1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
|
# Owner(s): ["module: sparse"]
import itertools
import random
import unittest
import torch
from torch import nn
import torch.nn.functional as F
from torch.sparse import (
SparseSemiStructuredTensor,
SparseSemiStructuredTensorCUSPARSELT,
SparseSemiStructuredTensorCUTLASS,
to_sparse_semi_structured,
)
from torch.sparse._semi_structured_conversions import (
sparse_semi_structured_from_dense_cutlass,
_sparse_semi_structured_tile,
_compute_compressed_swizzled_bitmask,
)
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import _get_torch_cuda_version, PLATFORM_SUPPORTS_FP8, xfailIfSM89
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
)
from torch.testing._internal.common_dtype import all_types_and_complex
import torch._dynamo.test_case
from torch.testing._internal.common_utils import (
parametrize,
run_tests,
subtest,
TestCase,
TEST_WITH_ROCM,
IS_WINDOWS,
)
from torch.testing._internal.inductor_utils import HAS_GPU
import pytest
SEMI_STRUCTURED_SUPPORTED_BACKENDS = dict()
_IS_SM8X = False
_IS_SM9X = False
if torch.cuda.is_available():
_IS_SM8X = torch.cuda.get_device_capability(0)[0] == 8
_IS_SM9X = torch.cuda.get_device_capability(0)[0] == 9
# CUTLASS kernels only work for Ampere
if _IS_SM8X:
SEMI_STRUCTURED_SUPPORTED_BACKENDS["cutlass"] = SparseSemiStructuredTensorCUTLASS
# add cuSPASRELt tests if available
if torch.backends.cusparselt.is_available() and (_IS_SM8X or _IS_SM9X):
SEMI_STRUCTURED_SUPPORTED_BACKENDS["cusparselt"] = SparseSemiStructuredTensorCUSPARSELT
inference_dtypes = dtypes(torch.float16, torch.bfloat16, torch.int8)
training_dtypes = dtypes(torch.float16, torch.bfloat16)
parametrize_backends = parametrize("backend", SEMI_STRUCTURED_SUPPORTED_BACKENDS)
atol_rtol_kw = {
torch.float16: {
"rtol": 1e-3,
"atol": 1e-3,
},
torch.bfloat16: {
"rtol": 1e-1,
"atol": 1e-1,
},
}
def sparse24_largest_mask_2d(original):
sparse = SparseSemiStructuredTensorCUTLASS.prune_dense_static_sort(original)
return sparse.to_dense().bool()
def sparsify24_dense(original):
return sparse24_largest_mask_2d(original) * original
def rand_sparse_semi_structured_mask(
r, c, dtype=torch.float16, device="cuda", choice=None
):
"""
This function returns a 1:2 sparse matrix of size (r, c).
Note that this means this matrix will also be 2:4 and 4:8 sparse as well.
"""
choices = [[0, 1], [1, 0]]
mask_entries = [choice or random.choice(choices) for i in range(r * c // 2)]
return (
torch.tensor(mask_entries, dtype=dtype, device=device)
.reshape(r, c)
.contiguous()
)
def rand_sparse_semi_structured(r, c, dtype, device, choice=None):
pattern = '2by4' if dtype != torch.float32 else '1by2'
if pattern == '1by2':
ksparse = 2
choices = [
[0, 1],
[1, 0]
]
elif pattern == '2by4':
ksparse = 4
choices = [
[1, 1, 0, 0],
[1, 0, 1, 0],
[1, 0, 0, 1],
[0, 1, 1, 0],
[0, 1, 0, 1],
[0, 0, 1, 1]
]
mask_entries = [choice or random.choice(choices) for i in range(r * c // ksparse)]
mask = torch.tensor(mask_entries, dtype=torch.bool).view(r, c).to(device)
dense = make_tensor(r, c, dtype=dtype, device=device)
dense[dense == 0] = 1 # To prevent zeros except where mask applied.
dense = dense.masked_fill(~mask, 0)
return dense
def rand_sparse_semi_structured_all_patterns(r, c, dtype, device):
pattern = '2by4' if dtype != torch.float32 else '1by2'
if pattern == '1by2':
ksparse = 2
choices = [
[[0, 0], [0, 1]],
[[0, 1], [0, 1]],
[[1, 0], [1, 0]],
[[1, 1], [1, 0]]
]
elif pattern == '2by4':
ksparse = 4
choices = [
[[0, 0, 0, 0], [0, 0, 1, 1]],
[[0, 0, 0, 1], [0, 0, 1, 1]],
[[0, 0, 1, 0], [0, 0, 1, 1]],
[[0, 0, 1, 1], [0, 0, 1, 1]],
[[0, 1, 0, 0], [0, 1, 1, 0]],
[[0, 1, 0, 1], [0, 1, 0, 1]],
[[0, 1, 1, 0], [0, 1, 1, 0]],
[[0, 1, 1, 1], [0, 1, 0, 1]],
[[1, 0, 0, 0], [1, 0, 1, 0]],
[[1, 0, 0, 1], [1, 0, 0, 1]],
[[1, 0, 1, 0], [1, 0, 1, 0]],
[[1, 0, 1, 1], [1, 0, 0, 1]],
[[1, 1, 0, 0], [1, 1, 0, 0]],
[[1, 1, 0, 1], [1, 1, 0, 0]],
[[1, 1, 1, 0], [1, 1, 0, 0]],
[[1, 1, 1, 1], [1, 1, 0, 0]],
]
mask_rows = [random.randint(0, len(choices) - 1) for i in range(r * c // ksparse)]
COL_INV, COL_VAL = 0, 1
mask_entries_inv = [choices[i][COL_INV] for i in mask_rows]
mask_entries_val = [choices[i][COL_VAL] for i in mask_rows]
mask_inv = torch.tensor(mask_entries_inv, dtype=torch.bool).view(r, c).to(device)
mask_val = torch.tensor(mask_entries_val, dtype=torch.bool).view(r, c).to(device)
dense = make_tensor(r, c, dtype=dtype, device=device)
dense[dense == 0] = 1 # To prevent zeros except where mask below applied.
dense_inv = dense.masked_fill(~mask_inv, 0)
dense_val = dense_inv.masked_fill(~mask_val, 0)
return dense_inv, dense_val
class SparseSemiStructuredTensorCompileTest(torch._dynamo.test_case.TestCase):
def setUp(self):
if len(SEMI_STRUCTURED_SUPPORTED_BACKENDS) == 0:
self.skipTest('semi-structured sparsity has no available backend!')
super().setUp()
def tearDown(self):
super().tearDown()
@staticmethod
def _test_mlp_contiguous_relu_compile(backend, dense_input_shape):
"""
Test nn.Linear + .contiguous() + nn.ReLU with SparseSemiStructuredTensor + torch.compile
We expect:
(1) The sparse tensor subclass should turn nn.Linear into `aten._structured_sparse_addmm` + `aten.contiguous()`
(2) Inductor should fuse the .contiguous() call into the relu
"""
class Model(nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = nn.Linear(128, 128)
def forward(self, x):
x = self.linear(x)
x = x.contiguous()
return torch.nn.functional.relu(x)
input = torch.rand(dense_input_shape, device="cuda").half()
model = Model().eval().cuda().half()
mod_linear = model.linear
m, n = mod_linear.weight.shape
mask = torch.Tensor([1, 0, 0, 1]).tile((m, n // 4)).bool().cuda()
# set masked weight
mod_linear.weight = nn.Parameter(mod_linear.weight * mask)
dense_result = model(input)
mod_linear.weight = nn.Parameter(SEMI_STRUCTURED_SUPPORTED_BACKENDS[backend].from_dense(mod_linear.weight))
sparse_result = model(input)
model = torch.compile(model, backend="inductor", fullgraph=True)
sparse_compile_result = model(input)
# test that sparse_compile_result and dense_result are numerically close
torch.testing.assert_close(dense_result, sparse_compile_result, rtol=1e-3, atol=1e-3)
# assert sparse and sparse_compile have the same strides,
# as meta registrations may return contiguous tensors when the output is transposed
# https://github.com/pytorch/pytorch/pull/114477
assert sparse_result.stride() == sparse_compile_result.stride()
@unittest.skipIf(IS_WINDOWS, "torch.compile not supported on windows")
@unittest.skipIf("cusparselt" not in SEMI_STRUCTURED_SUPPORTED_BACKENDS, "cusparselt not supported on this machine")
def test_mlp_contiguous_relu_compile_cusparselt(self):
"""
test for cuSPASRELt meta registrations (_cslt_sparse_mm) + torch.compile
"""
for dense_input_shape in [(1, 128), (64, 128), (128, 128), (64, 128, 128)]:
SparseSemiStructuredTensorCompileTest._test_mlp_contiguous_relu_compile("cusparselt", dense_input_shape)
@unittest.skipIf("cutlass" not in SEMI_STRUCTURED_SUPPORTED_BACKENDS, "cutlass not supported on this machine")
@unittest.skipIf(IS_WINDOWS, "torch.compile not supported on windows")
def test_mlp_contiguous_relu_compile_cutlass(self):
"""
test for CUTLASS meta registrations (_sparse_semi_structured_addmm) + torch.compile
"""
for dense_input_shape in [(1, 128), (64, 128), (128, 128), (64, 128, 128)]:
SparseSemiStructuredTensorCompileTest._test_mlp_contiguous_relu_compile("cutlass", dense_input_shape)
@unittest.skipIf(IS_WINDOWS, "torch.compile not supported on windows")
@unittest.skipIf("cusparselt" not in SEMI_STRUCTURED_SUPPORTED_BACKENDS, "cusparselt not supported on this machine")
def test_sp24_compile(self) -> None:
x = torch.randn([1024, 512], device="cuda", dtype=torch.float16, requires_grad=True)
def fn(x):
y = SparseSemiStructuredTensorCUSPARSELT.prune_dense_static_sort(x)
y = y.t()
return x @ y
# Eager
output = fn(x)
output.backward(output)
# Torch compile
output = torch.compile(fn)(x)
output.backward(output)
class TestSparseSemiStructured(TestCase):
def setUp(self):
if len(SEMI_STRUCTURED_SUPPORTED_BACKENDS) == 0:
self.skipTest('semi-structured sparsity has no available backend!')
if IS_WINDOWS:
self.skipTest("torch.compile not supported on windows")
@inference_dtypes
@parametrize_backends
def test_to_sparse_semi_structured(self, dtype, backend):
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
A = rand_sparse_semi_structured_mask(128, 256, dtype=dtype)
A_sparse = to_sparse_semi_structured(A)
assert A.shape == A_sparse.shape
assert A.device == A_sparse.device
assert A.dtype == A_sparse.dtype
assert isinstance(A, torch.Tensor)
assert isinstance(A_sparse, SparseSemiStructuredTensor)
@inference_dtypes
@parametrize_backends
@parametrize("dense_input_shape", [(128, 1), (128, 64), (128, 128)])
def test_mm_sparse_first_NN(self, dense_input_shape, dtype, device, backend):
"""
Ensure torch.mm(A_sparse, B) is correct for float16 and will throw error for int8
"""
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
A = rand_sparse_semi_structured_mask(256, 128, dtype=dtype)
A_sparse = to_sparse_semi_structured(A)
B = torch.rand(dense_input_shape, device=A_sparse.device).to(dtype)
# Currently we don't support int matmul on GPU, so evaluate on CPU and copy over
if dtype is torch.int8:
if backend == "cutlass":
with self.assertRaisesRegex(RuntimeError, "spgemm_cutlass_dispatch_layouts"):
sparse_result = torch.mm(A_sparse, B)
else:
with self.assertRaisesRegex(RuntimeError,
"CUDA error: operation not supported when calling `cusparseLtMatmulDescriptorInit"):
sparse_result = torch.mm(A_sparse, B)
else:
dense_result = torch.mm(A, B)
sparse_result = torch.mm(A_sparse, B)
torch.testing.assert_close(dense_result, sparse_result, rtol=1e-3, atol=1e-3)
@inference_dtypes
@parametrize_backends
@parametrize("dense_input_shape", [(1, 128), (64, 128), (128, 128)])
def test_mm_sparse_first_NT(self, dense_input_shape, dtype, device, backend):
"""
Ensure torch.mm(A_sparse, B.t()) is correct for float16/bfloat16
and will throw an error for int8 + padding
"""
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
A = rand_sparse_semi_structured_mask(256, 128, dtype=dtype)
A_sparse = to_sparse_semi_structured(A)
B = torch.rand(dense_input_shape, device=A_sparse.device).to(dtype)
# Currently we don't support int matmul on GPU, so evaluate on CPU and copy over
if dtype is torch.int8 and dense_input_shape in {(1, 128)}:
# padding with int8 throws an error because transposing B yields a contiguous output
# and row-row 2:4 sparse @ dense with NN is not supported by cuSPARSELt or CUTLASS.
if backend == "cutlass":
with self.assertRaisesRegex(RuntimeError, "spgemm_cutlass_dispatch_layouts"):
sparse_result = torch.mm(A_sparse, B.t())
else:
with self.assertRaisesRegex(RuntimeError,
"CUDA error: operation not supported when calling `cusparseLtMatmulDescriptorInit"):
sparse_result = torch.mm(A_sparse, B.t())
elif dtype is torch.int8:
# test transpose
dense_result = torch.mm(A.cpu(), B.t().cpu()).to(device, dtype=torch.int8)
sparse_result = torch.mm(A_sparse, B.t())
torch.testing.assert_close(dense_result, sparse_result, rtol=1e-3, atol=1e-3)
else:
# test transpose
dense_result = torch.mm(A, B.t())
sparse_result = torch.mm(A_sparse, B.t())
torch.testing.assert_close(dense_result, sparse_result, rtol=1e-3, atol=1e-3)
@inference_dtypes
@parametrize("dense_input_shape", [(1, 128), (64, 128), (128, 128)])
@parametrize_backends
def test_mm_sparse_first_TN(self, dtype, dense_input_shape, device, backend):
"""
Ensure torch.mm(A_sparse.t(), B) throws error
"""
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
if backend == "cutlass" and IS_WINDOWS:
self.skipTest("CUTLASS not supported on Windows")
A = rand_sparse_semi_structured_mask(128, 256, dtype=dtype)
A_sparse = to_sparse_semi_structured(A)
B = torch.rand(dense_input_shape, device=A_sparse.device).to(dtype)
with self.assertRaisesRegex(
NotImplementedError,
r"`SparseSemiStructuredTensor.*` matmul: operation is not supported",
):
torch.mm(A_sparse.t(), B)
@inference_dtypes
@parametrize("dense_input_shape", [(1, 128), (64, 128), (128, 128)])
@parametrize_backends
def test_mm_sparse_second_NT(self, dense_input_shape, dtype, device, backend):
"""
Ensure torch.mm(A, B_sparse.t()) is correct
"""
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
if backend == "cutlass" and IS_WINDOWS:
self.skipTest("CUTLASS not supported on Windows")
B = rand_sparse_semi_structured_mask(256, 128, dtype=dtype)
B_sparse = to_sparse_semi_structured(B)
A = torch.rand(dense_input_shape, device=B_sparse.device).to(dtype)
# Currently we don't support int matmul on GPU, so evaluate on CPU and copy over
if dtype is torch.int8:
dense_result = torch.mm(A.cpu(), B.t().cpu()).to(device, dtype=torch.int8)
sparse_result = torch.mm(A, B_sparse.t())
else:
dense_result = torch.mm(A, B.t())
sparse_result = torch.mm(A, B_sparse.t())
torch.testing.assert_close(dense_result, sparse_result, rtol=1e-3, atol=1e-3)
@inference_dtypes
@parametrize("dense_input_shape", [(1, 128), (64, 128), (128, 128)])
@parametrize_backends
def test_mm_sparse_second_NN(self, dense_input_shape, dtype, device, backend):
"""
Ensure torch.mm(A, B_sparse) throws error
"""
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
if backend == "cutlass" and IS_WINDOWS:
self.skipTest("CUTLASS not supported on Windows")
B = rand_sparse_semi_structured_mask(256, 128, dtype=dtype)
B_sparse = to_sparse_semi_structured(B)
A = torch.rand(dense_input_shape, device=B_sparse.device).to(dtype)
with self.assertRaisesRegex(
NotImplementedError,
r"`SparseSemiStructuredTensor.*` matmul: operation is not supported",
):
sparse_result = torch.mm(A, B_sparse)
@parametrize("dense_input_shape", [(1, 128), (64, 128), (128, 128), (64, 128, 128)])
@parametrize("inference_mode", [subtest(True), subtest(False)])
@parametrize_backends
def test_linear(self, dense_input_shape, inference_mode, device, backend):
"""
Test nn.Linear has the same numerics
"""
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
if backend == "cutlass" and IS_WINDOWS:
self.skipTest("CUTLASS not supported on Windows")
input = torch.rand((dense_input_shape), device=device).half()
model = nn.Linear(128, 256).to(device).half()
m, n = model.weight.shape
mask = rand_sparse_semi_structured_mask(m, n, device=device, dtype=torch.bool)
# set masked weight
model.weight = nn.Parameter(model.weight * mask)
dense_result = model(input)
model.weight = nn.Parameter(to_sparse_semi_structured(model.weight))
if inference_mode:
with torch.inference_mode():
sparse_result = model(input)
else:
sparse_result = model(input)
torch.testing.assert_close(dense_result, sparse_result, rtol=1e-3, atol=1e-3)
@parametrize("dense_input_shape", [(1, 128), (64, 128), (128, 128), (64, 128, 128)])
@parametrize_backends
def test_mlp(self, device, dense_input_shape, backend):
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
input = torch.rand(dense_input_shape, device=device).half()
model = (
nn.Sequential(
nn.Linear(128, 256),
nn.Linear(256, 128),
)
.half()
.to(device)
)
for i in range(2):
m, n = model[i].weight.shape
mask = rand_sparse_semi_structured_mask(
m, n, device=device, dtype=torch.bool
)
# set masked weight
model[i].weight = nn.Parameter(model[i].weight * mask)
dense_result = model(input)
for i in range(2):
model[i].weight = nn.Parameter(to_sparse_semi_structured(model[i].weight))
sparse_result = model(input)
torch.testing.assert_close(dense_result, sparse_result, rtol=1e-3, atol=1e-3)
@parametrize_backends
def test_values(self, backend):
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
if backend == "cutlass" and IS_WINDOWS:
self.skipTest("CUTLASS not supported on Windows")
A = rand_sparse_semi_structured_mask(128, 128)
A_sparse = to_sparse_semi_structured(A)
assert A_sparse.values().shape == (128, 64)
assert (A_sparse.values() == 1).all()
@parametrize_backends
def test_indices(self, backend):
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
if backend == "cutlass" and IS_WINDOWS:
self.skipTest("CUTLASS not supported on Windows")
A = rand_sparse_semi_structured_mask(128, 128)
A_sparse = to_sparse_semi_structured(A)
assert A_sparse.indices().shape == (128, 8)
@inference_dtypes
@parametrize_backends
def test_min_sparse_shape(self, dtype, device, backend):
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
config = SEMI_STRUCTURED_SUPPORTED_BACKENDS[backend]._DTYPE_SHAPE_CONSTRAINTS[dtype]
A = rand_sparse_semi_structured_mask(config.sparse_min_rows, config.sparse_min_cols, dtype=dtype, device=device)
A_sparse = to_sparse_semi_structured(A)
B = torch.rand((config.sparse_min_cols, config.dense_min_cols), device=device).to(dtype)
if dtype == torch.int8:
dense_res = torch.mm(A.cpu(), B.cpu()).to(device, dtype=torch.int8)
# int8 sparse matmul not supported for R/R -> R layout, so we transpose one of the arguments to get R/C -> R
B_t = B.t().contiguous()
sparse_res = torch.mm(A_sparse, B_t.t())
else:
dense_res = torch.mm(A, B)
sparse_res = torch.mm(A_sparse, B)
torch.testing.assert_close(sparse_res, dense_res, rtol=1e-3, atol=1e-3)
@inference_dtypes
@parametrize_backends
def test_unsupported_shape(self, dtype, device, backend):
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
if backend == "cutlass" and IS_WINDOWS:
self.skipTest("CUTLASS not supported on Windows")
A = rand_sparse_semi_structured_mask(2, 2, dtype=dtype, device=device)
with self.assertRaisesRegex(RuntimeError, "Error original_tensor.shape"):
A_sparse = to_sparse_semi_structured(A)
@dtypes(*all_types_and_complex())
@parametrize_backends
def test_unsupported_dtype(self, dtype, device, backend):
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
if backend == "cutlass" and IS_WINDOWS:
self.skipTest("CUTLASS not supported on Windows")
A = rand_sparse_semi_structured_mask(128, 128, dtype=dtype, device=device)
if dtype not in SEMI_STRUCTURED_SUPPORTED_BACKENDS[backend]._DTYPE_SHAPE_CONSTRAINTS:
with self.assertRaisesRegex(RuntimeError, "Error original_tensor.dtype"):
A_sparse = to_sparse_semi_structured(A)
else:
A_sparse = to_sparse_semi_structured(A)
@parametrize_backends
def test_unsupported_dim(self, device, backend):
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
if backend == "cutlass" and IS_WINDOWS:
self.skipTest("CUTLASS not supported on Windows")
A = torch.rand(128, 128, 128, device=device, dtype=torch.float16)
with self.assertRaisesRegex(RuntimeError, "Error original_tensor.dim"):
A_sparse = to_sparse_semi_structured(A)
def create_random_mask(shape) -> torch.Tensor:
r = random.Random(0)
mask = torch.zeros(shape, dtype=torch.bool)
for line in range(mask.shape[0]):
for col in range(0, mask.shape[1], 4):
sparsity = r.choice(
[
[False, False, True, True],
[False, True, False, True],
[True, False, False, True],
[False, True, True, False],
[True, False, True, False],
[True, True, False, False],
]
)
mask[line, col : col + 4] = torch.tensor(sparsity, dtype=torch.bool)
return mask
class TestSparseSemiStructuredTraining(TestCase):
def setUp(self):
if not _IS_SM8X:
self.skipTest("SparseSemiStructuredTensor training only supported on SM8x (Ampere)")
if IS_WINDOWS:
self.skipTest('CUTLASS not supported on windows')
@training_dtypes
def test_prune_dense_static_sort(self, dtype) -> None:
# Ideally we would like to clone and compare, but that won't work because the sorting order will be different
# instead we pass the pruned matrix to the CUDA implementation and preserve the sparsity pattern.
dense = torch.randn(128, 128, device="cuda", dtype=dtype)
pruned = _sparse_semi_structured_tile(dense)
# CUTLASS
reference_cutlass = SparseSemiStructuredTensorCUTLASS.prune_dense_static_sort(pruned, algorithm="largest_abs_values_greedy")
torch.testing.assert_close(pruned, reference_cutlass.to_dense())
packed_cutlass, meta_cutlass = sparse_semi_structured_from_dense_cutlass(pruned)
packed_t_cutlass, meta_t_cutlass = sparse_semi_structured_from_dense_cutlass(pruned.t().contiguous())
meta_cutlass = meta_cutlass.as_strided(reference_cutlass.meta.shape, reference_cutlass.meta.stride())
meta_t_cutlass = meta_t_cutlass.as_strided(reference_cutlass.meta_t.shape, reference_cutlass.meta_t.stride())
compressed_swizzled_bitmask = _compute_compressed_swizzled_bitmask(pruned)
compressed_swizzled_bitmask = compressed_swizzled_bitmask.as_strided(reference_cutlass.compressed_swizzled_bitmask.shape,
reference_cutlass.compressed_swizzled_bitmask.stride())
cutlass = SparseSemiStructuredTensorCUTLASS(dense.shape,
packed_cutlass,
meta_cutlass,
packed_t_cutlass,
meta_t_cutlass,
compressed_swizzled_bitmask)
torch.testing.assert_close(reference_cutlass.to_dense(), cutlass.to_dense())
# CUSPARSELT
reference_cusparselt = SparseSemiStructuredTensorCUSPARSELT.prune_dense_static_sort(pruned,
algorithm="largest_abs_values_greedy")
torch.testing.assert_close(pruned, reference_cusparselt.to_dense())
packed_cusparselt = torch._cslt_compress(pruned)
packed_t_cusparselt = torch._cslt_compress(pruned.t().contiguous())
cusparselt = SparseSemiStructuredTensorCUSPARSELT(dense.shape,
packed_cusparselt,
None,
packed_t_cusparselt,
None,
compressed_swizzled_bitmask)
torch.testing.assert_close(reference_cusparselt.to_dense(), cusparselt.to_dense())
@training_dtypes
@parametrize_backends
def test_pruning_algo_largest_abs_values_greedy(self, dtype, backend) -> None:
inp = torch.tensor(
[[4, 3, 2, 1], [-1, -3, 0.6, 0.5], [1, 2, 3, 4], [10, 2, -1, 5]],
device="cuda",
dtype=dtype,
)
inp = F.pad(inp, (0, 128 - 4, 0, 128 - 4), "constant", 1)
sInp = SEMI_STRUCTURED_SUPPORTED_BACKENDS[backend].prune_dense_static_sort(inp, algorithm="largest_abs_values_greedy")
mask = sInp.to_dense() / inp
assert mask[:4, :4].int().tolist() == [
[1, 1, 0, 0],
[0, 1, 1, 0],
[0, 0, 1, 1],
[1, 0, 0, 1],
]
@training_dtypes
def test_gemm(self, dtype) -> None:
M, N, K = 32, 32, 64
a = torch.randn([M, K], device="cuda", dtype=dtype)
b = torch.randn([K, N], device="cuda", dtype=dtype)
mask = rand_sparse_semi_structured_mask(M, K, dtype=torch.bool)
a.masked_fill_(~mask, 0)
a_sparse = to_sparse_semi_structured(a)
masked_a = a * mask
ref_out = masked_a @ b
sp24_out = a_sparse @ b
torch.testing.assert_close(ref_out, sp24_out, **atol_rtol_kw[dtype])
@training_dtypes
@parametrize_backends
def test_pack_both_ways_meta_correctness(self, dtype, backend) -> None:
M, N = 128, 256
# Construct x to make sure we always have exactly 8 elements per 4x4 tile
a = (4 * torch.arange(8))[:, None] + torch.arange(8)[None, :]
a = a.repeat(M // 8, N // 8)
assert a.shape == (M, N)
a = a.cuda().to(dtype)
b = torch.randn([a.shape[1], 128], device="cuda", dtype=dtype)
a_sparse = SEMI_STRUCTURED_SUPPORTED_BACKENDS[backend].prune_dense_static_sort(a)
mask_dense = sparse24_largest_mask_2d(a).to(dtype)
if backend == "cutlass":
assert isinstance(a_sparse, SparseSemiStructuredTensorCUTLASS)
(packed, meta, packed_t, meta_t, bitmask) = torch._sparse_semi_structured_tile(
mask_dense, use_cutlass=True)
sparse_mask = SparseSemiStructuredTensorCUTLASS(
mask_dense.shape,
packed=packed,
meta=meta,
packed_t=packed_t,
meta_t=meta_t,
compressed_swizzled_bitmask=bitmask,
)
torch.testing.assert_close(a_sparse.meta.view(torch.short), sparse_mask.meta)
ref_gemm = (mask_dense * a) @ b
pack_gemm = a_sparse @ b
torch.testing.assert_close(ref_gemm, pack_gemm, **atol_rtol_kw[dtype])
@training_dtypes
def test_pack_both_ways_id(self, dtype) -> None:
N = 512
torch.manual_seed(0)
a = torch.randn([N, N], dtype=dtype, device="cuda")
b = torch.eye(N, dtype=dtype, device="cuda")
packed, meta, packed_t, meta_t = torch._sparse_semi_structured_tile(a)[
:4
]
# Heuristic to ensure we pack the same values
torch.testing.assert_close(
packed.to(torch.float64).sum(), packed_t.to(torch.float64).sum()
)
mask_dense = sparse24_largest_mask_2d(a.to(dtype))
ref_gemm = mask_dense * a
# Test A@B
pack_gemm = torch._sparse_semi_structured_linear(b.t(), packed, meta).t()
max_diff = (ref_gemm - pack_gemm).abs().argmax()
torch.testing.assert_close(
ref_gemm, pack_gemm,
**atol_rtol_kw[dtype]
), f"packed is wrong at pos: ({max_diff // N}, {max_diff % N})"
# Test A.t@B
pack_gemm = torch._sparse_semi_structured_linear(b.t(), packed_t, meta_t)
max_diff = (ref_gemm - pack_gemm).abs().argmax()
torch.testing.assert_close(
ref_gemm, pack_gemm,
**atol_rtol_kw[dtype]
), f"packed_t is wrong at pos: ({max_diff // N}, {max_diff % N})"
@training_dtypes
def test_pack_both_ways_edge_case1(self, dtype) -> None:
# In this case, the heuristic will keep 7 values out of 16
# instead of 8. let's see how the kernel handles this
quad = torch.tensor(
[
[2, -1, -2, -3], # Should be packed as `2 <null>`
[-1, 8, -1, 6],
[-1, -1, 4, 5],
[-1, 3, 7, -1],
],
dtype=dtype,
device="cuda",
)
a = torch.randn([32, 64], dtype=dtype, device="cuda")
a[:4, :4] = quad
packed, meta, packed_t, meta_t = torch._sparse_semi_structured_tile(a)[:4]
# Check first line in A
assert packed[0, 0].item() == 2
assert packed[0, 1].item() == 0
# And first column in A.t
assert packed_t[0, 0].item() == 2
assert packed_t[0, 1].item() == 0
@training_dtypes
def test_sp24_apply(self, dtype) -> None:
M, N = 256, 1024
x = torch.randn([M, N], dtype=dtype, device="cuda")
(
packed,
meta,
packed_t,
meta_t,
bitmask,
) = torch._sparse_semi_structured_tile(x)
packed2, packed_t2 = torch._sparse_semi_structured_apply(x, bitmask)
torch.testing.assert_close(packed, packed2)
torch.testing.assert_close(packed_t, packed_t2)
@training_dtypes
def test_sp24_apply_dense(self, dtype) -> None:
M, N = 256, 1024
x = torch.randn([M, N], dtype=dtype, device="cuda")
(
packed,
meta,
packed_t,
meta_t,
bitmask,
) = torch._sparse_semi_structured_tile(x)
expected = SparseSemiStructuredTensorCUTLASS(
x.shape,
packed=packed,
meta=meta,
packed_t=packed_t,
meta_t=meta_t,
compressed_swizzled_bitmask=bitmask,
).to_dense()
packed2, packed_t2 = torch._sparse_semi_structured_apply(x, bitmask)
sparse = SparseSemiStructuredTensorCUTLASS(
x.shape,
packed=packed2,
meta=meta,
packed_t=packed_t2,
meta_t=meta_t,
compressed_swizzled_bitmask=bitmask,
)
dense = torch._sparse_semi_structured_apply_dense(x, bitmask)
torch.testing.assert_close(dense, expected)
torch.testing.assert_close(sparse.to_dense(), expected)
@training_dtypes
def test_sp24_matmuls(self, dtype) -> None:
M, N, K = 64, 256, 1024
a = torch.randn([M, K], device="cuda", dtype=dtype)
b = torch.randn([K, N], device="cuda", dtype=dtype)
a_m = sparse24_largest_mask_2d(a)
b_m = sparse24_largest_mask_2d(b)
(packed, meta, packed_t, meta_t, bitmask) = torch._sparse_semi_structured_tile(a)
a_s = SparseSemiStructuredTensorCUTLASS(
a.shape,
packed=packed,
meta=meta,
packed_t=packed_t,
meta_t=meta_t,
compressed_swizzled_bitmask=bitmask,
)
(packed, meta, packed_t, meta_t, bitmask) = torch._sparse_semi_structured_tile(b)
b_s = SparseSemiStructuredTensorCUTLASS(
b.shape,
packed=packed,
meta=meta,
packed_t=packed_t,
meta_t=meta_t,
compressed_swizzled_bitmask=bitmask,
)
torch.testing.assert_close(a_s @ b, (a * a_m) @ b, rtol=1e-1, atol=1.5e-1)
torch.testing.assert_close(a @ b_s, a @ (b * b_m), rtol=1e-1, atol=1.5e-1)
torch.testing.assert_close(
a @ a_s.t(), a @ (a * a_m).t(), rtol=1e-1, atol=1.5e-1
)
torch.testing.assert_close(
a_s.t() @ a, (a * a_m).t() @ a, rtol=1e-1, atol=1e-1
)
def test_sp24_matmuls_mat_vec(self) -> None:
a = torch.randn([64, 128], device="cuda", dtype=torch.float16)
b = torch.randn([128], device="cuda", dtype=torch.float16)
a_m = sparse24_largest_mask_2d(a)
a_s = to_sparse_semi_structured(a)
with pytest.raises(NotImplementedError):
torch.testing.assert_close(a_s @ b, (a * a_m) @ b, **atol_rtol_kw[a.dtype])
def test_sp24_matmuls_bmm(self) -> None:
a = torch.randn([64, 128], device="cuda", dtype=torch.float16)
b = torch.randn([5, 6, 128], device="cuda", dtype=torch.float16)
a_m = sparse24_largest_mask_2d(a)
a_s = to_sparse_semi_structured(a)
with pytest.raises(NotImplementedError):
torch.testing.assert_close(a_s @ b, (a * a_m) @ b, **atol_rtol_kw[a.dtype])
class TestSparseSemiStructuredCUTLASS(TestCase):
"""
This contains CUTLASS specific tests for
- torch._sparse_semi_structured_linear
"""
def setUp(self):
if "cutlass" not in SEMI_STRUCTURED_SUPPORTED_BACKENDS:
self.skipTest('CUTLASS not enabled')
@unittest.skipIf(TEST_WITH_ROCM or IS_WINDOWS, "ROCm and Windows doesn't support CUTLASS")
@inference_dtypes
def test_linear_cutlass(self, device, dtype):
def run_test(batch_shape, m, n, k, device, dtype, dtype_out, add_bias, activation, rtol, atol):
weight = rand_sparse_semi_structured(m, k, dtype, device)
input = make_tensor((*batch_shape, n, k), dtype=dtype, device=device)
bias = make_tensor((m,), dtype=dtype_out, device=device) if add_bias else None
dtype_dense = torch.float32
input_dense = input.to(dtype_dense)
weight_dense = weight.to(dtype_dense)
bias_dense = bias.to(dtype_dense) if add_bias else None
output0 = torch.nn.functional.linear(input_dense, weight_dense, bias=bias_dense)
if activation == "relu":
relu = torch.nn.ReLU()
output0 = relu(output0)
elif activation == "silu":
silu = torch.nn.SiLU()
output0 = silu(output0)
compressed = to_sparse_semi_structured(weight)
weight_sparse = compressed.values()
meta = compressed.indices()
output1 = torch._sparse_semi_structured_linear(input, weight_sparse, meta, bias=bias, activation=activation,
out_dtype=dtype_out if dtype == torch.int8 else None)
torch.testing.assert_close(output1.to(dtype_dense), output0, rtol=rtol, atol=atol)
if dtype == torch.float32:
# Inputs are converted to TF32 internally for sparse GEMM,
# so make dense GEMM to do the same for matching results.
orig = torch.backends.cuda.matmul.allow_tf32
torch.backends.cuda.matmul.allow_tf32 = True
batch_shapes = [[], [3], [3, 1]]
dtype_out = {torch.int8: torch.int32, torch.half: torch.half, torch.bfloat16: torch.bfloat16, torch.float32: torch.float32}
activations = [None, "relu", "silu"]
rtol, atol = 1e-3, 1e-3
if dtype == torch.bfloat16:
rtol, atol = 5e-3, 5e-3
elif dtype == torch.float32:
rtol, atol = 1e-3, 75e-2
for batch_shape, m, n, k, add_bias, activation in \
itertools.product(batch_shapes, range(3), range(3), range(3), (False, True), activations):
if activation == "silu" and dtype == torch.int8:
continue # SiLU not supported for integer inputs
m = 2 ** m * 32
n = 2 ** n * 32
k = 2 ** k * 128
run_test(batch_shape, m, n, k, device, dtype, dtype_out[dtype], add_bias, activation, rtol, atol)
if dtype == torch.float32:
torch.backends.cuda.matmul.allow_tf32 = orig
@unittest.skipIf(TEST_WITH_ROCM or IS_WINDOWS, "ROCm and Windows doesn't support CUTLASS")
@parametrize("backend", ["cutlass"])
@inference_dtypes
def test_sparse_semi_structured_ops_cutlass(self, device, dtype, backend):
SparseSemiStructuredTensor._FORCE_CUTLASS = (backend == "cutlass")
if backend == "cutlass" and IS_WINDOWS:
self.skipTest("CUTLASS not supported on Windows")
def run_test(m, n, k, device, dtype, dtype_out, use_input, rtol, atol):
mat1 = rand_sparse_semi_structured(m, k, dtype, device)
# mat2 transposed as int8 case supports only row-major/column-major combination
mat2 = make_tensor((n, k), dtype=dtype, device=device).t()
input = make_tensor((m,), dtype=dtype_out, device=device) if use_input else None
if use_input:
if dtype.is_floating_point:
alpha = 1.3
beta = -0.7
else:
alpha = 2
beta = -3
dtype_dense = torch.float32
mat1_dense = mat1.to(dtype_dense)
mat2_dense = mat2.to(dtype_dense)
if not use_input:
output0 = torch.mm(mat1_dense, mat2_dense)
else:
input_dense = input.to(dtype_dense)[:, None]
output0 = torch.addmm(input_dense, mat1_dense, mat2_dense, alpha=alpha, beta=beta)
compressed = to_sparse_semi_structured(mat1)
mat1_sparse = compressed.values()
mat1_meta = compressed.indices()
if not use_input:
output1 = torch._sparse_semi_structured_mm(mat1_sparse, mat1_meta, mat2, out_dtype=dtype_out)
else:
output1 = torch._sparse_semi_structured_addmm(
input, mat1_sparse, mat1_meta, mat2, alpha=alpha, beta=beta, out_dtype=dtype_out
)
torch.testing.assert_close(output1.to(dtype_dense), output0, rtol=rtol, atol=atol)
if dtype == torch.float32:
# Inputs are converted to TF32 internally for sparse GEMM,
# so make dense GEMM to do the same for matching results.
orig = torch.backends.cuda.matmul.allow_tf32
torch.backends.cuda.matmul.allow_tf32 = True
dtype_out = {torch.int8: torch.int32, torch.half: torch.half, torch.bfloat16: torch.bfloat16, torch.float32: torch.float32}
rtol, atol = 1e-3, 1e-3
if dtype == torch.bfloat16:
rtol, atol = 5e-3, 5e-3
elif dtype == torch.float32:
rtol, atol = 1e-3, 75e-2
for m, n, k, use_input in \
itertools.product(range(3), range(3), range(3), (False, True)):
m = 2 ** m * 32
n = 2 ** n * 32
k = 2 ** k * 128
run_test(m, n, k, device, dtype, dtype_out[dtype], use_input, rtol, atol)
if dtype == torch.float32:
torch.backends.cuda.matmul.allow_tf32 = orig
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@inference_dtypes
def test_conversions(self, device, dtype):
def run_test(r, c, device, dtype):
dense_ref = rand_sparse_semi_structured(r, c, dtype, device)
compressed = to_sparse_semi_structured(dense_ref)
# The torch.ops.aten._to_sparse_semi_structured operator
# uses CUTLASS to perform conversion from given dense
# matrix to the pair of corresponding sparse and metadata
# matrices, with the later used here as a reference to
# compare the metadata matrix produced by conversion
# performed by SparseSemiStructuredTensor class
# constructor against.
_, meta_ref = torch.ops.aten._to_sparse_semi_structured(dense_ref)
meta = compressed.indices()
torch.testing.assert_close(meta, meta_ref, rtol=0, atol=0)
dense = compressed.to_dense()
torch.testing.assert_close(dense, dense_ref, rtol=0, atol=0)
shapes = [[32, 128], [32, 256], [64, 128], [64, 256]]
for r, c in shapes:
run_test(r, c, device, dtype)
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@inference_dtypes
def test_conversions_all_patterns(self, device, dtype):
r, c = 32, 128
dense_inv, dense_val = rand_sparse_semi_structured_all_patterns(r, c, dtype, device)
compressed = to_sparse_semi_structured(dense_inv)
dense = compressed.to_dense()
torch.testing.assert_close(dense, dense_val, rtol=0, atol=0)
CUSPARSELT_MIXED_DTYPE_SUPPORT = [torch.float16, torch.bfloat16, torch.int32]
def to_float8(x, dtype=torch.float8_e4m3fn):
finfo = torch.finfo(dtype)
# Calculate the scale as dtype max divided by absmax
scale = finfo.max / x.abs().max().clamp(min=1e-12)
# scale and clamp the tensor to bring it to
# the representative range of float8 data type
# (as default cast is unsaturated)
x_scl_sat = (x * scale).clamp(min=finfo.min, max=finfo.max)
# Return both float8 data and the inverse scale (as float),
# as both required as inputs to torch._scaled_mm
return x_scl_sat.to(dtype), scale.float().reciprocal()
class TestSparseSemiStructuredCUSPARSELT(TestCase):
"""
This contains cuSPARSELt specific tests for
torch._cslt_compress
torch._cslt_sparse_mm
"""
def setUp(self):
SparseSemiStructuredTensor._FORCE_CUTLASS = False
if "cusparselt" not in SEMI_STRUCTURED_SUPPORTED_BACKENDS:
self.skipTest('cuSPARSELt not enabled')
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8, "FP8 is only supported on H100+ and sm_89 and MI300+ devices")
@xfailIfSM89
@parametrize("dense_input_shape", [(256, 128)])
def test_sparse_fp8fp8_mm(self, dense_input_shape, device):
if torch.backends.cusparselt.version() < 602:
self.skipTest("fp8 matmul requires cuSPARSELt v0.6.2+")
A = rand_sparse_semi_structured_mask(256, 128, dtype=torch.float16)
B = torch.rand(dense_input_shape, device=device).to(torch.float16).t()
A_fp8, A_scale = to_float8(A)
B_fp8, B_scale = to_float8(B)
A_fp8_sparse = to_sparse_semi_structured(A_fp8)
with self.assertRaisesRegex(
NotImplementedError,
r"`SparseSemiStructuredTensor.*_scaled_mm",
):
dense_result = torch.mm(A_fp8_sparse, B_fp8)
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8, "FP8 is only supported on H100+ and sm_89 and MI300+ devices")
@xfailIfSM89
def test_sparse_semi_structured_scaled_mm_fp8(self, device) -> None:
(k, l, m) = (32, 64, 32)
x = rand_sparse_semi_structured_mask(k, l, dtype=torch.float8_e4m3fn, device=device)
y = torch.full((m, l), .25, device=device, dtype=torch.float8_e4m3fn).t()
scale_a = torch.tensor(1.0, device=device)
scale_b = torch.tensor(1.0, device=device)
out_fp8 = torch._scaled_mm(x, y, scale_a=scale_a, scale_b=scale_b, out_dtype=torch.float8_e4m3fn)
x_sparse = to_sparse_semi_structured(x)
out_fp8_sparse = torch._scaled_mm(x_sparse, y, scale_a=scale_a, scale_b=scale_b, out_dtype=torch.float8_e4m3fn)
# this fails on ROCm currently because hipblaslt doesn't have amax op
out_fp32 = out_fp8.to(torch.float32)
out_fp32_sparse = out_fp8_sparse.to(torch.float32)
torch.testing.assert_close(out_fp32, out_fp32_sparse, rtol=1e-1, atol=1e-1)
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8, "FP8 is only supported on H100+ and sm_89 and MI300+ devices")
@xfailIfSM89
@parametrize("out_dtype", [torch.float16, torch.bfloat16, torch.float32])
@parametrize("dense_input_shape", [(256, 128)])
def test_sparse_semi_structured_scaled_mm(
self, dense_input_shape, device, out_dtype
):
A = rand_sparse_semi_structured_mask(256, 128, dtype=torch.float16)
B = torch.rand(dense_input_shape, device=device).to(torch.float16).t()
A_fp8, A_scale = to_float8(A)
B_fp8, B_scale = to_float8(B)
A_fp8_sparse = to_sparse_semi_structured(A_fp8)
dense_result = torch._scaled_mm(
A_fp8, B_fp8, scale_a=A_scale, scale_b=B_scale, out_dtype=out_dtype
)
sparse_result = torch._scaled_mm(
A_fp8_sparse, B_fp8, scale_a=A_scale, scale_b=B_scale, out_dtype=out_dtype
)
torch.testing.assert_close(dense_result, sparse_result, rtol=7e-2, atol=7e-2)
@parametrize("out_dtype", [torch.float16, torch.bfloat16, torch.int32])
@parametrize("dense_input_shape", [(128, 128)])
def test_cslt_sparse_mm_mixed_dtype(self, dense_input_shape, out_dtype, device):
A = rand_sparse_semi_structured_mask(128, 128, dtype=torch.int8)
A_compressed = torch._cslt_compress(A)
B = torch.rand(dense_input_shape, device=device).to(torch.int8)
dense_result = torch.mm(A.cpu().to(torch.int64), B.t().cpu().to(torch.int64)).to(device, dtype=out_dtype)
sparse_result = torch._cslt_sparse_mm(A_compressed, B.t(), out_dtype=out_dtype)
torch.testing.assert_close(dense_result, sparse_result, rtol=1e-3, atol=1e-3)
@unittest.skip("cuSPARSELt v0.6.x does not support bfloat/float16 alpha scaling")
@training_dtypes
def test_cslt_sparse_mm_alpha(self, dtype, device):
A = torch.Tensor([0, 0, 1, 1]).tile((128, 64)).to(dtype).cuda()
B = torch.ones((256, 128), device=device).to(dtype)
alpha = torch.Tensor([2**(-i) for i in range(128)]).cuda()
bias = torch.ones(128, device=device).to(dtype)
A_compressed = torch._cslt_compress(A)
sparse_result = torch._cslt_sparse_mm(A_compressed, B, alpha=alpha, bias=bias)
alpha_scaled = torch.stack([alpha] * 128).t()
dense_result = alpha_scaled * torch.mm(A.to(torch.float32), B.to(torch.float32))
dense_result = dense_result.to(dtype)
torch.testing.assert_close(sparse_result, dense_result, rtol=1e-3, atol=1e-3)
@parametrize("out_dtype", [torch.float16, torch.bfloat16, torch.int32])
def test_cslt_sparse_mm_alpha_compile_autotune(self, device, out_dtype):
A = torch.Tensor([0, 0, 1, 1]).tile((128, 64)).to(torch.int8).to(device)
B = torch.ones((128, 256), device=device, dtype=torch.int8).t()
alpha = torch.Tensor([2**(-i) for i in range(128)]).cuda()
A_compressed = torch._cslt_compress(A)
cslt_sparse_mm_c = torch.compile(torch._cslt_sparse_mm, mode="max-autotune")
sparse_result = cslt_sparse_mm_c(A_compressed, B, alpha=alpha, out_dtype=out_dtype)
# disable this otherwise inductor will attempt to reorder strides and pass a contiguous B
@torch.compiler.disable
def get_dense_result():
alpha_scaled = torch.stack([alpha] * 128).t().cpu().float()
dense_result = alpha_scaled * torch.mm(A.to(torch.int64).cpu(), B.to(torch.int64).cpu())
dense_result = dense_result.to(out_dtype)
return dense_result
torch.testing.assert_close(sparse_result.cpu(), get_dense_result(), rtol=1e-3, atol=1e-3)
@parametrize("out_dtype", [torch.float16, torch.bfloat16, torch.int32])
def test_cslt_sparse_mm_alpha_mixed_dtype(self, out_dtype, device):
A = torch.Tensor([0, 0, 10, 10]).tile((128, 64)).to(torch.int8).cuda()
B = torch.ones((128, 256), device=device).to(torch.int8).t()
alpha = torch.Tensor([2**(-i) if out_dtype is not torch.int32 else 1
for i in range(128)]).cuda()
A_compressed = torch._cslt_compress(A)
sparse_result = torch._cslt_sparse_mm(A_compressed, B, alpha=alpha, out_dtype=out_dtype).cpu()
alpha_scaled = torch.stack([alpha] * 128).t()
dense_result = alpha_scaled.cpu() * torch.mm(A.to(torch.int64).cpu(), B.to(torch.int64).cpu())
dense_result = dense_result.to(out_dtype)
torch.testing.assert_close(sparse_result, dense_result, rtol=1e-3, atol=1e-3)
@inference_dtypes
def test_cslt_sparse_mm_search(self, device, dtype):
A = rand_sparse_semi_structured_mask(256, 128, dtype=dtype)
A_compressed = torch._cslt_compress(A)
B = torch.ones((128, 128), device=device).to(dtype)
A_compressed = torch._cslt_compress(A)
alg_id = torch._cslt_sparse_mm_search(A_compressed, B.t())
sparse_result = torch._cslt_sparse_mm(A_compressed, B.t(), alg_id=alg_id)
dense_result = torch.mm(A.to(torch.float32), B.to(torch.float32))
dense_result = dense_result.to(dtype)
torch.testing.assert_close(sparse_result, dense_result, rtol=1e-3, atol=1e-3)
@inference_dtypes
def test_csrc_cslt_sparse_mm_search(self, device, dtype):
A = rand_sparse_semi_structured_mask(256, 128, dtype=dtype)
A_compressed = torch._cslt_compress(A)
B = torch.ones((128, 128), device=device).to(dtype)
A_compressed = torch._cslt_compress(A)
alg_id, split_k, split_k_one_kernel, _ = torch._C._cusparselt.mm_search(A_compressed, B.t(), None, None, None, False)
sparse_result = torch._cslt_sparse_mm(A_compressed, B.t(),
alg_id=alg_id,
split_k=split_k,
split_k_one_kernel=split_k_one_kernel)
dense_result = torch.mm(A.to(torch.float32), B.to(torch.float32))
dense_result = dense_result.to(dtype)
torch.testing.assert_close(sparse_result, dense_result, rtol=1e-3, atol=1e-3)
def test_cusparselt_backend(self):
version = _get_torch_cuda_version()
assert torch.backends.cusparselt.is_available()
# CUDA 11.8 has cuSPARSELt v0.4.0 support
if version == (11, 8):
assert torch.backends.cusparselt.version() == 400
# CUDA 12.1 has cuSPARSELt v0.5.2 support
elif version == (12, 1):
assert torch.backends.cusparselt.version() == 502
# CUDA 12.4+ has cuSPARSELt v0.6.2 support
elif version >= (12, 4):
assert torch.backends.cusparselt.version() == 602
else:
assert torch.backends.cusparselt.version() is None
if len(SEMI_STRUCTURED_SUPPORTED_BACKENDS) > 0:
instantiate_device_type_tests(TestSparseSemiStructured, globals(), only_for="cuda")
if "cutlass" in SEMI_STRUCTURED_SUPPORTED_BACKENDS:
instantiate_device_type_tests(TestSparseSemiStructuredCUTLASS, globals(), only_for="cuda")
instantiate_device_type_tests(TestSparseSemiStructuredTraining, globals(), only_for="cuda")
if "cusparselt" in SEMI_STRUCTURED_SUPPORTED_BACKENDS:
instantiate_device_type_tests(TestSparseSemiStructuredCUSPARSELT, globals(), only_for="cuda")
if __name__ == "__main__":
run_tests()
|