.random()
beta = random.random()
def _test_addmm(t, x, y):
# TODO: addmm doesn't support strided result for sparse inputs.
# res = beta * t + alpha * (x @ y)
res = torch.addmm(t, x, y, beta=beta, alpha=alpha)
expected = torch.addmm(t, x.to_dense(), y.to_dense(), beta=beta, alpha=alpha)
self.assertEqual(res, expected)
res = torch.addmm(t, x, y)
expected = torch.addmm(t, x.to_dense(), y.to_dense())
self.assertEqual(res, expected)
def _test_mm(x, y):
res = torch.mm(x, y)
expected = torch.mm(x.to_dense(), y.to_dense())
if x.layout is torch.strided or y.layout is torch.strided:
self.assertEqual(res.layout, torch.strided)
else:
self.assertEqual(res.layout, torch.sparse_csr)
self.assertEqual(res.to_dense(), expected)
def _test(t, x, y):
_test_addmm(t, x, y)
_test_mm(x, y)
if nnz0 is None:
nnz0 = random.randint(di * dk // 2, di * dk)
t = torch.randn(di, dj, dtype=dtype, device=device)
x = self.genSparseCSRTensor((di, dk), nnz0, device=device, dtype=dtype, index_dtype=index_dtype)
y = torch.randn(dk, dj, dtype=dtype, device=device)
_test(t, x, y)
t = torch.randn(di, dj, dtype=dtype, device=device)
x = self.genSparseCSCTensor((di, dk), nnz0, device=device, dtype=dtype, index_dtype=index_dtype)
y = torch.randn(dk, dj, dtype=dtype, device=device)
_test(t, x, y)
if nnz1 is None:
nnz1 = random.randint(dk * dj // 2, dk * dj)
t = torch.randn(di, dj, dtype=dtype, device=device)
x = torch.randn(di, dk, dtype=dtype, device=device)
y = self.genSparseCSRTensor((dk, dj), nnz1, device=device, dtype=dtype, index_dtype=index_dtype)
_test(t, x, y)
t = torch.randn(di, dj, dtype=dtype, device=device)
x = torch.randn(di, dk, dtype=dtype, device=device)
y = self.genSparseCSCTensor((dk, dj), nnz1, device=device, dtype=dtype, index_dtype=index_dtype)
_test(t, x, y)
x_shape, y_shape = x.shape, y.shape
gen_csr_csc = [self.genSparseCSRTensor, self.genSparseCSCTensor]
# Test mm({CSR, CSC}, {CSR, CSC})
for gen_x, gen_y in itertools.product(gen_csr_csc, gen_csr_csc):
x = gen_x(x_shape, nnz0, device=device, dtype=dtype, index_dtype=index_dtype)
y = gen_y(y_shape, nnz1, device=device, dtype=dtype, index_dtype=index_dtype)
_test_mm(x, y)
def test_empty_inputs(lhs_layout, rhs_layout):
xd = torch.rand(10, 0, device=device, dtype=dtype)
yd = xd.transpose(-2, -1)
zd = torch.rand(0, 0, device=device, dtype=dtype)
xls, yls, zls = (t.to_sparse(layout=lhs_layout) for t in (xd, yd, zd))
xrs, yrs, zrs = (t.to_sparse(layout=rhs_layout) for t in (xd, yd, zd))
for ls, rs, ld, rd in [(xls, yrs, xd, yd), (xls, zrs, xd, zd), (zls, yrs, zd, yd), (zls, zrs, zd, zd)]:
res_sparse = ls @ rs
res_dense = ld @ rd
self.assertEqual(res_sparse.to_dense(), res_dense)
def test_orthogonal_inputs(lhs_layout, rhs_layout):
ones = torch.ones(2, 2, device=device, dtype=dtype)
zeros = torch.zeros(2, 2, device=device, dtype=dtype)
x = torch.cat((ones, zeros), -1).to_sparse(layout=lhs_layout)
y = torch.cat((zeros, ones), -2).to_sparse(layout=rhs_layout)
res = x @ y
res_expected = torch.zeros(*res.shape, device=device, dtype=dtype, layout=res.layout)
self.assertEqual(res, res_expected)
for lhs_layout, rhs_layout in itertools.product([torch.sparse_csr, torch.sparse_csc], repeat=2):
test_empty_inputs(lhs_layout, rhs_layout)
test_orthogonal_inputs(lhs_layout, rhs_layout)
for i in [2, 4]:
for j in [2, 4, 7]:
for k in [2, 3, 7]:
test_shape(i, j, k)
test_shape(4, 4, 4, 0, 0)
@skipCPUIfNoMklSparse
@dtypes(*floating_and_complex_types())
@dtypesIfCUDA(*floating_and_complex_types_and(
*[torch.half] if SM53OrLater and TEST_CUSPARSE_GENERIC else [],
*[torch.bfloat16] if SM80OrLater and TEST_CUSPARSE_GENERIC else []))
@precisionOverride({torch.bfloat16: 1e-2, torch.float16: 1e-2})
def test_sparse_mm(self, device, dtype):
def test_shape(d1, d2, d3, nnz, transposed, index_dtype):
if transposed:
D = torch.randn(d3, d2, dtype=dtype, device=device).t_()
else:
D = torch.randn(d2, d3, dtype=dtype, device=device)
S = self.genSparseCSRTensor((d1, d2), nnz, device=device, dtype=dtype, index_dtype=index_dtype)
S_dense = S.to_dense()
self.assertEqual(torch.sparse.mm(S, D), torch.mm(S_dense, D))
for index_dtype in [torch.int32, torch.int64]:
test_shape(7, 8, 9, 20, False, index_dtype)
test_shape(7, 8, 9, 20, True, index_dtype)
@dtypes(*floating_and_complex_types())
@dtypesIfCUDA(*floating_and_complex_types_and(
*[torch.half] if SM53OrLater and TEST_CUSPARSE_GENERIC else [],
*[torch.bfloat16] if SM80OrLater and TEST_CUSPARSE_GENERIC else []))
@precisionOverride({torch.bfloat16: 3.5e-2, torch.float16: 1e-2})
def test_sparse_addmm(self, device, dtype):
def test_shape(m, n, p, nnz, broadcast, index_dtype, alpha_beta=None):
if alpha_beta is None:
alpha = random.random()
beta = random.random()
else:
alpha, beta = alpha_beta
if broadcast:
D1 = make_tensor((), dtype=dtype, device=device)
else:
D1 = make_tensor([n, p], dtype=dtype, device=device)
D2 = make_tensor([m, p], dtype=dtype, device=device)
S = self.genSparseCSRTensor([n, m], nnz, dtype=dtype, device=device, index_dtype=index_dtype)
S_dense = S.to_dense()
Y = torch.sparse.addmm(D1, S, D2, beta=beta, alpha=alpha)
Y_dense = torch.addmm(D1, S_dense, D2, beta=beta, alpha=alpha)
self.assertEqual(Y, Y_dense)
for index_dtype in [torch.int32, torch.int64]:
test_shape(7, 8, 9, 20, False, index_dtype, None)
test_shape(7, 8, 9, 20, True, index_dtype, None)
test_shape(7, 8, 9, 20, False, index_dtype, (1, 0))
test_shape(7, 8, 9, 20, True, index_dtype, (1, 0))
test_shape(7, 8, 9, 20, False, index_dtype, (1, 1))
test_shape(7, 8, 9, 20, True, index_dtype, (1, 1))
@skipCPUIfNoMklSparse
@dtypes(*floating_and_complex_types())
@precisionOverride({torch.double: 1e-8, torch.float: 1e-4, torch.bfloat16: 0.6,
torch.half: 1e-1, torch.cfloat: 1e-4, torch.cdouble: 1e-8})
@dtypesIfCUDA(*floating_types_and(torch.complex64,
*[torch.bfloat16] if SM80OrLater else [],
*[torch.half] if SM53OrLater else [],
*[torch.complex128] if CUSPARSE_SPMM_COMPLEX128_SUPPORTED else []))
@sparse_compressed_nonblock_layouts()
@skipCUDAIf(
not _check_cusparse_spgemm_available(),
"cuSparse Generic API SpGEMM is not available"
)
def test_addmm_all_sparse_csr(self, device, dtype, layout):
M = torch.randn(10, 25, device=device).to(dtype)
m1 = torch.randn(10, 50, device=device).to(dtype)
m2 = torch.randn(50, 25, device=device).to(dtype)
_test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=layout, mode="all_sparse")
# Test 0-strided
M = torch.randn(10, 1, device=device).to(dtype).expand(10, 25)
m1 = torch.randn(10, 1, device=device).to(dtype).expand(10, 50)
m2 = torch.randn(50, 25, device=device).to(dtype)
_test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=layout, mode="all_sparse")
# Test beta=0, M=nan
M = torch.full((10, 25), float('nan'), device=device).to(dtype)
m1 = torch.randn(10, 50, device=device).to(dtype)
m2 = torch.randn(50, 25, device=device).to(dtype)
_test_addmm_addmv(self, torch.addmm, M, m1, m2, beta=0, layout=layout, mode="all_sparse")
# Test transpose
for t1, t2, t3, t4 in itertools.product([True, False], repeat=4):
def maybe_transpose(cond, m):
if not cond:
return m
return m.t().clone(memory_format=torch.contiguous_format).t()
M = maybe_transpose(t1, torch.randn(10, 25, device=device).to(dtype))
m1 = maybe_transpose(t2, torch.randn(10, 50, device=device).to(dtype))
m2 = maybe_transpose(t3, torch.randn(50, 25, device=device).to(dtype))
_test_addmm_addmv(self, torch.addmm, M, m1, m2, transpose_out=t4, layout=layout, mode="all_sparse")
@onlyCPU
@skipCPUIfNoMklSparse
@dtypes(*floating_and_complex_types())
@sparse_compressed_nonblock_layouts()
def test_addmm_dense_result(self, device, dtype, layout):
M = torch.randn(10, 25, device=device).to(dtype)
m1 = torch.randn(10, 50, device=device).to(dtype)
m2 = torch.randn(50, 25, device=device).to(dtype)
_test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=layout, mode="dense_result")
# Test 0-strided
M = torch.randn(10, 1, device=device).to(dtype).expand(10, 25)
m1 = torch.randn(10, 1, device=device).to(dtype).expand(10, 50)
m2 = torch.randn(50, 25, device=device).to(dtype)
_test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=layout, mode="dense_result")
# Test beta=0, M=nan
M = torch.full((10, 25), float('nan'), device=device).to(dtype)
m1 = torch.randn(10, 50, device=device).to(dtype)
m2 = torch.randn(50, 25, device=device).to(dtype)
_test_addmm_addmv(self, torch.addmm, M, m1, m2, beta=0, layout=layout, mode="dense_result")
# Test transpose
for t1, t2, t3, t4 in itertools.product([True, False], repeat=4):
def maybe_transpose(cond, m):
if not cond:
return m
return m.t().clone(memory_format=torch.contiguous_format).t()
M = maybe_transpose(t1, torch.randn(10, 25, device=device).to(dtype))
m1 = maybe_transpose(t2, torch.randn(10, 50, device=device).to(dtype))
m2 = maybe_transpose(t3, torch.randn(50, 25, device=device).to(dtype))
_test_addmm_addmv(self, torch.addmm, M, m1, m2, transpose_out=t4, layout=layout, mode="dense_result")
@parametrize("k", [0, 1, 8])
@parametrize("n", [0, 1, 10])
@parametrize("m", [0, 1, 25])
@skipCPUIfNoMklSparse
@dtypes(*floating_and_complex_types())
@dtypesIfCUDA(*floating_types_and(torch.complex64,
*[torch.bfloat16] if SM80OrLater else [],
*[torch.half] if SM53OrLater else [],
*[torch.complex128]
if CUSPARSE_SPMM_COMPLEX128_SUPPORTED or HIPSPARSE_SPMM_COMPLEX128_SUPPORTED
else []))
@precisionOverride({torch.double: 1e-8, torch.float: 1e-4, torch.bfloat16: 0.6,
torch.half: 1e-1, torch.cfloat: 1e-4, torch.cdouble: 1e-8})
def test_addmm_sizes_all_sparse_csr(self, device, dtype, m, n, k):
if (TEST_WITH_ROCM and k != 0 and n != 0 and m != 0):
self.skipTest("Skipped on ROCm")
M = torch.randn(n, m, device=device).to(dtype)
m1 = torch.randn(n, k, device=device).to(dtype)
m2 = torch.randn(k, m, device=device).to(dtype)
_test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=torch.sparse_csr, mode="all_sparse")
M = torch.randn(n, m, device=device).to(dtype).to_sparse_csr()
m1 = torch.randn(n, k + 1, device=device).to(dtype).to_sparse_csr()
m2 = torch.randn(k, m, device=device).to(dtype).to_sparse_csr()
self.assertRaisesRegex(RuntimeError, f"{n}x{k + 1}.*{k}x{m}", lambda: torch.addmm(M, m1, m2))
self.assertRaisesRegex(RuntimeError, f"{n}x{k + 1}.*{k}x{m}", lambda: torch.mm(m1, m2))
@skipCPUIfNoMklSparse
@dtypes(torch.float)
def test_addmm_errors(self, device, dtype):
# test that the errors are the same for dense and sparse versions
import re
def test1(*, is_sparse):
# shapes must be compatible for matrix multiplication
a = make_tensor((2, 3), dtype=dtype, device=device)
if is_sparse:
a_sparse = a.to_sparse_csr()
return torch.addmm(a, a_sparse, a)
else:
return torch.addmm(a, a, a)
def test2(*, is_sparse):
# mat2 must be a matrix
a = make_tensor((2, 3), dtype=dtype, device=device)
if is_sparse:
a_sparse = a.to_sparse_csr()
return torch.addmm(a, a_sparse, a.unsqueeze(0))
else:
return torch.addmm(a, a, a.unsqueeze(0))
def test3(*, is_sparse):
# the first input needs to be 1D or 2D
a = make_tensor((3, 3), dtype=dtype, device=device)
if is_sparse:
a_sparse = a.to_sparse_csr()
return torch.addmm(a.unsqueeze(0), a_sparse, a)
else:
return torch.addmm(a.unsqueeze(0), a, a)
for test in (test1, test2, test3):
try:
test(is_sparse=False)
except RuntimeError as msg:
with self.assertRaisesRegex(RuntimeError, re.escape(str(msg))):
test(is_sparse=True)
@skipCPUIfNoMklSparse
@dtypes(torch.float)
def test_mm_errors(self, device, dtype):
# test that the errors are the same for dense and sparse versions
import re
def test1(*, is_sparse):
# shapes must be compatible for matrix multiplication
a = make_tensor((2, 3), dtype=dtype, device=device)
if is_sparse:
a_sparse = a.to_sparse_csr()
return torch.mm(a_sparse, a)
else:
return torch.mm(a, a)
def test2(*, is_sparse):
# mat2 must be a matrix
a = make_tensor((2, 3), dtype=dtype, device=device)
if is_sparse:
a_sparse = a.to_sparse_csr()
return torch.mm(a_sparse, a.unsqueeze(0))
else:
return torch.mm(a, a.unsqueeze(0))
for test in (test1, test2):
try:
test(is_sparse=False)
except RuntimeError as msg:
with self.assertRaisesRegex(RuntimeError, re.escape(str(msg))):
test(is_sparse=True)
@sparse_compressed_nonblock_layouts()
@dtypes(torch.float, torch.double)
def test_add(self, device, layout, dtype):
def _test_spadd_shape(nnz, shape):
# sparse.to_dense() uses torch.add internally so if torch.add is wrong,
# the dense tensor will be wrong but this test would still pass
# there's a separate test that checks for the correctness of the .to_dense() call
x = self.genSparseCompressedTensor(shape, nnz,
dtype=dtype,
device=device,
index_dtype=torch.int32,
layout=layout,
blocksize=())
y = torch.randn(*shape, dtype=dtype, device=device)
r = random.random()
res = torch.add(y, x, alpha=r)
expected = y + r * x.to_dense()
self.assertEqual(res, expected)
res_perm = torch.add(x, y, alpha=r)
self.assertEqual(res_perm, expected)
# Non contiguous dense tensor
s = list(shape)
s[0] = shape[-1]
s[-1] = shape[0]
y = torch.randn(*s, dtype=torch.double, device=device)
y.transpose_(0, len(s) - 1)
r = random.random()
res = torch.add(y, x, alpha=r)
expected = y + r * x.to_dense()
res_perm = torch.add(x, y, alpha=r)
self.assertEqual(res, expected)
self.assertEqual(res_perm, expected)
ns = [2, 5]
batch_shapes = [(), (2,), (2, 3)]
for b, m, n in itertools.product(batch_shapes, ns, ns):
_test_spadd_shape(0, (*b, m, n))
_test_spadd_shape(m * n // 2, (*b, m, n))
_test_spadd_shape(m * n, (*b, m, n))
@dtypes(torch.float, torch.double)
def test_mul(self, device, dtype):
# TODO: This whole test should be migrated to OpInfos
def _test_spadd_shape(fn, nnz, shape):
x = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32)
y = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32)
# Forward comparison
res_sparse_sparse = fn(y, x)
res_dense_sparse = fn(y.to_dense(), x)
res_sparse_dense = fn(y, x.to_dense())
expected = fn(y.to_dense(), x.to_dense())
self.assertEqual(res_sparse_sparse, expected)
# TODO: While result of mul(dense, csr) is csr, it is not fully compressed.
# That means it may contain materialized zeros, since the dense argument
# is converted according to the sparsity pattern of csr. In the future
# we might require the result to be fully compressed.
self.assertEqual(res_dense_sparse, expected)
self.assertEqual(res_sparse_dense, expected)
# Grad comparison
x = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32)
y = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32)
z = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32)
# csr * csr -> csr with csr, csr gradients
x_a = x.clone().requires_grad_()
y_a = y.clone().requires_grad_()
fn(y_a, x_a).backward(z)
x_dense_a = x.to_dense().requires_grad_()
y_dense_a = y.to_dense().requires_grad_()
fn(y_dense_a, x_dense_a).backward(z.to_dense())
self.assertEqual(x_a.grad.layout, torch.sparse_csr)
self.assertEqual(y_a.grad.layout, torch.sparse_csr)
self.assertEqual(x_a.grad.to_dense(), x_dense_a.grad)
self.assertEqual(y_a.grad.to_dense(), y_dense_a.grad)
# TODO: Currently strided Tensors cannot have csr gradients
# dense * csr -> csr with csr, dense gradients
x_a = x.clone().requires_grad_()
y_a = y.to_dense().clone().requires_grad_()
err_msg = "Function MulBackward0 returned an invalid gradient at index 0 - expected layout Strided but got SparseCsr"
with self.assertRaisesRegex(RuntimeError, err_msg):
fn(y_a, x_a).backward(z)
# csr * dense -> csr with dense, csr gradients
x_a = x.to_dense().clone().requires_grad_()
y_a = y.clone().requires_grad_()
err_msg = "Function MulBackward0 returned an invalid gradient at index 1 - expected layout Strided but got SparseCsr"
with self.assertRaisesRegex(RuntimeError, err_msg):
fn(y_a, x_a).backward(z)
_test_spadd_shape(torch.mul, 100, [100, 100])
_test_spadd_shape(torch.mul, 0, [100, 100])
_test_spadd_shape(torch.mul, 100, [100, 1])
_test_spadd_shape(torch.mul, 100, [1, 100])
# TODO: enable hybrid once to_dense supports it
@parametrize('enable_hybrid', [False])
@all_sparse_compressed_layouts()
@dtypes(*all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half))
def test_mul_scalar(self, layout, device, dtype, enable_hybrid):
for sparse in self.generate_simple_inputs(
layout, device=device, dtype=dtype, index_dtype=torch.int32, enable_hybrid=enable_hybrid):
for scalar_dtype in all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half):
# ComplexHalf is experimental
if dtype is torch.half and scalar_dtype.is_complex:
continue
scalar_t = torch.tensor(2, dtype=scalar_dtype)
for scalar in (scalar_t, scalar_t.item()):
res_out = sparse.mul(scalar)
self.assertEqual(res_out, scalar * sparse)
res_dense_out = sparse.to_dense().mul(scalar)
# BUG: dispatcher ignores mul.Scalar(Tensor, Scalar)
# This issues is circumvented in the mul(Tensor, Tensor) kernel.
self.assertEqual(res_out, res_dense_out)
if dtype == torch.result_type(sparse, scalar):
res_in_dense = sparse.to_dense().mul_(scalar)
res_in = sparse.clone().mul_(scalar)
self.assertEqual(res_in, res_in_dense)
self.assertEqual(res_out, res_in)
@skipCPUIfNoMklSparse
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
def test_sparse_add(self, device, dtype):
def run_test(m, n, index_dtype):
alpha = random.random()
nnz1 = random.randint(0, m * n)
nnz2 = random.randint(0, m * n)
nnz3 = random.randint(0, m * n)
if TEST_WITH_ROCM:
# ROCm fails when nnz = 0
nnz1, nnz2, nnz3 = max(1, nnz1), max(1, nnz2), max(1, nnz3)
S1 = self.genSparseCSRTensor([m, n], nnz1, dtype=dtype, device=device, index_dtype=index_dtype)
S2 = self.genSparseCSRTensor([m, n], nnz2, dtype=dtype, device=device, index_dtype=index_dtype)
S3 = self.genSparseCSRTensor([m, n], nnz3, dtype=dtype, device=device, index_dtype=index_dtype)
sparse_args = [S1, S2, S3]
dense_args = [t.to_dense() for t in sparse_args]
arg_idx = list(range(len(sparse_args)))
out_idx = arg_idx + [None]
for idx1, idx2, idx3 in itertools.product(arg_idx, arg_idx, out_idx):
s1 = sparse_args[idx1]
s2 = sparse_args[idx2]
s3 = None if idx3 is None else sparse_args[idx3]
d1 = dense_args[idx1]
d2 = dense_args[idx2]
d3 = None if idx3 is None else dense_args[idx3]
expected = torch.add(d1, d2, alpha=alpha, out=d3)
actual = torch.add(s1, s2, alpha=alpha, out=s3)
self.assertEqual(actual.crow_indices().dtype, index_dtype)
self.assertEqual(actual.col_indices().dtype, index_dtype)
self.assertEqual(actual, expected)
self.assertEqual(s3, d3)
if s3 is not None:
self.assertEqual(s3.crow_indices().dtype, index_dtype)
self.assertEqual(s3.col_indices().dtype, index_dtype)
for index_dtype in [torch.int32, torch.int64]:
for m, n in itertools.product([3, 5], [3, 5]):
run_test(m, n, index_dtype)
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
def test_sparse_add_errors(self, device, dtype):
def run_test(index_type):
a = self.genSparseCSRTensor((2, 2), 3, dtype=dtype, device=device, index_dtype=index_dtype)
b = self.genSparseCSRTensor((2, 1), 2, dtype=dtype, device=device, index_dtype=index_dtype)
with self.assertRaisesRegex(RuntimeError, "Expected input tensors to have the same shape"):
torch.add(a, b)
for index_dtype in [torch.int32, torch.int64]:
run_test(index_dtype)
@skipCPUIfNoMklSparse
@skipCUDAIf(
not _check_cusparse_triangular_solve_available(),
"cuSparse Generic API SpSV is not available"
)
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
@precisionOverride({torch.float32: 1e-3, torch.complex64: 1e-3,
torch.float64: 1e-8, torch.complex128: 1e-8})
def test_sparse_triangular_solve(self, device, dtype):
def run_test(n, k, upper, unitriangular, transpose, zero):
if not unitriangular:
triangle_function = torch.triu if upper else torch.tril
else:
# Make sure diagonal elements are not materialized.
# This is to exercise `unitriangular=True` not relying on
# explicit presence of these indices.
if upper:
def remove_diagonal(t):
return t.triu(-1)
else:
def remove_diagonal(t):
return t.tril(-1)
triangle_function = remove_diagonal
make_A = torch.zeros if zero else make_tensor
A = make_A((n, n), dtype=dtype, device=device)
A = triangle_function(A)
A_sparse = A.to_sparse_csr()
B = make_tensor((n, k), dtype=dtype, device=device)
expected = torch.triangular_solve(B, A, upper=upper, unitriangular=unitriangular, transpose=transpose)
expected_X = expected.solution
actual = torch.triangular_solve(B, A_sparse, upper=upper, unitriangular=unitriangular, transpose=transpose)
actual_X = actual.solution
actual_A_clone = actual.cloned_coefficient
self.assertTrue(actual_A_clone.numel() == 0)
if A_sparse._nnz() == 0:
self.assertTrue(actual_X.isnan().all())
return
self.assertEqual(actual_X, expected_X)
# test out with C contiguous strides
out = torch.empty_strided((n, k), (k, 1), dtype=dtype, device=device)
torch.triangular_solve(
B, A_sparse,
upper=upper, unitriangular=unitriangular, transpose=transpose, out=(out, actual_A_clone)
)
self.assertEqual(out, expected_X)
# test out with F contiguous strides
out = torch.empty_strided((n, k), (1, n), dtype=dtype, device=device)
torch.triangular_solve(
B, A_sparse,
upper=upper, unitriangular=unitriangular, transpose=transpose, out=(out, actual_A_clone)
)
self.assertEqual(out, expected_X)
self.assertEqual(out.stride(), (1, n))
# test out with discontiguous strides
out = torch.empty_strided((2 * n, k), (1, 2 * n), dtype=dtype, device=device)[::2]
if n > 0 and k > 0:
self.assertFalse(out.is_contiguous())
self.assertFalse(out.t().is_contiguous())
before_stride = out.stride()
torch.triangular_solve(
B, A_sparse,
upper=upper, unitriangular=unitriangular, transpose=transpose, out=(out, actual_A_clone)
)
self.assertEqual(out, expected_X)
self.assertEqual(out.stride(), before_stride)
ks = [0, 1, 3]
ns = [5, 3, 0]
for (k, n), (upper, unitriangular, transpose, zero) in itertools.product(itertools.product(ks, ns),
itertools.product([True, False], repeat=4)):
run_test(n, k, upper, unitriangular, transpose, zero)
@skipCUDAIf(
not _check_cusparse_sddmm_available(),
"cuSparse Generic API SDDMM is not available"
)
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
@precisionOverride({torch.float32: 1e-3, torch.complex64: 1e-3,
torch.float64: 1e-8, torch.complex128: 1e-8})
def test_sampled_addmm(self, device, dtype):
def run_test(c, a, b, op_a, op_b, *, alpha=None, beta=None):
if dtype.is_complex:
alpha = random.random() + 0.3j if alpha is None else alpha
beta = random.random() + 0.6j if beta is None else beta
else:
alpha = random.random() if alpha is None else alpha
beta = random.random() if beta is None else beta
if op_a and a.shape == b.shape:
a = a.mH
if op_b and a.shape == b.shape:
b = b.mH
actual = torch.sparse.sampled_addmm(c, a, b, alpha=alpha, beta=beta)
out = torch.sparse_csr_tensor(
*map(torch.clone, (actual.crow_indices(), actual.col_indices())),
torch.empty_like(actual.values()),
size=actual.shape
)
torch.sparse.sampled_addmm(c, a, b, alpha=alpha, beta=beta, out=out)
spy_c = torch.sparse_csr_tensor(c.crow_indices(), c.col_indices(), torch.ones_like(c.values()), size=c.shape)
expected = alpha * (a @ b) * spy_c.to_dense() + beta * c.to_dense()
self.assertEqual(actual.to_dense(), out.to_dense())
self.assertEqual(actual.to_dense(), expected)
mnk = list(itertools.product([2, 5], repeat=3))
# Add a test case for size 0 a and b tensors
mnk = mnk + [(5, 5, 0)]
batch_shapes = [(), (2,), (2, 3)]
tf = [True, False]
for index_dtype in [torch.int32, torch.int64]:
for (m, n, k), b, noncontiguous, bcast_c in itertools.product(mnk, batch_shapes, tf, tf):
if bcast_c and len(b) == 0:
continue
nnz = random.randint(0, m * n)
c_batch = () if bcast_c else b
c = self.genSparseCSRTensor((*c_batch, m, n), nnz, dtype=dtype, device=device, index_dtype=index_dtype)
a = make_tensor((*b, m, k), dtype=dtype, device=device, noncontiguous=noncontiguous)
b = make_tensor((*b, k, n), dtype=dtype, device=device, noncontiguous=noncontiguous)
for op_a, op_b in itertools.product([True, False], repeat=2):
run_test(c, a, b, op_a, op_b)
@skipCUDAIf(
not _check_cusparse_sddmm_available(),
"cuSparse Generic API SDDMM is not available"
)
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
def test_sampled_addmm_autograd(self, device, dtype):
from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm
samples = list(sample_inputs_sparse_sampled_addmm(None, device, dtype, requires_grad=True))
for sample, dense_covector in zip(samples, [True, False]):
c = sample.input
a = sample.args[0]
b = sample.args[1]
# Compute sparse result
output = torch.sparse.sampled_addmm(c, a, b, **sample.kwargs)
covector = torch.randn_like(output).to_dense() if dense_covector else torch.randn_like(output)
output.backward(covector)
# Compute dense result and compare with sparse result
c1, a1, b1 = (x.detach().to_dense().requires_grad_(True) for x in [c, a, b])
dense_output = sample.kwargs['alpha'] * (a1 @ b1) * torch.ones_like(c).to_dense() + sample.kwargs['beta'] * c1
self.assertEqual(output, dense_output)
dense_covector = covector.to_dense()
dense_output.backward(dense_covector)
self.assertEqual(c.grad, c1.grad)
self.assertEqual(a.grad, a1.grad)
self.assertEqual(b.grad, b1.grad)
@onlyCUDA
# It works on ROCm and CUDA issue is currently active
@skipCUDAIf(not TEST_WITH_ROCM, "Causes CUDA memory exception, see https://github.com/pytorch/pytorch/issues/72177")
@skipCUDAIf(
not _check_cusparse_sddmm_available(),
"cuSparse Generic API SDDMM is not available"
)
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
@precisionOverride({torch.float32: 1e-3, torch.complex64: 1e-3,
torch.float64: 1e-8, torch.complex128: 1e-8})
def test_sampled_addmm_zero_sized(self, device, dtype):
def run_test(c, a, b):
actual = torch.sparse.sampled_addmm(c, a, b)
self.assertEqual(actual.shape, c.shape)
for m, n, k in itertools.product([0, 5], repeat=3):
c = torch.empty(m, n, dtype=dtype, device=device, layout=torch.sparse_csr)
a = make_tensor((m, k), dtype=dtype, device=device)
b = make_tensor((k, n), dtype=dtype, device=device)
run_test(c, a, b)
@onlyCUDA
@skipCUDAIf(
not _check_cusparse_sddmm_available(),
"cuSparse Generic API SDDMM is not available"
)
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
def test_sampled_addmm_errors(self, device, dtype):
# test that the errors are the same for dense and sparse sampled versions
# import re
# shapes must be compatible for matrix multiplication
a = make_tensor((2, 3), dtype=dtype, device=device)
a_sparse = a.to_sparse_csr()
with self.assertRaisesRegex(RuntimeError, r"cannot be multiplied"):
torch.sparse.sampled_addmm(a_sparse, a, a)
# mat1 must be a matrix
with self.assertRaisesRegex(RuntimeError, r"Expected mat1 to be a matrix"):
torch.sparse.sampled_addmm(a_sparse, a[..., 0, :], a)
# mat2 must be a matrix
with self.assertRaisesRegex(RuntimeError, r"Expected mat2 to be a matrix"):
torch.sparse.sampled_addmm(a_sparse, a, a[..., 0, :])
a = make_tensor((2, 2), dtype=dtype, device=device)
b = make_tensor((3, 3), dtype=dtype, device=device)
b_sparse = b.to_sparse_csr()
with self.assertRaisesRegex(RuntimeError, r"self.shape\[-2\] must match mat1.shape\[-2\]"):
torch.sparse.sampled_addmm(b_sparse, a, a)
b = make_tensor((2, 3), dtype=dtype, device=device)
b_sparse = b.to_sparse_csr()
with self.assertRaisesRegex(RuntimeError, r"self.shape\[-1\] must match mat2.shape\[-1\]"):
torch.sparse.sampled_addmm(b_sparse, a, a)
a = make_tensor((2, 2), dtype=dtype, device=device)
a_sparse = a.to_sparse_csr()
with self.assertRaisesRegex(RuntimeError, r"Expected mat1 to have strided layout"):
torch.sparse.sampled_addmm(a_sparse, a_sparse, a_sparse)
with self.assertRaisesRegex(RuntimeError, r"Expected mat2 to have strided layout"):
torch.sparse.sampled_addmm(a_sparse, a, a_sparse)
@onlyCPU
@dtypes(torch.float32, torch.float64, torch.bfloat16, torch.float16)
@precisionOverride({torch.bfloat16: 0.01})
def test_sparse_mm_reduce_sum(self, device, dtype):
def run_test(m, n, k, nnz, train):
sparse = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=torch.int64)
dense = sparse.to_dense()
mat = torch.randn(k, n, dtype=dtype)
ref_mat = mat.clone()
if train:
sparse.requires_grad_()
mat.requires_grad_()
dense.requires_grad_()
ref_mat.requires_grad_()
ref_out = torch.mm(dense, ref_mat)
out = torch.sparse.mm(sparse, mat, 'sum')
self.assertEqual(out, ref_out)
if train:
ref_out.sum().backward()
out.sum().backward()
grad_input = sparse.grad
ref_grad_input = dense.grad
grad_mat = mat.grad
ref_grad_mat = ref_mat.grad
self.assertEqual(grad_input.to_dense(), ref_grad_input)
self.assertEqual(grad_mat, ref_grad_mat)
run_test(4, 5, 4, 10, False)
run_test(4, 4, 4, 16, True)
@skipIfTorchDynamo()
@onlyCPU
@dtypes(torch.float32, torch.float64, torch.bfloat16, torch.float16)
@precisionOverride({torch.bfloat16: 0.02, torch.float16: 0.01})
def test_sparse_mm_reduce(self, device, dtype):
def run_test(m, n, k, nnz, reduce_type, index_dtype, train):
csr = self.genSparseCSRTensor((m, n), nnz, dtype=dtype, device=device, index_dtype=index_dtype)
mat = torch.randn(n, k, dtype=dtype)
ref_mat = mat.clone()
ref_values = csr.values().clone()
out_int32 = index_dtype == torch.int32
coo_indices = torch._convert_indices_from_csr_to_coo(
csr.crow_indices(),
csr.col_indices(),
out_int32=out_int32)
row, col = coo_indices[0], coo_indices[1]
def ref(row, col, val, mat):
out = torch.zeros([m, k], dtype=dtype)
weight = mat.index_select(0, col)
src = weight.mul(val.view(-1, 1))
index = row.view(-1, 1).expand_as(weight)
index = index.to(dtype=torch.int64)
# scatter_reduce expect index to be int64
out.scatter_reduce_(0, index, src, reduce=reduce_type, include_self=False)
return out
if train:
csr.requires_grad_()
mat.requires_grad_()
ref_values.requires_grad_()
ref_mat.requires_grad_()
ref_out = ref(row, col, ref_values, ref_mat)
out = torch.sparse.mm(csr, mat, reduce_type)
self.assertEqual(out, ref_out)
if train and dtype not in (torch.bfloat16, torch.float16):
ref_out.sum().backward()
out.sum().backward()
grad_values = csr.grad.values()
grad_weight = mat.grad
ref_grad_values = ref_values.grad
ref_grad_weight = ref_mat.grad
self.assertEqual(grad_values, ref_grad_values)
self.assertEqual(grad_weight, ref_grad_weight)
for train in [False, True]:
for index_dtype in [torch.int32, torch.int64]:
for reduce_type in ["sum", "mean", "amax", "amin"]:
# by setting nnz < M, create empty rows
run_test(3, 4, 11, 1, reduce_type, index_dtype, train)
run_test(3, 4, 11, 6, reduce_type, index_dtype, train)
run_test(3, 4, 11, 12, reduce_type, index_dtype, train)
# we are doing blocking with 4x vector length in the kernel,
# so need to test when K > 4x vector length
run_test(4, 7, 33, 13, reduce_type, index_dtype, train)
@skipMeta
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
def test_coo_csr_conversion(self, device, dtype):
for m, n in itertools.product([5, 2, 0], [5, 2, 0]):
size = (m, n)
dense = make_tensor(size, dtype=dtype, device=device)
coo_sparse = dense.to_sparse()
csr_sparse = coo_sparse.to_sparse_csr()
self.assertEqual(csr_sparse.to_dense(), dense)
@skipMeta
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
def test_csr_coo_conversion(self, device, dtype):
for m, n in itertools.product([5, 2, 0], [5, 2, 0]):
size = (m, n)
dense = make_tensor(size, dtype=dtype, device=device)
csr_sparse = dense.to_sparse_csr()
coo_sparse = csr_sparse.to_sparse()
self.assertEqual(coo_sparse.to_dense(), dense)
# Currently, there is no rule in PyTorch for filling zeros in the outputs
# from operations on Sparse CSR tensors. Hence only those operators are supported
# which have 0->0 correspondence, example: sin(0) = 0, tan(0) = 0 but
# cos(0) = 1 (and hence it's not supported).
# Note: here, we do this test only for unary operators
@ops(sparse_csr_unary_ufuncs)
def test_zero_to_zero_correspondence_unary(self, device, dtype, op):
zero = torch.zeros((1, 2), dtype=dtype, device=device)
tensor_explicit_zeros = torch.sparse_csr_tensor([0, 1], [1], [0], dtype=dtype, device=device)
output_zero = op(zero)
expected_zero = zero.to(output_zero.dtype)
output_explicit_zeros = op(tensor_explicit_zeros).to_dense()
expected_explicit_zeros = tensor_explicit_zeros.to_dense().to(output_explicit_zeros.dtype)
for (output, expected) in [
(output_zero, expected_zero),
(output_explicit_zeros, expected_explicit_zeros)
]:
self.assertEqual(output, expected, f"This operator ({op.name}) should not be supported for "
"Sparse CSR as it breaks 0->0 correspondence.")
for inp in [zero.to_sparse_csr(), tensor_explicit_zeros]:
self.assertEqual(op(inp).values().numel(), inp.values().numel(),
f"{op.name} fails to preserve sparsity pattern.")
@ops(sparse_csr_unary_ufuncs)
def test_sparse_csr_unary_out(self, device, dtype, op):
samples = op.sample_inputs(device, dtype)
if not op.supports_out:
self.skipTest("Skipped! Out not supported")
for sample in samples:
assert torch.is_tensor(sample.input)
# Sparse CSR only supports 2D tensors as inputs
# Fail early to prevent silent success with this test
if sample.input.ndim != 2:
raise ValueError("Expected 2D tensor but got tensor with dimension: {sample.input.ndim}.")
sample.input = sample.input.to_sparse_csr()
expect = op(sample.input, *sample.args, **sample.kwargs)
out = self.genSparseCSRTensor(sample.input.size(), sample.input._nnz(),
device=sample.input.device, dtype=expect.dtype,
index_dtype=sample.input.crow_indices().dtype)
op(sample.input, *sample.args, **sample.kwargs, out=out)
self.assertEqual(out, expect)
@ops(sparse_csr_unary_ufuncs)
def test_sparse_csr_unary_inplace(self, device, dtype, op):
samples = op.sample_inputs(device, dtype)
if op.inplace_variant is None:
self.skipTest("Skipped! Inplace variant not supported!")
for sample in samples:
assert torch.is_tensor(sample.input)
# Sparse CSR only supports 2D tensors as inputs
# Fail early to prevent silent success with this test
if sample.input.ndim != 2:
raise ValueError("Expected 2D tensor but got tensor with dimension: {sample.input.ndim}.")
sample.input = sample.input.to_sparse_csr()
expect = op(sample.input, *sample.args, **sample.kwargs)
if not torch.can_cast(expect.dtype, dtype):
with self.assertRaisesRegex(RuntimeError, "result type"):
op.inplace_variant(sample.input, *sample.args, **sample.kwargs)
continue
if sample.input.is_complex() and op.name == "abs":
with self.assertRaisesRegex(RuntimeError, "not supported"):
op.inplace_variant(sample.input, *sample.args, **sample.kwargs)
continue
actual = op.inplace_variant(sample.input, *sample.args, **sample.kwargs)
self.assertIs(actual, sample.input)
self.assertEqual(actual, expect)
@skipIfTorchDynamo("Not a TorchDynamo suitable test")
@ops(sparse_csr_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=[torch.double, torch.cdouble])
def test_autograd_sparse_csr_unary(self, device, dtype, op):
if op.name not in UNARY_EWISE_CSR_ALLOW_AUTOGRAD:
self.skipTest(f"Skipped! Unary op {op.name} not supported with CSR input and autograd")
samples = list(op.sample_inputs(device, dtype))
# Fail early to prevent silent success with this test
ndims_equals_2d = (s.input.ndim == 2 for s in samples)
if not any(ndims_equals_2d):
raise ValueError("Expected at least one 2D tensor in samples.")
for sample in samples:
# We must skip samples of low dimensionality, we can't covert them to sparsed compressed layouts
if sample.input.ndim < 2:
continue
sparse_input = sample.input.to_sparse_csr().requires_grad_(True)
def fn(input):
output = op.gradcheck_wrapper(op.get_op(), input, *sample.args, **sample.kwargs)
if sample.output_process_fn_grad is not None:
return sample.output_process_fn_grad(output)
return output
# Compute sparse result
output = fn(sparse_input)
covector = torch.randn_like(output)
output.backward(covector)
self.assertTrue(torch.is_tensor(sparse_input.grad))
self.assertTrue(sparse_input.grad.is_sparse_csr)
# Compute dense result and compare with sparse result
dense_input = sparse_input.detach().to_dense().requires_grad_(True)
dense_output = fn(dense_input)
dense_covector = covector.to_dense()
dense_output.backward(dense_covector)
self.assertEqual(sparse_input.grad, dense_input.grad)
@skipCUDAIf(
not _check_cusparse_sddmm_available(),
"cuSparse Generic API SDDMM is not available"
)
@dtypes(torch.float64)
def test_autograd_dense_output_addmm(self, device, dtype):
from torch.testing._internal.common_methods_invocations import sample_inputs_addmm
samples = list(sample_inputs_addmm(None, device, dtype, requires_grad=True))
# Fail early to prevent silent success with this test
ndims_equals_2d = (s.args[0].ndim == 2 for s in samples)
if not any(ndims_equals_2d):
raise ValueError("Expected at least one 2D tensor in samples to convert to sparse.")
for sample in samples:
a = sample.args[0].relu().to_sparse_csr()
if sample.args[0].shape == sample.args[1].shape:
import warnings
warnings.warn("Broken for square matrices, see https://github.com/pytorch/pytorch/issues/116565")
continue
# This path tests the autograd path wrt dense inputs
for addmm in [torch.addmm, torch.sparse.addmm]:
def fn(c, b):
output = addmm(c, a, b, **sample.kwargs)
if sample.output_process_fn_grad is not None:
return sample.output_process_fn_grad(output)
return output
self.assertTrue(torch.autograd.gradcheck(fn, [sample.input, sample.args[1]], fast_mode=True))
# noncontiguous
c = make_tensor(sample.input.shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True)
b = make_tensor(sample.args[1].shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True)
self.assertTrue(torch.autograd.gradcheck(fn, [c, b], fast_mode=True))
# Now test the autograd path wrt sparse inputs
for reverse in [True, False]:
c, b = sample.input, sample.args[1]
if reverse and a.shape != b.shape:
continue
def fn(a):
inputs = (c, b, a) if reverse else (c, a, b)
output = addmm(*inputs, **sample.kwargs)
if sample.output_process_fn_grad is not None:
return sample.output_process_fn_grad(output)
return output
# gradcheck doesn't work for sparse CSR yet, compare against dense path
# Compute sparse result
a = a.detach().requires_grad_(True)
output = fn(a)
covector = torch.randn_like(output)
output.backward(covector)
self.assertTrue(torch.is_tensor(a.grad))
if addmm == torch.sparse.addmm:
self.assertTrue(a.grad.is_sparse_csr)
else:
self.assertTrue(a.grad.layout == torch.strided)
# Compute dense result and compare with sparse result
dense_a = a.detach().to_dense().requires_grad_(True)
dense_output = fn(dense_a)
self.assertEqual(output, dense_output)
dense_covector = covector.to_dense()
dense_output.backward(dense_covector)
if addmm == torch.sparse.addmm:
self.assertEqual(a.grad, dense_a.grad.sparse_mask(a))
else:
self.assertEqual(a.grad, dense_a.grad)
@skipCPUIfNoMklSparse
@dtypes(torch.float64)
def test_autograd_dense_output_addmv(self, device, dtype):
from torch.testing._internal.common_methods_invocations import sample_inputs_addmv
samples = list(sample_inputs_addmv(None, device, dtype, requires_grad=True))
# Fail early to prevent silent success with this test
ndims_equals_2d = (s.args[0].ndim == 2 for s in samples)
if not any(ndims_equals_2d):
raise ValueError("Expected at least one 2D tensor in samples to convert to sparse.")
for sample in samples:
# TODO: Remove detach once we have autograd support for CSR input
a = sample.args[0].to_sparse_csr().detach()
def fn(c, b):
output = torch.addmv(c, a, b, **sample.kwargs)
if sample.output_process_fn_grad is not None:
return sample.output_process_fn_grad(output)
return output
self.assertTrue(torch.autograd.gradcheck(fn, [sample.input, sample.args[1]], fast_mode=True))
# noncontiguous
c = make_tensor(sample.input.shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True)
b = make_tensor(sample.args[1].shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True)
self.assertTrue(torch.autograd.gradcheck(fn, [c, b], fast_mode=True))
@skipIfTorchDynamo("Not a TorchDynamo suitable test")
@ops(binary_ops_with_dense_output, dtypes=OpDTypes.supported, allowed_dtypes=[torch.double, ])
def test_autograd_dense_output(self, device, dtype, op):
if op.name == "mv" and no_mkl_sparse and self.device_type == 'cpu':
self.skipTest("MKL Sparse is not available")
samples = list(op.sample_inputs(device, dtype, requires_grad=True))
# Fail early to prevent silent success with this test
ndims_equals_2d = (s.input.ndim == 2 for s in samples)
if not any(ndims_equals_2d):
raise ValueError("Expected at least one 2D tensor in samples.")
# Here we assume that the signature is op(sparse_input, dense_input) -> dense_output
for sample in samples:
# TODO: Remove detach once we have autograd support for CSR input
sparse_input = sample.input.to_sparse_csr().detach()
def fn(*args):
output = op.gradcheck_wrapper(op.get_op(), sparse_input, *args, **sample.kwargs)
if sample.output_process_fn_grad is not None:
return sample.output_process_fn_grad(output)
return output
self.assertTrue(torch.autograd.gradcheck(fn, sample.args, fast_mode=True))
# noncontiguous
args = [make_tensor(a.shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True) for a in sample.args]
self.assertTrue(torch.autograd.gradcheck(fn, args, fast_mode=True))
@dtypes(*all_types_and_complex())
def test_direct_coo_csr_conversion(self, device, dtype):
for m, n in itertools.product([5, 2, 0], [5, 2, 0]):
size = (m, n)
dense = make_tensor(size, dtype=dtype, device=device)
coo_sparse = dense.to_sparse_coo()
self.assertEqual(coo_sparse.to_sparse_csr().to_sparse_coo(), coo_sparse)
@skipMeta
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
def test_sum(self, device, dtype):
def run_test(shape, nnz, index_type):
a = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype)
self.assertEqual(a.sum(), a.values().sum())
if dtype in floating_types():
a.requires_grad_(True)
a.sum().backward()
self.assertEqual(a.grad, torch.ones(shape, dtype=dtype, device=device))
for shape, index_dtype in itertools.product(
[(10, 5), (10, 10)],
[torch.int32, torch.int64]):
run_test(shape, 0, index_dtype)
run_test(shape, max(shape), index_dtype)
run_test(shape, shape[0] * shape[1], index_dtype)
@skipIfTorchDynamo()
@skipMeta
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
@all_sparse_compressed_layouts()
def test_transpose(self, device, dtype, layout):
def _check_transpose_view(subject, transpose):
self.assertTrue(transpose.values()._is_view())
self.assertTrue(transpose._is_view())
self.assertTrue(transpose._base is subject)
def _check_layout_invariants(transpose):
self.assertEqual(transpose.device, torch.device(device))
compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[transpose.layout]
compressed_indices, plain_indices = compressed_indices_mth(transpose), plain_indices_mth(transpose)
torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, transpose.values(),
transpose.shape, transpose.layout)
def check_good_transpose(subject, subject_dense, dim0, dim1, expected_layout):
transpose = subject.transpose(dim0, dim1)
# correct layout
self.assertEqual(transpose.layout, expected_layout)
# transpose must be return a view
_check_transpose_view(subject, transpose)
# result uses unsafe construction, so we check invariants
_check_layout_invariants(transpose)
self.assertEqual(transpose.to_dense(), subject_dense.transpose(dim0, dim1))
round_trip = transpose.transpose(dim0, dim1)
self.assertEqual(round_trip.layout, subject.layout)
# transpose must be return a view
_check_transpose_view(subject, round_trip)
# result uses unsafe construction, so we check invariants
_check_layout_invariants(round_trip)
self.assertEqual(round_trip.to_dense(), subject_dense)
def check_same_dim_transpose(subject, subject_dense, dim):
transpose = subject.transpose(dim, dim)
# correct layout
self.assertEqual(transpose.layout, subject.layout)
# transpose must be return a view
_check_transpose_view(subject, transpose)
# result uses unsafe construction, so we check invariants
_check_layout_invariants(transpose)
self.assertEqual(transpose.to_dense(), subject_dense)
def check_dim_type_mismatch_throws(subject, name0, dim0, name1, dim1):
mismatch_name = f"{dim0}\\({name0}\\) and {dim1}\\({name1}\\)"
err = r"transpose\(\): can only transpose dimensions of the same type \(Batch, Sparse, Dense\), got " + mismatch_name
with self.assertRaisesRegex(RuntimeError, err):
subject.transpose(dim0, dim1)
def run_test(shape, nnz, index_type, n_dense, blocksize=()):
subject = self.genSparseCompressedTensor(shape,
nnz,
layout=layout,
device=device,
index_dtype=index_type,
blocksize=blocksize,
dense_dims=n_dense,
dtype=dtype)
sparse0 = len(shape) - n_dense - 1
sparse1 = sparse0 - 1
dense0 = sparse0 + 1 if n_dense > 0 else None
dense1 = dense0 + 1 if n_dense > 1 else None
n_batch = len(shape) - n_dense - 2
batch0 = sparse1 - 1 if n_batch > 0 else None
batch1 = 0 if n_batch > 1 else None
sparse_dims = (sparse0, sparse1)
dense_dims = (dense0, dense1)
batch_dims = (batch0, batch1)
named0 = [(name, d[0]) for name, d in zip(["Batch", "Sparse", "Dense"], (batch_dims, sparse_dims, dense_dims))]
named1 = [(name, d[1]) for name, d in zip(["Batch", "Sparse", "Dense"], (batch_dims, sparse_dims, dense_dims))]
flipped_layout = {
torch.sparse_csr: torch.sparse_csc,
torch.sparse_csc: torch.sparse_csr,
torch.sparse_bsr: torch.sparse_bsc,
torch.sparse_bsc: torch.sparse_bsr
}[layout]
if n_dense > 0:
# expect all transpose to throw
for (name0, dim0), (name1, dim1) in itertools.product(named0, named1):
msg = r"transpose\(\): hybrid sparse compressed tensors with dense dimensions are not supported"
if (dim0 is not None) and (dim1 is not None):
with self.assertRaisesRegex(RuntimeError, msg):
subject.transpose(dim0, dim1)
else:
subject_dense = subject.to_dense()
for (name0, dim0), (name1, dim1) in itertools.product(named0, named1):
if dim0 is not None:
check_same_dim_transpose(subject, subject_dense, dim0)
if dim1 is not None:
if name0 == name1:
expected_layout = flipped_layout if name0 == "Sparse" else layout
check_good_transpose(subject, subject_dense, dim0, dim1, expected_layout)
else:
check_dim_type_mismatch_throws(subject, name0, dim0, name1, dim1)
# batch/sparse, sparse/dense only and full hybrid cases
shape_ndense = list(itertools.product([(2, 4, 6, 2), (10, 6, 4, 2), (2, 4, 4, 2, 6)], [0, 1, 2]))
# sparse only cases
shape_ndense += [[(4, 8), 0], [(2, 2), 0], [(8, 4), 0]]
for (shape, n_dense), index_dtype in itertools.product(shape_ndense, [torch.int32, torch.int64]):
n_batch = len(shape) - n_dense - 2
sparse_shape = shape[n_batch: n_batch + 2]
if layout in (torch.sparse_bsr, torch.sparse_bsc):
# for blocked all combinations of 2,1 should be valid blocksizes
run_test(shape, 0, index_dtype, n_dense, blocksize=(2, 2))
run_test(shape, max(sparse_shape), index_dtype, n_dense, blocksize=(2, 2))
run_test(shape, sparse_shape[0] * sparse_shape[1], index_dtype, n_dense, blocksize=(2, 2))
# repeat the realistic sparseity case with varried block sizes
run_test(shape, max(sparse_shape), index_dtype, n_dense, blocksize=(2, 1))
run_test(shape, max(sparse_shape), index_dtype, n_dense, blocksize=(1, 2))
run_test(shape, max(sparse_shape), index_dtype, n_dense, blocksize=(1, 1))
else:
run_test(shape, 0, index_dtype, n_dense)
run_test(shape, max(sparse_shape), index_dtype, n_dense)
run_test(shape, sparse_shape[0] * sparse_shape[1], index_dtype, n_dense)
# TODO: This is a stopgap for a rigorous extension of our autograd tests
# to test the functionality of detach
@skipMeta
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
def test_exercise_detach(self, device, dtype):
shape = (3, 3)
nnz = 4
for index_dtype in [torch.int32, torch.int64]:
inp = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype)
detached_inp = inp.detach()
self.assertEqual(inp, detached_inp)
def _construct_sp_matrix(self, tensor, layout, blocksize=(2, 2)):
if tensor.layout in [torch.sparse_coo, torch.sparse_csr, torch.sparse_csc, torch.strided]:
tensor = tensor.to_dense()
else:
raise NotImplementedError(repr(tensor))
if layout is torch.sparse_csr:
return sp.csr_matrix(tensor.cpu().numpy())
if layout is torch.sparse_csc:
return sp.csc_matrix(tensor.cpu().numpy())
if layout is torch.sparse_bsr:
return sp.bsr_matrix(tensor.cpu().numpy(), blocksize=blocksize).sorted_indices()
if layout is torch.sparse_bsc:
# SciPy doesn't have native BSC support - but our tests don't need the full
# functionality so fake it by using a transposed BSR matrix.
class FakeBscMatrix:
def __init__(self, matrix):
self._matrix = matrix
self.shape = tuple(reversed(matrix.shape))
self.indptr = matrix.indptr
self.indices = matrix.indices
self.data = [x.transpose() for x in matrix.data]
@staticmethod
def from_matrix(matrix, blocksize):
blocksize = tuple(reversed(blocksize))
matrix = matrix.transpose()
return FakeBscMatrix(sp.bsr_matrix(matrix, blocksize=blocksize))
def sorted_indices(self):
sub = self._matrix.sorted_indices()
return FakeBscMatrix(sub)
return FakeBscMatrix.from_matrix(tensor.cpu().numpy(), blocksize=blocksize).sorted_indices()
raise NotImplementedError(repr(tensor))
@skipMeta
@all_sparse_compressed_layouts('to_layout')
@all_sparse_compressed_layouts('from_layout')
def test_compressed_layout_conversions_coverage(self, device, from_layout, to_layout):
"""This test performs a smoke test for covered conversion and verifies
that an exception is thrown for unsupported conversions.
TODO: This test covers a subset of
TestSparseAny.test_to_sparse tests and can be
eliminated. Keeping the test until the new
`Tensor.to_sparse(*, layout, blocksize)` has landed.
"""
allowed_pairwise_layouts_sets = {
frozenset({torch.sparse_csc}),
frozenset({torch.sparse_csr}),
frozenset({torch.sparse_csc, torch.sparse_csr}),
frozenset({torch.sparse_csc, torch.sparse_bsc}),
frozenset({torch.sparse_csc, torch.sparse_bsr}),
frozenset({torch.sparse_csr, torch.sparse_bsc}),
frozenset({torch.sparse_csr, torch.sparse_bsr}),
frozenset({torch.sparse_bsc}),
frozenset({torch.sparse_bsr}),
frozenset({torch.sparse_bsc, torch.sparse_bsr}),
}
block_layouts = (torch.sparse_bsr, torch.sparse_bsc)
def _to_from_layout(layout_a, layout_b, a):
expect_error = True
if {layout_a, layout_b} in allowed_pairwise_layouts_sets:
expect_error = False
# BSR -> CSR is not yet supported
if (layout_a, layout_b) == (torch.sparse_bsr, torch.sparse_csr):
expect_error = True
# BSR -> CSC is not yet supported
if (layout_a, layout_b) == (torch.sparse_bsr, torch.sparse_csc):
expect_error = True
# BSC -> CSR is not yet supported
if (layout_a, layout_b) == (torch.sparse_bsc, torch.sparse_csr):
expect_error = True
# BSC -> CSC is not yet supported
if (layout_a, layout_b) == (torch.sparse_bsc, torch.sparse_csc):
expect_error = True
# CSR -> BSR only works for non-batched inputs
if (layout_a, layout_b) == (torch.sparse_csr, torch.sparse_bsr):
if a.dim() > 2:
expect_error = True
# CSR -> BSC only works for non-batched inputs
if (layout_a, layout_b) == (torch.sparse_csr, torch.sparse_bsc):
if a.dim() > 2:
expect_error = True
# CSC -> BSR only works for non-batched inputs
if (layout_a, layout_b) == (torch.sparse_csc, torch.sparse_bsr):
if a.dim() > 2:
expect_error = True
# CSC -> BSC only works for non-batched inputs
if (layout_a, layout_b) == (torch.sparse_csc, torch.sparse_bsc):
if a.dim() > 2:
expect_error = True
blocksize_a = (1, 1) if layout_a in {torch.sparse_bsr, torch.sparse_bsc} else None
blocksize_b = (1, 1) if layout_b in {torch.sparse_bsr, torch.sparse_bsc} else None
b = a.to_sparse(layout=layout_a, blocksize=blocksize_a)
if expect_error:
with self.assertRaises(RuntimeError):
b.to_sparse(layout=layout_b, blocksize=blocksize_b)
else:
c = b.to_sparse(layout=layout_b, blocksize=blocksize_b)
self.assertEqual(a.to_dense(), c.to_dense())
# change of blocksize upon conversion is not yet supported.
if b.layout in block_layouts:
for block_layout in block_layouts:
with self.assertRaisesRegex(RuntimeError,
"conversion from.*to.*with blocksize changed from.*to.*is not supported"):
b.to_sparse(layout=block_layout, blocksize=(3, 3))
batch_dims = [(), (2,), (2, 2), (2, 2, 2)]
sparse_dims = (6, 12)
for batch_dim in batch_dims:
a = make_tensor(batch_dim + sparse_dims, dtype=torch.float, device=device)
_to_from_layout(from_layout, to_layout, a)
@skipMeta
@all_sparse_compressed_layouts()
@batched_nonbatched()
@hybrid_nonhybrid()
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
def test_dense_to_from_sparse_compressed(self, device, hybrid, batched, layout):
"""This test tests conversion from dense to/from CSR and CSC
by comparing to SciPy's implementation.
Here we test only those conversion combinations that SciPy
supports to ensure that PyTorch conversions are in the same
page with SciPy. Independent from SciPy, all conversion
combinations are tested in TestSparseAny.test_to_sparse.
"""
blocked_layouts = (torch.sparse_bsr, torch.sparse_bsc)
# helpers
def _check_against_scipy_matrix(pt_matrix, dense, blocksize, **kwargs):
# scipy has no bsc layout, so we check against the bsr layout of the tranposed dense
if layout == torch.sparse_bsc:
sp_matrix = self._construct_sp_matrix(dense.t(), layout=torch.sparse_bsr, blocksize=blocksize[::-1])
else:
sp_matrix = self._construct_sp_matrix(dense, layout=layout, blocksize=blocksize)
compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[layout]
self.assertEqual(layout, pt_matrix.layout)
if layout == torch.sparse_bsc:
self.assertEqual(sp_matrix.shape[::-1], pt_matrix.shape)
else:
self.assertEqual(sp_matrix.shape, pt_matrix.shape)
self.assertEqual(torch.tensor(sp_matrix.indptr, dtype=torch.int64), compressed_indices_mth(pt_matrix))
self.assertEqual(torch.tensor(sp_matrix.indices, dtype=torch.int64), plain_indices_mth(pt_matrix))
if layout == torch.sparse_bsc:
# we must tranpose the blocks before comparing
self.assertEqual(torch.tensor(sp_matrix.data), pt_matrix.values().transpose(-2, -1))
else:
self.assertEqual(torch.tensor(sp_matrix.data), pt_matrix.values())
def _check_hybrid_matrix(pt_matrix, dense, blocksize, **kwargs):
# Calculate COO indices for sparse matrix.
compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[layout]
compressed_indices = compressed_indices_mth(pt_matrix)
plain_indices = plain_indices_mth(pt_matrix)
coo_indices = torch._convert_indices_from_csr_to_coo(compressed_indices, plain_indices)
row_indices, col_indices = {
torch.sparse_csr: (coo_indices[0, ], coo_indices[1, ]),
torch.sparse_csc: (coo_indices[1, ], coo_indices[0, ]),
torch.sparse_bsr: (coo_indices[0, ], coo_indices[1, ]),
torch.sparse_bsc: (coo_indices[1, ], coo_indices[0, ]),
}[pt_matrix.layout]
# If sparse matrix layout blocked, rearrange dense matrix
# so that the shape past first two dimensions match the
# shape of sparse matrix values.
dense_to_check = dense
if blocksize:
dense_shape = dense.shape
dense_to_check_shape = (dense.shape[0] // blocksize[0],
blocksize[0],
dense.shape[1] // blocksize[1],
blocksize[1]) + dense.shape[2:]
dense_to_check = dense_to_check.reshape(dense_to_check_shape).transpose(1, 2)
# Verify that non-zero values of the sparse matrix are
# equal to corresponding values of the dense matrix.
self.assertEqual(pt_matrix.values(), dense_to_check[row_indices, col_indices])
# Verify that the remaining elements of the dense matrix
# are 0, i.e. that dense are sparse matrix are fully
# equal.
mask = torch.ones_like(dense_to_check, dtype=torch.bool)
mask[row_indices, col_indices] = False
self.assertTrue(torch.all(torch.masked_select(dense_to_check, mask) == 0))
def _check_batched(pt_tensor, dense, check_batch=None, batch_shape=(), blocksize=(), **kwargs):
self.assertEqual(layout, pt_tensor.layout)
self.assertEqual(pt_tensor.shape, dense.shape)
compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[layout]
for batch_index in np.ndindex(batch_shape):
pt_matrix = pt_tensor[batch_index]
dense_matrix = dense[batch_index]
dense_dim = pt_matrix.dim() - 2
dense_matrix_pt = dense_matrix.to_sparse(layout=layout,
blocksize=blocksize or None,
dense_dim=dense_dim)
# sanity check, selecting batch of to_<layout> and dense[batch].to_<layout> should give the same result
self.assertEqual(pt_matrix, dense_matrix_pt)
check_batch(pt_matrix, dense_matrix, blocksize, **kwargs)
def _generate_subject(sparse_shape, batch_shape, hybrid_shape):
shape = batch_shape + sparse_shape + hybrid_shape
n_batch_dim = len(batch_shape)
n_hybrid_dim = len(hybrid_shape)
# generate a dense tensor
dense = make_tensor(shape, dtype=torch.float, device=device)
# introduce some sparsty, mask is sparse shape, element applies to entire dense sub-tensor (hybrid) and is
# applied to each batch
mask = make_tensor(sparse_shape, dtype=torch.bool, device=device)
# manually expand to match hybrid shape
if hybrid:
mask = mask.view(sparse_shape + tuple(1 for _ in range(n_hybrid_dim)))
mask = mask.expand(sparse_shape + hybrid_shape)
# mask will broadcast over the batch dims if present
return dense * mask
# note: order is important here, the hybrid-ness decides the inner content check which is used to build the
# batched checker (if needed)
check_content = _check_against_scipy_matrix
if hybrid:
check_content = _check_hybrid_matrix
if batched:
check_content = functools.partial(_check_batched, check_batch=check_content)
sparse_sizes = [(6, 10), (0, 10), (6, 0), (0, 0)]
blocksizes = [(2, 2), (1, 1), (1, 2)] if layout in blocked_layouts else [()]
batch_sizes = [(3,), (1, 3), (2, 1, 3)] if batched else [()]
hybrid_sizes = [(4, ), (2, 2)] if hybrid else [()]
# general cases, always run
for sparse_shape, blocksize, batch_shape, hybrid_shape in itertools.product(
sparse_sizes, blocksizes, batch_sizes, hybrid_sizes):
dense = _generate_subject(sparse_shape, batch_shape, hybrid_shape)
sparse = dense.to_sparse(layout=layout, blocksize=blocksize or None, dense_dim=len(hybrid_shape))
check_content(sparse, dense, blocksize=blocksize, batch_shape=batch_shape, hybrid_shape=hybrid_shape)
dense_back = sparse.to_dense()
self.assertEqual(dense, dense_back)
# special cases for batched tensors
if batched:
# batched sparse tensors need only have the same number of non-zeros in each batch not nessesarily the
# same sparsity pattern in each batch
sparse_shape = sparse_sizes[0]
hybrid_shape = hybrid_sizes[0]
batch_shape = batch_sizes[0]
shape = batch_shape + sparse_shape + hybrid_shape
dense = make_tensor(shape, dtype=torch.float, device=device)
blocksize = blocksizes[0]
# number of elements/blocks in each batch (total not nnz)
batch_mask_shape = sparse_shape
if layout in blocked_layouts:
# if we are blocked the mask is genereated for the block valued elemetns
batch_mask_shape = sparse_shape[0] // blocksize[0], sparse_shape[1] // blocksize[1]
# random bool vector w/ length equal to max possible nnz for the sparse_shape
mask_source = make_tensor(batch_mask_shape, dtype=torch.bool, device=device).flatten()
n_batch = functools.reduce(operator.mul, batch_shape, 1)
# stack random permutations of the source for each batch
mask = torch.stack([mask_source[torch.randperm(mask_source.numel())]
for _ in range(n_batch)], dim=0).reshape(batch_shape + batch_mask_shape)
if layout in blocked_layouts:
# for blocked we need to do a bit of extra work to expand the mask from blocked-space to element-space
mask_shape = mask.shape
mask = mask.view(mask_shape + (1, 1))
mask = mask.expand(mask_shape + blocksize)
mask = mask.transpose(-3, -2)
mask = mask.flatten(-4, -3).flatten(-2, -1)
mask_shape = mask.shape
mask = mask.view(mask_shape + (1,) * len(hybrid_shape))
mask = mask.expand(mask_shape + hybrid_shape)
dense = dense * mask
sparse = dense.to_sparse(layout=layout, blocksize=blocksize or None, dense_dim=len(hybrid_shape))
check_content(sparse, dense, blocksize=blocksize, batch_shape=batch_shape, hybrid_shape=hybrid_shape)
dense_back = sparse.to_dense()
self.assertEqual(dense, dense_back)
# if batches have different nnz we expect the conversion to throw
mask_0 = mask[0]
mask_1 = mask[0].clone().fill_(True)
mask_2 = mask[0].clone().fill_(False)
mask_true = mask_source.clone().fill_(True)
mask_false = mask_source.clone().fill_(False)
mask = torch.stack([(mask_0, mask_1, mask_2)[i % 3] for i in range(n_batch)], dim=0).reshape(batch_shape + mask_0.shape)
dense = make_tensor(shape, dtype=torch.float, device=device)
dense = dense * mask
msg = "Expect the same number of specified elements per batch."
with self.assertRaisesRegex(RuntimeError, msg):
dense.to_sparse(layout=layout, blocksize=blocksize or None)
# Should throw if there is a zero in the batch size
dense = make_tensor((0,) + shape, dtype=torch.float, device=device)
layout_code = str(layout).split("_")[-1]
msg = f"to_sparse_{layout_code}: Expected product of batch dimensions to be non-zero."
with self.assertRaisesRegex(RuntimeError, msg):
dense.to_sparse(layout=layout, blocksize=blocksize or None)
@skipMeta
@all_sparse_compressed_layouts()
@coalescedonoff
@dtypes(torch.double)
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
def test_sparse_to_sparse_compressed(self, device, dtype, coalesced, layout):
"""
This test tests conversion from COO to CSR and CSC and CSC to CSR and CSC
by comparing to SciPy's implementation.
Here we test only those conversion combinations that SciPy
supports to ensure that PyTorch conversions are in the same
page with SciPy. Independent from SciPy, all conversion
combinations are tested in TestSparseAny.test_to_sparse.
"""
blocksize_kw = {}
if layout in (torch.sparse_bsc, torch.sparse_bsr):
blocksize_kw['blocksize'] = (2, 2)
# block modes don't support 0 width/height
shapes = [(6, 10)]
elif layout in (torch.sparse_csc, torch.sparse_csr):
shapes = [(0, 10), (6, 0), (6, 10), (0, 0)]
else:
raise NotImplementedError("unhandled layout")
if layout in (torch.sparse_bsc, torch.sparse_csc):
compressed_indices_mth = torch.Tensor.ccol_indices
plain_indices_mth = torch.Tensor.row_indices
elif layout in (torch.sparse_bsr, torch.sparse_csr):
compressed_indices_mth = torch.Tensor.crow_indices
plain_indices_mth = torch.Tensor.col_indices
else:
raise NotImplementedError("unhandled layout")
for shape in shapes:
sparse_dim = 2
nnz = shape[0] * shape[1] // 2
sparse, _, _ = self.genSparseTensor(shape, sparse_dim, nnz, coalesced, device, dtype)
sp_matrix = self._construct_sp_matrix(sparse, layout)
pt_matrix = sparse.to_sparse(layout=layout, **blocksize_kw)
self.assertEqual(layout, pt_matrix.layout)
self.assertEqual(sp_matrix.shape, pt_matrix.shape)
self.assertEqual(torch.tensor(sp_matrix.indptr, dtype=torch.int64), compressed_indices_mth(pt_matrix))
self.assertEqual(torch.tensor(sp_matrix.indices, dtype=torch.int64), plain_indices_mth(pt_matrix))
self.assertEqual(torch.tensor(sp_matrix.data), pt_matrix.values())
sparse_csc = sparse.to_sparse_csc()
sp_matrix = self._construct_sp_matrix(sparse_csc, layout)
pt_matrix = sparse_csc.to_sparse(layout=layout, **blocksize_kw)
self.assertEqual(layout, pt_matrix.layout)
self.assertEqual(sp_matrix.shape, pt_matrix.shape)
self.assertEqual(torch.tensor(sp_matrix.indptr, dtype=torch.int64), compressed_indices_mth(pt_matrix))
self.assertEqual(torch.tensor(sp_matrix.indices, dtype=torch.int64), plain_indices_mth(pt_matrix))
self.assertEqual(torch.tensor(sp_matrix.data), pt_matrix.values())
@unittest.skipIf(not TEST_CUDA_CUDSS, "The test requires cudss")
@dtypes(*floating_types())
def test_linalg_solve_sparse_csr_cusolver(self, device, dtype):
# https://github.com/krshrimali/pytorch/blob/f5ee21dd87a7c5e67ba03bfd77ea22246cabdf0b/test/test_sparse_csr.py
try:
spd = torch.rand(4, 3)
A = spd.T @ spd
b = torch.rand(3).cuda()
A = A.to_sparse_csr().cuda()
x = torch.sparse.spsolve(A, b)
except RuntimeError as e:
if "Calling linear solver with sparse tensors requires compiling " in str(e):
self.skipTest("PyTorch was not built with cuDSS support")
samples = sample_inputs_linalg_solve(None, device, dtype)
for sample in samples:
if sample.input.ndim != 2:
continue
out = torch.zeros(sample.args[0].size(), dtype=dtype, device=device)
if sample.args[0].ndim != 1 and sample.args[0].size(-1) != 1:
with self.assertRaisesRegex(RuntimeError, "b must be a 1D tensor"):
out = torch.linalg.solve(sample.input.to_sparse_csr(), *sample.args, **sample.kwargs)
break
if not sample.args[0].numel():
with self.assertRaisesRegex(RuntimeError,
"Expected non-empty other tensor, but found empty tensor"):
torch.linalg.solve(sample.input.to_sparse_csr(), *sample.args, **sample.kwargs, out=out)
break
expect = torch.linalg.solve(sample.input, *sample.args, **sample.kwargs)
sample.input = sample.input.to_sparse_csr()
if sample.args[0].ndim != 1 and sample.args[0].size(-1) == 1:
expect = expect.squeeze(-1)
sample.args = (sample.args[0].squeeze(-1), )
out = torch.linalg.solve(sample.input, *sample.args, **sample.kwargs)
self.assertEqual(expect, out)
def skipIfNoTriton(cls):
from torch.utils._triton import has_triton
# no-op if triton is present
if has_triton():
return cls
else:
@functools.wraps(cls, updated=())
class skipped_cls(cls):
def setUp(self):
self.skipTest("Triton is not available.")
return skipped_cls
@skipIfNoTriton
class TestSparseCompressedTritonKernels(TestCase):
def _to_block_triangular_inplace(self, d, row_block, col_block):
"""
This function modifies `d` to become (upper/lower) block-triangular in-place.
It is assumed that `d.shape[-2]` is divisible by `row_block` and
`d.shape[-1]` is divisible by `col_block`.
"""
from torch.sparse._triton_ops import tile_to_blocksize
m, n = d.shape[-2:]
d_tiled = tile_to_blocksize(d, (row_block, col_block))
d_tiled = d_tiled.moveaxis(-4, -1).moveaxis(-4, -1)
if m // row_block > n // col_block:
d_tiled.tril_()
else:
d_tiled.triu_()
return d
@onlyCUDA
@dtypes(torch.half, torch.bfloat16, torch.float)
@dtypesIfCUDA(torch.half, *[torch.bfloat16] if SM80OrLater else [], torch.float)
@unittest.skipIf(IS_FBCODE and IS_REMOTE_GPU, "Test requires Triton")
def test_triton_bsr_softmax(self, device, dtype):
from functools import partial
from torch.sparse._triton_ops import bsr_softmax
tensor = partial(make_tensor, device=device, dtype=dtype, low=1.0, high=3.0)
# NOTE: batch dims with zero sizes are not supported in `to_sparse_bsr`.
batches = [(), (2,), (2, 2)]
size = [6, 12, 0]
block_size = [2, 3]
# General correctness
for row_block, col_block, b, m, n in itertools.product(block_size, block_size, batches, size, size):
input = tensor(b + (m, n))
input.diagonal(dim1=-2, dim2=-1).fill_(m * n)
input = self._to_block_triangular_inplace(input, row_block, col_block)
bsr = input.to_sparse_bsr((row_block, col_block))
coo = input.to_sparse().to(torch.float)
res_tri = bsr_softmax(bsr)
res_coo = torch.sparse.softmax(coo, -1)
self.assertEqual(res_tri, res_coo.to(input.dtype))
# Test long rows which exceed Triton's max numel limit set to 2 ** 17
input = tensor(b + (1, 150000))
bsr = input.to_sparse_bsr(1)
self.assertEqual(input.softmax(-1), bsr_softmax(bsr))
@parametrize("block_size", [16, 32, 64])
@parametrize("index_dtype", [torch.int32, torch.int64])
@onlyCUDA
@dtypes(torch.half, torch.bfloat16, torch.float)
@dtypesIfCUDA(torch.half, *[torch.bfloat16] if SM80OrLater else [], torch.float)
@unittest.skipIf((not TEST_WITH_TORCHINDUCTOR) or (IS_FBCODE and IS_REMOTE_GPU) or torch._running_with_deploy(),
"Skipped for deploy and internal with remote GPUs")
def test_triton_bsr_dense_bmm(self, device, dtype, index_dtype, block_size):
from functools import partial
from torch.sparse._triton_ops import bsr_dense_mm
def kernel_impl(*args, **kwargs):
return bsr_dense_mm(*args, skip_checks=True, **kwargs)
kernel = torch._TritonLibrary.registerOp(
"_triton_bsr_dense_mm_out",
"_triton_bsr_dense_mm_out(Tensor bsr, Tensor dense, *, Tensor(a!) out) -> Tensor(a!)",
kernel_impl,
"SparseCsrCUDA"
)
# kernel != kernel_impl means dispatch was already registered.
# This is exactly what we need!
self.assertTrue(kernel is not kernel_impl)
# Note that each value in a non-zero block is in range block_size * [low^2, high^2).
tensor = partial(make_tensor, device=device, dtype=dtype, low=0.5, high=1.5)
# NOTE: batch dims with zero sizes are not supported in `to_sparse_bsr`.
batches = [(), (2,), (2, 2)]
size = [128, 256, 0]
# Whether to make inputs orthogonal so that the product is zero
make_orthogonal = [True, False]
for bd, bs, m, n, k, is_ortho in itertools.product(batches, batches, size, size, size, make_orthogonal):
bsr = tensor(bs + (m, k))
# NOTE: do not get confused, it will be transposed
dense = tensor(bd + (n, k))
if is_ortho:
bsr = torch.cat((bsr, torch.zeros_like(bsr)), dim=-1)
dense = torch.cat((torch.zeros_like(dense), dense), dim=-1)
bsr = bsr.to_sparse_bsr(block_size)
if bsr.dim() == 2 and dtype != torch.float:
# Test against linear to check dispatch
# which takes place for torch.half and torch.bfloat16.
res_dense = torch.nn.functional.linear(dense, bsr.to_dense())
res_tri_out = torch.empty_like(res_dense)
res_tri = torch.nn.functional.linear(dense, bsr, out=res_tri_out)
# Check dispatch worked with non-trivial outputs
if m > 0 and n > 0 and k > 0:
self.assertTrue(kernel.kernel_invoked)
kernel.kernel_invoked = False
else:
# Otherwise check correctness against bmm
# since nn.linear does not support bsr.dim() > 2.
res_dense = bsr.to_dense() @ dense.transpose(-2, -1)
res_tri_out = torch.empty_like(res_dense)
res_tri = kernel(bsr, dense.transpose(-2, -1), out=res_tri_out)
self.assertTrue(res_tri is res_tri_out)
self.assertEqual(res_tri, res_dense)
res_dense = bsr.to_dense() @ dense.transpose(-2, -1)
# check whether bsr_dense_mm handles different grid sizes
# None means max possible grid size which is CUDA-dependent.
grid_size = (None, 2, 4)
grid_gen = itertools.product(grid_size, repeat=3)
for grid in grid_gen:
res_tri = torch.sparse._triton_ops.bsr_dense_mm(
bsr,
dense.transpose(-2, -1),
max_grid=grid,
)
self.assertEqual(res_tri, res_dense)
@onlyCUDA
@dtypes(torch.half)
@unittest.skipIf(IS_FBCODE and IS_REMOTE_GPU or torch._running_with_deploy(),
"Skipped for deploy and internal with remote GPUs")
def test_triton_bsr_dense_bmm_error_messages(self, device, dtype):
from torch.sparse._triton_ops import bsr_dense_mm
rhs = torch.rand(32, 32, dtype=dtype, device=device)
lhs = rhs.to_sparse_bsr(16)
with self.assertRaisesRegex(ValueError, "only BSR sparse format is supported"):
bsr_dense_mm(lhs.to_sparse_bsc(16), rhs)
with self.assertRaisesRegex(ValueError, "on the same GPU device"):
bsr_dense_mm(lhs, rhs.cpu())
if torch.cuda.device_count() > 1:
with self.assertRaisesRegex(ValueError, "on the same GPU device"):
bsr_dense_mm(lhs.to("cuda:0"), rhs.to("cuda:1"))
with self.assertRaisesRegex(ValueError, "all inputs are expected to be of the same dtype"):
bsr_dense_mm(lhs, rhs.to(torch.float))
with self.assertRaisesRegex(ValueError, r"and one of \(half, bfloat16, float32\)"):
bsr_dense_mm(lhs.to(torch.double), rhs.to(torch.double))
with self.assertRaisesRegex(ValueError, "all inputs involved in the matrix product are expected to be at least 2D"):
bsr_dense_mm(lhs, torch.rand(1, dtype=dtype, device=device))
with self.assertRaisesRegex(ValueError,
"sizes involved in the matrix product are not compatible for matrix multiplication"):
bsr_dense_mm(lhs, torch.rand(1, 1, dtype=dtype, device=device))
with self.assertRaisesRegex(ValueError,
r"dense.size\(-1\) == 15 should be divisible by 16"):
bsr_dense_mm(lhs, torch.rand(32, 15, dtype=dtype, device=device))
# Blocksizes check
for blocksize in (15, 30):
n = blocksize * 2
rhs = torch.rand(n, n, dtype=dtype, device=device)
lhs = rhs.to_sparse_bsr(blocksize)
with self.assertRaisesRegex(ValueError, "should be at least 16 and a power of 2"):
bsr_dense_mm(lhs, rhs)
# out check
rhs = torch.rand(2, 32, 32, dtype=dtype, device=device)
lhs = rhs.to_sparse_bsr(16)
with self.assertRaisesRegex(ValueError, r"`out` argument has wrong shape"):
out = torch.rand(2, 30, 30, dtype=dtype, device=device)
bsr_dense_mm(lhs, rhs, out=out)
with self.assertRaisesRegex(ValueError, r"only row-major/col-major `out`"):
out = torch.rand(32, 32, 2, dtype=dtype, device=device).transpose(0, -1)
bsr_dense_mm(lhs, rhs, out=out)
@parametrize("block_size", [16, 32, 64])
@onlyCUDA
@skipIfRocm
@dtypes(torch.half, torch.bfloat16, torch.float)
@dtypesIfCUDA(torch.half, *[torch.bfloat16] if SM80OrLater else [], torch.float)
@unittest.skipIf(IS_FBCODE and IS_REMOTE_GPU, "Test requires Triton")
@precisionOverride({torch.float16: 1e-3})
def test_triton_scaled_dot_product_attention(self, device, dtype, block_size):
from functools import partial
from torch.sparse._triton_ops import _scaled_dot_product_attention
# Note that each value in a non-zero block is in range block_size * [low^2, high^2).
tensor = partial(make_tensor, device=device, dtype=dtype, low=0.3, high=1.2)
def broadcast_input(*ts):
batch_dims = torch.broadcast_shapes(*(t.shape[:-2] for t in ts))
yield from (torch.broadcast_to(t, batch_dims + t.shape[-2:]) for t in ts)
# NOTE: batch dims with zero sizes are not supported in `to_sparse_bsr`.
batches = [(), (2,), (2, 2)]
size = [128, 256, 0]
for bam, bq, bk, bv, m, n, k in itertools.product(batches, batches, batches, batches, size, size, size):
query = tensor(bq + (m, k))
key = tensor(bk + (n, k))
value = tensor(bv + (n, k))
# We make attn_mask block lower/upper triangular so that BSR and Strided
# function variants are directly comparable.
attn_mask = torch.ones(bam + (m, n), device=device, dtype=torch.bool)
attn_mask = self._to_block_triangular_inplace(attn_mask, block_size, block_size)
attn_mask_bsr = attn_mask.to_sparse_bsr(block_size)
# NOTE: only boolean mask is directly compatible with the Strided version
# without any pre-/post-processing. Hence we test against a boolean mask.
for scale in (None, 1. / 16):
if scale is None and query.size(-1) == 0:
scale = 1
expected = torch.nn.functional.scaled_dot_product_attention(
*broadcast_input(query, key, value, attn_mask), scale=scale
)
for mask_dtype in (torch.bool, dtype):
res = _scaled_dot_product_attention(query, key, value, attn_mask_bsr.to(mask_dtype), scale=scale)
self.assertEqual(res, expected)
@parametrize("block_size", [16, 32, 64])
@onlyCUDA
@dtypes(torch.half, torch.bfloat16, torch.float)
@dtypesIfCUDA(torch.half, *[torch.bfloat16] if SM80OrLater else [], torch.float)
@unittest.skipIf(IS_FBCODE and IS_REMOTE_GPU, "Test requires Triton")
def test_triton_sampled_addmm(self, device, dtype, block_size):
from functools import partial
from torch.sparse._triton_ops import sampled_addmm, broadcast_batch_dims_bsr
# Note that each value in a non-zero block is in range block_size * [low^2, high^2).
tensor = partial(make_tensor, device=device, dtype=dtype, low=0.3, high=1.2)
# NOTE: batch dims with zero sizes are not supported in `to_sparse_bsr`.
batches = [(), (2,), (2, 2)]
size = [128, 256, 0]
delta_k = (-3,)
for bi, bm1, bm2, m, n, k, dk in itertools.product(batches, batches, batches, size, size, size, delta_k):
# Test not powers of 2 ks as well.
k = max(0, k + dk)
# Non-trivial sparsity pattern.
# Plus with tril inputs the result is also tril,
# so we can compare BSR and CSR implementations.
input = tensor(bi + (m, n)).tril_()
bsr = input.to_sparse_bsr(block_size)
mat1 = tensor(bm1 + (m, k)).tril_()
mat2 = tensor(bm2 + (k, n)).tril_()
batch_dim = torch.broadcast_shapes(input.shape[:-2], mat1.shape[:-2], mat2.shape[:-2])
csr = input.broadcast_to(batch_dim + input.shape[-2:]).to_sparse_csr().to(torch.float)
mat1csr = mat1.broadcast_to(batch_dim + mat1.shape[-2:]).to(torch.float)
mat2csr = mat2.broadcast_to(batch_dim + mat2.shape[-2:]).to(torch.float)
input_broadcasted_clone = broadcast_batch_dims_bsr(
"test_triton_sampled_addmm",
bsr, mat1, mat2
).clone()
input_broadcasted_clone = torch.sparse_compressed_tensor(
input_broadcasted_clone.crow_indices(),
input_broadcasted_clone.col_indices(),
# For testing `out=` let's make values to have "weird" strides
# so that if the kernel modifies values to it's needs, the result
# is being compied into out.values.
input_broadcasted_clone.values().transpose(-3, -2).contiguous().transpose(-3, -2),
layout=input_broadcasted_clone.layout,
size=input_broadcasted_clone.shape
)
scalars = (0.0, 2.0)
for alpha, beta, out in itertools.product(scalars, scalars, (None, input_broadcasted_clone)):
res_tri = sampled_addmm(bsr, mat1, mat2, alpha=alpha, beta=beta, out=out)
if out is not None:
self.assertTrue(res_tri is out)
batch_broadcasted_shape = torch.broadcast_shapes(*(t.shape[:-2] for t in (input, mat1, mat2)))
self.assertTrue(res_tri.shape == batch_broadcasted_shape + (m, n))
res_csr = torch.sparse.sampled_addmm(csr, mat1csr, mat2csr, alpha=alpha, beta=beta).to(input.dtype)
self.assertEqual(res_tri.to_dense(), res_csr.to_dense())
# Check different grid sizes to make sure that input slicing works
# if this input is larger than the grid.
grid_size = (3, None)
grid_gen = itertools.product(grid_size, repeat=2)
for grid in grid_gen:
res_tri_grid = sampled_addmm(bsr, mat1, mat2, alpha=alpha, beta=beta, max_grid=grid)
self.assertEqual(res_tri, res_tri_grid)
@onlyCUDA
@dtypes(torch.half, torch.bfloat16, torch.float)
@dtypesIfCUDA(torch.half, *[torch.bfloat16] if SM80OrLater else [], torch.float)
@unittest.skipIf(IS_FBCODE and IS_REMOTE_GPU, "Test requires Triton")
def test_triton_scatter_mm(self, device, dtype):
from torch.sparse._triton_ops import scatter_mm
from functools import partial
tensor = partial(make_tensor, device=device, dtype=dtype, low=0.5, high=1.5)
sizes = [8, 16]
for m, k, n in itertools.product(sizes, sizes, sizes):
blocks = torch.stack([tensor(m, k), tensor(m, k)])
others = torch.stack([tensor(k, n), tensor(k, n)])
expected = torch.stack([blocks[0] @ others[0] + blocks[1] @ others[0],
blocks[0] @ others[1],
blocks[1] @ others[1]])
indices_data = (
'scatter_mm',
torch.tensor([0, 2, 3, 4], dtype=torch.int32, device=device),
torch.tensor([[0, 0], [1, 0], [0, 1], [1, 1]], dtype=torch.int32, device=device))
result = scatter_mm(blocks, others, indices_data=indices_data)
self.assertEqual(result, expected)
indices_data = (
'bsr_strided_mm',
torch.tensor([0, 2, 4, 5, 6], dtype=torch.int32, device=device),
torch.tensor([0, n, 2 * n * m, 2 * n * m + n], dtype=torch.int32, device=device),
torch.tensor([1, 0, 1, 0, 1, 1], dtype=torch.int32, device=device),
torch.tensor([0, 2 * k * n, n, 2 * k * n + n, 2 * k * n, 2 * k * n + n],
dtype=torch.int32, device=device),
dict(SPLIT_N=2, is_compressed=False, TILE_M=m, TILE_N=n, GROUP_SIZE=1)
)
for bsize in [(), (2,), (3, 4)]:
other = tensor(*bsize, 2 * k, 2 * n)
expected = torch.cat([
torch.cat([blocks[1], blocks[0]], dim=1),
torch.cat([torch.zeros_like(blocks[0]), blocks[1]], dim=1)], dim=0) @ other
result = scatter_mm(blocks, other, indices_data=indices_data)
self.assertEqual(result, expected)
@parametrize("blocksize", [2, '2x3', 16, '16x32', 32, 64])
@onlyCUDA
@dtypes(torch.half, torch.bfloat16, torch.float)
@dtypesIfCUDA(torch.half, *[torch.bfloat16] if SM80OrLater else [], torch.float)
@unittest.skipIf(IS_FBCODE and IS_REMOTE_GPU, "Test requires Triton")
def test_triton_bsr_scatter_mm(self, device, dtype, blocksize):
import triton
from torch.sparse._triton_ops import bsr_scatter_mm, bsr_scatter_mm_indices_data
from functools import partial
if isinstance(blocksize, str):
blocksize = tuple(map(int, blocksize.split('x')))
else:
blocksize = (blocksize,) * 2
# Note that each value in a non-zero block is in range blocksize * [low^2, high^2).
tensor = partial(make_tensor, device=device, dtype=dtype, low=0.5, high=1.5)
# NOTE: batch dims with zero sizes are not supported in `to_sparse_bsr`.
batches = [(), (2,), (2, 2)]
sizes = [blocksize[0], 2 * blocksize[0], 4 * blocksize[0]]
sizes_K = [blocksize[1], 2 * blocksize[1]]
for bd, bs, M, K, N, has_zero_row_block in itertools.product(batches, batches[:1], sizes, sizes_K, sizes, (False, True)):
bsr_dense = tensor(bs + (M, K))
if has_zero_row_block:
if M > blocksize[0]:
bsr_dense[:blocksize[0]].zero_()
else:
continue
bsr = bsr_dense.to_sparse_bsr(blocksize)
dense = tensor(bd + (K, N))
expected = bsr.to_dense() @ dense
for indices_format in ('bsr_strided_mm', 'bsr_strided_mm_compressed', 'scatter_mm'):
if indices_format in {'bsr_strided_mm', 'bsr_strided_mm_compressed'}:
SPLIT_N_list = [N]
while SPLIT_N_list[-1] > 1:
SPLIT_N_list.append(max(1, SPLIT_N_list[-1] // 2))
else:
SPLIT_N_list = [1]
for SPLIT_N in SPLIT_N_list:
indices_data = bsr_scatter_mm_indices_data(
bsr, dense, indices_format=indices_format, SPLIT_N=SPLIT_N)
try:
result = bsr_scatter_mm(bsr, dense, indices_data=indices_data)
except triton.compiler.OutOfResources:
# ensure that there was at least one succesful test:
assert SPLIT_N < SPLIT_N_list[0]
break
self.assertEqual(result, expected)
torch.sparse._triton_ops._bsr_scatter_mm_indices_data.cache_clear()
def test_TensorAsKey(self, device):
from torch.sparse._triton_ops import TensorAsKey
assertEqualOptions = dict(exact_dtype=True, exact_device=True, exact_layout=True)
t = torch.tensor([1, 2, 3, 4], dtype=torch.int64, device=device)
key = TensorAsKey(t)
self.assertTrue(key == TensorAsKey(t))
self.assertTrue(key.obj is t)
t2 = t[:]
key2 = TensorAsKey(t2)
self.assertTrue(key == key2)
self.assertEqual(key2.obj, t, **assertEqualOptions)
# deleting object leads to dead key
del t2
self.assertTrue(key2.obj is None)
self.assertTrue(key.obj is t)
# key with different storage offset and shape:
self.assertFalse(key == TensorAsKey(t[1:]))
# key with different strides:
self.assertFalse(key == TensorAsKey(t[::2]))
# when object dies, make sure that key represents a dead
# object as well:
del t
self.assertTrue(key.obj is None)
# Storing a tensor as a dict key:
d = {}
t3 = torch.tensor([1, 2, 3, 4], dtype=torch.int32, device=device)
key3 = TensorAsKey(t3)
d[key3] = 123
self.assertTrue(d.get(key3) == 123)
t3_ = t3[:]
self.assertTrue(d.get(TensorAsKey(t3_)) == 123)
self.assertTrue(d.get(TensorAsKey(t3.clone())) is None)
d[TensorAsKey(t3_)] = 567
self.assertTrue(d.get(key3) == 567)
# t3 and t3_ reference the same data, so, the key becomes dead
# (that is, its .obj property returns None) until all
# references are deleted:
del t3
self.assertTrue(key3.obj is not None)
self.assertTrue(d.get(key3) == 567)
del t3_
self.assertTrue(key3.obj is None)
self.assertTrue(d.get(key3) == 567)
# Storing a tensor as a dict key and value:
d = {}
t4 = torch.tensor([1, 2, 3, 4], dtype=torch.int32, device=device)
key4 = TensorAsKey(t4)
d[key4] = (t4, 123)
self.assertEqual(d.get(key4), (t4, 123), **assertEqualOptions)
# when object is deleted, the key represents an alive object
# because the object is referenced by the dict item value:
del t4
self.assertTrue(key4.obj is not None)
# This also means that the life time of the tensor is same as
# the life time of the corresponding dict item:
del d[key4]
self.assertTrue(key4.obj is None)
# Storing a tensor as a dict key and value wrapped with TensorAsKey:
d = {}
t5 = torch.tensor([1, 2, 3, 4], dtype=torch.int32, device=device)
key5 = TensorAsKey(t5)
d[key5] = (key5, 567)
self.assertEqual(d.get(key5), (key5, 567), **assertEqualOptions)
self.assertTrue(key5.obj is not None)
# when object is deleted, it will be dead as the wrapped value
# hold the tensor instance as a weakref:
del t5
self.assertTrue(key5.obj is None)
# but key is still valid:
self.assertEqual(d.get(key5), (key5, 567), **assertEqualOptions)
@suppress_warnings
@parametrize("op", ['bsr_dense_addmm', 'bsr_dense_mm', 'bsr_dense_linear', '_int_bsr_dense_addmm'])
@parametrize("blocksize", [16, '16x32', 32])
@parametrize("out_dtype", ['unspecified', 'int32'])
@onlyCUDA
@dtypes(torch.half, torch.bfloat16, torch.float, torch.int8)
@dtypesIfCUDA(torch.half, *[torch.bfloat16] if SM80OrLater else [], torch.float, torch.int8)
@precisionOverride({torch.float16: 6e-1})
@unittest.skipIf(IS_FBCODE and IS_REMOTE_GPU, "Test requires Triton")
def test_triton_kernel(self, op, device, dtype, blocksize, out_dtype):
from torch.sparse._triton_ops import bsr_dense_addmm, bsr_dense_mm, _int_bsr_dense_addmm
from torch.sparse._triton_ops_meta import (create_blocked_tensor, get_meta,
optimize_bsr_dense_addmm, dump)
if out_dtype == "unspecified":
out_dtype = None
elif op == "bsr_dense_addmm":
out_dtype = getattr(torch, out_dtype)
if out_dtype.is_floating_point != dtype.is_floating_point:
self.skipTest("incompatible out dtype")
else:
self.skipTest("out dtype not implemented")
def bsr_dense_linear(input, weights, bias=None):
return torch.nn.functional.linear(input, weights, bias=bias).transpose(-1, -2)
operation = dict(bsr_dense_addmm=bsr_dense_addmm, bsr_dense_mm=bsr_dense_mm, bsr_dense_linear=bsr_dense_linear,
_int_bsr_dense_addmm=_int_bsr_dense_addmm)[op]
def reference(input, mat1, mat2, beta=1, alpha=1, left_alpha=None, right_alpha=None, op=op):
assert mat1.layout is torch.strided
assert mat2.layout is torch.strided
if dtype is torch.int8:
if op == '_int_bsr_dense_addmm':
mat12 = torch._int_mm(mat1, mat2)
else:
# workaround RuntimeError: "addmm_cuda" not implemented for 'Char'
if out_dtype is not None:
mat12 = torch._int_mm(mat1, mat2).to(out_dtype)
else:
mat12 = torch._int_mm(mat1, mat2).to(torch.int8)
else:
mat12 = mat1 @ mat2
if alpha != 1:
mat12 *= alpha
if left_alpha is not None:
mat12 = left_alpha.reshape(*left_alpha.shape[:-1], -1, 1) * mat12
if right_alpha is not None:
mat12 = mat12 * right_alpha.reshape(*right_alpha.shape[:-1], 1, -1)
return beta * input + mat12
if op == '_int_bsr_dense_addmm':
# _int_bsr_dense_addmm is same as bsr_dense_addmm except
# with int8 inputs, _int_bsr_dense_addmm returns int32
# result. This is covered by operation and reference
# definitions above and all other definitions below are
# identical between _int_bsr_dense_addmm and
# bsr_dense_addmm.
if dtype.is_floating_point or dtype.is_complex:
self.skipTest(f"Redundant test: {op} on {dtype} tensors")
op = 'bsr_dense_addmm'
def nc_copy(t, axes=(-1,)):
"""Return a copy of input.
The returned copy will be a non-contiguous tensor.
"""
if t.layout is torch.strided:
shape = list(t.shape)
for a in axes:
shape[a] *= 2
r = torch.empty(shape, dtype=t.dtype, device=t.device)
s = r[tuple(slice(None, None, 2 if t.shape[i] != r.shape[i] else None) for i in range(t.ndim))]
s.copy_(t)
return s
elif t.layout is torch.sparse_bsr:
compressed_indices = t.crow_indices()
plain_indices = t.col_indices()
return torch.sparse_compressed_tensor(compressed_indices, plain_indices, nc_copy(t.values()),
t.shape, layout=t.layout)
else:
raise NotImplementedError(t.layout)
if isinstance(blocksize, str):
BM, BK = tuple(map(int, blocksize.split('x')))
else:
BM, BK = (blocksize,) * 2
if op in {"bsr_dense_linear"} and BM != BK:
# todo: eliminate this skip
self.skipTest(f"{op} does not support non-square blocks")
if op in {"bsr_dense_linear"} and dtype is torch.int8:
# todo: eliminate this skip
self.skipTest(f"{op} does not support int8")
if dtype is torch.int8 and min(BM, BK) < 32:
self.skipTest("triton kernel does not support support int8 blocks smaller than 32")
beta_lst = dict(bsr_dense_addmm=[0, 1, 2], bsr_dense_mm=[0], bsr_dense_linear=[1])[op]
alpha_lst = dict(bsr_dense_addmm=[0, 1, 2], bsr_dense_mm=[1], bsr_dense_linear=[1])[op]
sparsity_lst = [0, 0.5, 1]
blocks_per_row_lst = [1, 2]
blocks_per_col_lst = [1, 2]
result_cols_lst = [16, 32, 64]
has_left_alpha_lst = dict(bsr_dense_addmm=[False, True], bsr_dense_mm=[False], bsr_dense_linear=[False])[op]
has_right_alpha_lst = dict(bsr_dense_addmm=[False, True], bsr_dense_mm=[False], bsr_dense_linear=[False])[op]
high = 1.5 + int(dtype is torch.int8)
for beta, alpha, sparsity, blocks_per_row, blocks_per_col, N, has_left_alpha, has_right_alpha in itertools.product(
beta_lst, alpha_lst, sparsity_lst, blocks_per_row_lst, blocks_per_col_lst, result_cols_lst,
has_left_alpha_lst, has_right_alpha_lst):
M = BM * blocks_per_row
K = BK * blocks_per_col
mat1 = create_blocked_tensor(0, M, K, (BM, BK), sparsity, dtype, device=device)
bsr = mat1.to_sparse_bsr((BM, BK))
mat2 = make_tensor(K, N, dtype=dtype, device=device, low=0.5, high=high)
input = make_tensor(M, N, dtype=dtype, device=device, low=0.5, high=high)
left_alpha = make_tensor(M, dtype=dtype, device=device, low=0.5, high=high) if has_left_alpha else None
right_alpha = make_tensor(N, dtype=dtype, device=device, low=0.5, high=high) if has_right_alpha else None
if 0 and op == "bsr_dense_addmm":
# Find optimal kernel parameters, the speed-up is
# about 10x for running this test.
#
# Enable this if-block when the test method is
# updated, run the test, and finally, disable the
# if-block.
key = (M, K, N, BM, BK, beta == 0, beta == 1, alpha == 1)
meta = get_meta(op, key, version=(0, dtype, 0.5))
if meta is None:
optimize_bsr_dense_addmm(M, K, N, BM, BK, beta=beta, alpha=alpha, dtype=dtype, sparsity=0.5)
assert meta is not None
dump() # this will update torch/sparse/_triton_ops_meta.py
expected = reference(input, mat1, mat2, beta=beta, alpha=alpha, left_alpha=left_alpha, right_alpha=right_alpha)
if out_dtype is not None:
expected = expected.to(out_dtype)
out = expected.new_empty(input.shape, dtype=out_dtype)
else:
out = None
kwargs = dict(bsr_dense_addmm=dict(beta=beta, alpha=alpha, out=out,
left_alpha=left_alpha, right_alpha=right_alpha), bsr_dense_mm={},
bsr_dense_linear=dict(bias=input.transpose(-1, -2)))[op]
args = dict(bsr_dense_addmm=(input, bsr, mat2), bsr_dense_mm=(bsr, mat2),
bsr_dense_linear=(mat2.transpose(-1, -2), bsr))[op]
result = operation(*args, **kwargs)
self.assertEqual(result, expected)
# Test non-contiguous input tensors:
nc_mat2 = nc_copy(mat2)
nc_input = nc_copy(input)
nc_bsr = nc_copy(bsr)
args = dict(bsr_dense_addmm=(input, bsr, nc_mat2), bsr_dense_mm=(bsr, nc_mat2),
bsr_dense_linear=(nc_mat2.transpose(-1, -2), bsr))[op]
result = operation(*args, **kwargs)
self.assertEqual(result, expected)
# todo: add bsr_dense_linear to the set below (currently,
# nn.linear has unnecessarily restrictive arguments
# checks).
if op in {'bsr_dense_addmm', 'bsr_dense_mm'}:
args = dict(bsr_dense_addmm=(input, nc_bsr, mat2), bsr_dense_mm=(nc_bsr, mat2),
bsr_dense_linear=(mat2.transpose(-1, -2), nc_bsr))[op]
result = operation(*args, **kwargs)
self.assertEqual(result, expected)
if op in {'bsr_dense_addmm', 'bsr_dense_linear'}:
args = dict(bsr_dense_addmm=(nc_input, bsr, nc_mat2),
bsr_dense_linear=(nc_mat2.transpose(-1, -2), bsr))[op]
kwargs = dict(bsr_dense_addmm=dict(beta=beta, alpha=alpha, left_alpha=left_alpha, right_alpha=right_alpha, out=out),
bsr_dense_linear=dict(bias=nc_input.transpose(-1, -2)))[op]
result = operation(*args, **kwargs)
self.assertEqual(result, expected)
@parametrize("op", ['bsr_dense_addmm', '_int_bsr_dense_addmm'])
@onlyCUDA
@parametrize("out_dtype", ['unspecified', 'int32'])
@dtypes(torch.half, torch.bfloat16, torch.float, torch.int8)
@dtypesIfCUDA(torch.half, *[torch.bfloat16] if SM80OrLater else [], torch.float, torch.int8)
@unittest.skipIf(IS_FBCODE and IS_REMOTE_GPU, "Test requires Triton")
def test_triton_tune(self, op, device, dtype, out_dtype):
from torch.sparse._triton_ops import bsr_dense_addmm, _int_bsr_dense_addmm
from torch.sparse._triton_ops_meta import (create_blocked_tensor, tune_bsr_dense_addmm, tune__int_bsr_dense_addmm, get_meta)
if out_dtype == "unspecified":
out_dtype = None
elif op == "bsr_dense_addmm":
out_dtype = getattr(torch, out_dtype)
if out_dtype.is_floating_point != dtype.is_floating_point:
self.skipTest("incompatible out dtype")
else:
self.skipTest("out dtype not implemented")
operation = dict(bsr_dense_addmm=bsr_dense_addmm, _int_bsr_dense_addmm=_int_bsr_dense_addmm)[op]
tuner = dict(bsr_dense_addmm=tune_bsr_dense_addmm,
_int_bsr_dense_addmm=tune__int_bsr_dense_addmm)[op]
if op == '_int_bsr_dense_addmm':
M, K, N = 32, 32, 32
blocksize = (32, 32)
else:
M, K, N = 16, 16, 32
blocksize = (16, 16)
sparsity = 1.0
bsr = create_blocked_tensor(0, M, K, blocksize, sparsity, dtype, device).to_sparse_bsr(blocksize)
sparsity = 1 - bsr._nnz() * blocksize[0] * blocksize[1] / (M * K)
input = make_tensor(K, N, dtype=dtype, device=device)
dense = make_tensor(K, N, dtype=dtype, device=device)
version_dtype = dtype
if out_dtype is None:
out = None
else:
out = input.new_empty(input.shape, dtype=out_dtype)
if dtype is not out_dtype:
version_dtype = (dtype, out_dtype)
if op in {'bsr_dense_addmm', '_int_bsr_dense_addmm'}:
args = (input, bsr, dense)
def get_current_meta():
version = (0, version_dtype, sparsity)
meta_key = (M, K, N, *blocksize, False, True, True)
return get_meta(op, meta_key, version=version, exact=True)
else:
raise NotImplementedError(op)
self.assertEqual(get_current_meta(), None)
meta = tuner(*args, **dict(store=True, verbose=False, out=out))
self.assertEqual(get_current_meta(), meta)
expected = operation(*args, **dict(out=None if out_dtype is None else out.clone()))
result = operation(*args, **dict(meta=meta, out=out))
self.assertEqual(result, expected)
@onlyCUDA
@unittest.skipIf(IS_FBCODE and IS_REMOTE_GPU, "Test requires Triton")
def test_triton_bsr_dense_addmm_meta(self, device):
from torch.sparse._triton_ops import bsr_dense_addmm_meta
from torch.sparse._triton_ops_meta import update as update_bsr_dense_addmm_meta
dtype = torch.float32
Ms = Ks = 16
beta = 0.0
alpha = 1.0
def get_meta(M, K, N, sparsity=None):
return bsr_dense_addmm_meta(M, K, N, Ms, Ks, beta, alpha, dtype=dtype, sparsity=sparsity,
_version="test_triton_bsr_dense_addmm_meta")
def update_meta(M, K, N, value, sparsity=0.5):
key = (M, K, N, Ms, Ks, beta == 0, beta == 1, alpha == 1)
update_bsr_dense_addmm_meta("bsr_dense_addmm", torch.cuda.get_device_name(),
("test_triton_bsr_dense_addmm_meta", dtype, sparsity),
key, value)
def get_meta_with_checks(M, K, N, warn_count=0, sparsity=None):
f = io.StringIO()
with redirect_stderr(f):
result = get_meta(M, K, N, sparsity=sparsity)
msg = f.getvalue()
FileCheck().check_count(
str=f"UserWarning: bsr_dense_addmm uses non-optimal triton kernel parameters for M={M} K={K} N={N}",
count=warn_count, exactly=True
).run(msg)
return result
# Test warn_once when requesting non-existing tuned parameters multiple times
f = io.StringIO()
with redirect_stderr(f):
for i in range(5):
get_meta(16, 16, 16)
for i in range(5):
get_meta(16, 16, 32)
msg = f.getvalue()
FileCheck().check_count(
str="UserWarning: bsr_dense_addmm uses non-optimal triton kernel parameters for M=16 K=16 N=16", count=1, exactly=True
).run(msg)
FileCheck().check_count(
str="UserWarning: bsr_dense_addmm uses non-optimal triton kernel parameters for M=16 K=16 N=32", count=1, exactly=True
).run(msg)
# Test warn_once when tuned parameters are missing
default_meta = dict(GROUP_SIZE_ROW=4, SPLIT_N=2, num_stages=1, num_warps=4)
self.assertEqual(get_meta_with_checks(32, 32, 32, warn_count=1), default_meta)
# Test (no)warn_once when tuned parameters are available
update_meta(32, 32, 48, (2, 8, 5, 6))
expected_meta = dict(GROUP_SIZE_ROW=2, SPLIT_N=8, num_stages=5, num_warps=6)
self.assertEqual(get_meta_with_checks(32, 32, 48, warn_count=0), expected_meta)
# Test non-existing tuned parameters with non-default sparsity
# while for default sparsity 0.5 the parameters are available
self.assertEqual(get_meta_with_checks(32, 32, 48, warn_count=0, sparsity=0.6), expected_meta)
# Test non-existing tuned parameters while there exists
# parameters with consistent N // SPLIT_N ratio:
self.assertEqual(get_meta_with_checks(32, 32, 72, warn_count=0),
dict(GROUP_SIZE_ROW=2, SPLIT_N=12, num_stages=5, num_warps=6))
# ... or not:
self.assertEqual(get_meta_with_checks(32, 32, 64, warn_count=1),
dict(GROUP_SIZE_ROW=4, SPLIT_N=4, num_stages=1, num_warps=4))
# e.g., TestSparseCSRCPU and TestSparseCSRCUDA
instantiate_device_type_tests(TestSparseCSR, globals())
instantiate_device_type_tests(TestSparseCompressed, globals())
instantiate_device_type_tests(TestSparseCompressedTritonKernels, globals())
if __name__ == '__main__':
run_tests()
|