File: test_type_info.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (147 lines) | stat: -rw-r--r-- 5,269 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# mypy: allow-untyped-defs
# Owner(s): ["module: typing"]

from torch.testing._internal.common_utils import (
    load_tests,
    run_tests,
    set_default_dtype,
    TEST_NUMPY,
    TestCase,
)


# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests

import sys
import unittest

import torch


if TEST_NUMPY:
    import numpy as np


class TestDTypeInfo(TestCase):
    def test_invalid_input(self):
        for dtype in [
            torch.float16,
            torch.float32,
            torch.float64,
            torch.bfloat16,
            torch.complex64,
            torch.complex128,
            torch.bool,
        ]:
            with self.assertRaises(TypeError):
                _ = torch.iinfo(dtype)

        for dtype in [
            torch.int64,
            torch.int32,
            torch.int16,
            torch.int8,
            torch.uint8,
            torch.bool,
        ]:
            with self.assertRaises(TypeError):
                _ = torch.finfo(dtype)
            with self.assertRaises(RuntimeError):
                dtype.to_complex()

    @unittest.skipIf(not TEST_NUMPY, "Numpy not found")
    def test_iinfo(self):
        for dtype in [torch.int64, torch.int32, torch.int16, torch.int8, torch.uint8]:
            x = torch.zeros((2, 2), dtype=dtype)
            xinfo = torch.iinfo(x.dtype)
            xn = x.cpu().numpy()
            xninfo = np.iinfo(xn.dtype)
            self.assertEqual(xinfo.bits, xninfo.bits)
            self.assertEqual(xinfo.max, xninfo.max)
            self.assertEqual(xinfo.min, xninfo.min)
            self.assertEqual(xinfo.dtype, xninfo.dtype)

    @unittest.skipIf(not TEST_NUMPY, "Numpy not found")
    def test_finfo(self):
        for dtype in [
            torch.float16,
            torch.float32,
            torch.float64,
            torch.complex64,
            torch.complex128,
        ]:
            x = torch.zeros((2, 2), dtype=dtype)
            xinfo = torch.finfo(x.dtype)
            xn = x.cpu().numpy()
            xninfo = np.finfo(xn.dtype)
            self.assertEqual(xinfo.bits, xninfo.bits)
            self.assertEqual(xinfo.max, xninfo.max)
            self.assertEqual(xinfo.min, xninfo.min)
            self.assertEqual(xinfo.eps, xninfo.eps)
            self.assertEqual(xinfo.tiny, xninfo.tiny)
            self.assertEqual(xinfo.resolution, xninfo.resolution)
            self.assertEqual(xinfo.dtype, xninfo.dtype)
            if not dtype.is_complex:
                with set_default_dtype(dtype):
                    self.assertEqual(torch.finfo(dtype), torch.finfo())

        # Special test case for BFloat16 type
        x = torch.zeros((2, 2), dtype=torch.bfloat16)
        xinfo = torch.finfo(x.dtype)
        self.assertEqual(xinfo.bits, 16)
        self.assertEqual(xinfo.max, 3.38953e38)
        self.assertEqual(xinfo.min, -3.38953e38)
        self.assertEqual(xinfo.eps, 0.0078125)
        self.assertEqual(xinfo.tiny, 1.17549e-38)
        self.assertEqual(xinfo.tiny, xinfo.smallest_normal)
        self.assertEqual(xinfo.resolution, 0.01)
        self.assertEqual(xinfo.dtype, "bfloat16")
        with set_default_dtype(x.dtype):
            self.assertEqual(torch.finfo(x.dtype), torch.finfo())

        # Special test case for Float8_E5M2
        xinfo = torch.finfo(torch.float8_e5m2)
        self.assertEqual(xinfo.bits, 8)
        self.assertEqual(xinfo.max, 57344.0)
        self.assertEqual(xinfo.min, -57344.0)
        self.assertEqual(xinfo.eps, 0.25)
        self.assertEqual(xinfo.tiny, 6.10352e-05)
        self.assertEqual(xinfo.resolution, 1.0)
        self.assertEqual(xinfo.dtype, "float8_e5m2")

        # Special test case for Float8_E4M3FN
        xinfo = torch.finfo(torch.float8_e4m3fn)
        self.assertEqual(xinfo.bits, 8)
        self.assertEqual(xinfo.max, 448.0)
        self.assertEqual(xinfo.min, -448.0)
        self.assertEqual(xinfo.eps, 0.125)
        self.assertEqual(xinfo.tiny, 0.015625)
        self.assertEqual(xinfo.resolution, 1.0)
        self.assertEqual(xinfo.dtype, "float8_e4m3fn")

    def test_to_complex(self):
        # Regression test for https://github.com/pytorch/pytorch/issues/124868
        # If reference count is leaked this would be a set of 10 elements
        ref_cnt = {sys.getrefcount(torch.float32.to_complex()) for _ in range(10)}
        self.assertLess(len(ref_cnt), 3)

        self.assertEqual(torch.float64.to_complex(), torch.complex128)
        self.assertEqual(torch.float32.to_complex(), torch.complex64)
        self.assertEqual(torch.float16.to_complex(), torch.complex32)

    def test_to_real(self):
        # Regression test for https://github.com/pytorch/pytorch/issues/124868
        # If reference count is leaked this would be a set of 10 elements
        ref_cnt = {sys.getrefcount(torch.cfloat.to_real()) for _ in range(10)}
        self.assertLess(len(ref_cnt), 3)

        self.assertEqual(torch.complex128.to_real(), torch.double)
        self.assertEqual(torch.complex64.to_real(), torch.float32)
        self.assertEqual(torch.complex32.to_real(), torch.float16)


if __name__ == "__main__":
    TestCase._default_dtype_check_enabled = True
    run_tests()