File: test_pocketfft.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (397 lines) | stat: -rw-r--r-- 14,053 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# Owner(s): ["module: dynamo"]

import functools
import queue
import threading
from unittest import skipIf as skipif, SkipTest

import pytest
from pytest import raises as assert_raises

from torch.testing._internal.common_utils import (
    instantiate_parametrized_tests,
    parametrize,
    run_tests,
    TEST_WITH_TORCHDYNAMO,
    TestCase,
)


if TEST_WITH_TORCHDYNAMO:
    import numpy as np
    from numpy.random import random
    from numpy.testing import assert_allclose  # , IS_WASM
else:
    import torch._numpy as np
    from torch._numpy.random import random
    from torch._numpy.testing import assert_allclose  # , IS_WASM


skip = functools.partial(skipif, True)


IS_WASM = False


def fft1(x):
    L = len(x)
    phase = -2j * np.pi * (np.arange(L) / L)
    phase = np.arange(L).reshape(-1, 1) * phase
    return np.sum(x * np.exp(phase), axis=1)


class TestFFTShift(TestCase):
    def test_fft_n(self):
        assert_raises((ValueError, RuntimeError), np.fft.fft, [1, 2, 3], 0)


@instantiate_parametrized_tests
class TestFFT1D(TestCase):
    def setUp(self):
        super().setUp()
        np.random.seed(123456)

    def test_identity(self):
        maxlen = 512
        x = random(maxlen) + 1j * random(maxlen)
        xr = random(maxlen)
        for i in range(1, maxlen):
            assert_allclose(np.fft.ifft(np.fft.fft(x[0:i])), x[0:i], atol=1e-12)
            assert_allclose(np.fft.irfft(np.fft.rfft(xr[0:i]), i), xr[0:i], atol=1e-12)

    def test_fft(self):
        np.random.seed(1234)
        x = random(30) + 1j * random(30)
        assert_allclose(fft1(x), np.fft.fft(x), atol=3e-5)
        assert_allclose(fft1(x), np.fft.fft(x, norm="backward"), atol=3e-5)
        assert_allclose(fft1(x) / np.sqrt(30), np.fft.fft(x, norm="ortho"), atol=5e-6)
        assert_allclose(fft1(x) / 30.0, np.fft.fft(x, norm="forward"), atol=5e-6)

    @parametrize("norm", (None, "backward", "ortho", "forward"))
    def test_ifft(self, norm):
        x = random(30) + 1j * random(30)
        assert_allclose(x, np.fft.ifft(np.fft.fft(x, norm=norm), norm=norm), atol=1e-6)

        # Ensure we get the correct error message
        # NB: Exact wording differs slightly under Dynamo and in eager.
        with pytest.raises((ValueError, RuntimeError), match="Invalid number of"):
            np.fft.ifft([], norm=norm)

    def test_fft2(self):
        x = random((30, 20)) + 1j * random((30, 20))
        assert_allclose(
            np.fft.fft(np.fft.fft(x, axis=1), axis=0), np.fft.fft2(x), atol=1e-6
        )
        assert_allclose(np.fft.fft2(x), np.fft.fft2(x, norm="backward"), atol=1e-6)
        assert_allclose(
            np.fft.fft2(x) / np.sqrt(30 * 20), np.fft.fft2(x, norm="ortho"), atol=1e-6
        )
        assert_allclose(
            np.fft.fft2(x) / (30.0 * 20.0), np.fft.fft2(x, norm="forward"), atol=1e-6
        )

    def test_ifft2(self):
        x = random((30, 20)) + 1j * random((30, 20))
        assert_allclose(
            np.fft.ifft(np.fft.ifft(x, axis=1), axis=0), np.fft.ifft2(x), atol=1e-6
        )
        assert_allclose(np.fft.ifft2(x), np.fft.ifft2(x, norm="backward"), atol=1e-6)
        assert_allclose(
            np.fft.ifft2(x) * np.sqrt(30 * 20), np.fft.ifft2(x, norm="ortho"), atol=1e-6
        )
        assert_allclose(
            np.fft.ifft2(x) * (30.0 * 20.0), np.fft.ifft2(x, norm="forward"), atol=1e-6
        )

    def test_fftn(self):
        x = random((30, 20, 10)) + 1j * random((30, 20, 10))
        assert_allclose(
            np.fft.fft(np.fft.fft(np.fft.fft(x, axis=2), axis=1), axis=0),
            np.fft.fftn(x),
            atol=1e-6,
        )
        assert_allclose(np.fft.fftn(x), np.fft.fftn(x, norm="backward"), atol=1e-6)
        assert_allclose(
            np.fft.fftn(x) / np.sqrt(30 * 20 * 10),
            np.fft.fftn(x, norm="ortho"),
            atol=1e-6,
        )
        assert_allclose(
            np.fft.fftn(x) / (30.0 * 20.0 * 10.0),
            np.fft.fftn(x, norm="forward"),
            atol=1e-6,
        )

    def test_ifftn(self):
        x = random((30, 20, 10)) + 1j * random((30, 20, 10))
        assert_allclose(
            np.fft.ifft(np.fft.ifft(np.fft.ifft(x, axis=2), axis=1), axis=0),
            np.fft.ifftn(x),
            atol=1e-6,
        )
        assert_allclose(np.fft.ifftn(x), np.fft.ifftn(x, norm="backward"), atol=1e-6)
        assert_allclose(
            np.fft.ifftn(x) * np.sqrt(30 * 20 * 10),
            np.fft.ifftn(x, norm="ortho"),
            atol=1e-6,
        )
        assert_allclose(
            np.fft.ifftn(x) * (30.0 * 20.0 * 10.0),
            np.fft.ifftn(x, norm="forward"),
            atol=1e-6,
        )

    def test_rfft(self):
        x = random(30)
        for n in [x.size, 2 * x.size]:
            for norm in [None, "backward", "ortho", "forward"]:
                assert_allclose(
                    np.fft.fft(x, n=n, norm=norm)[: (n // 2 + 1)],
                    np.fft.rfft(x, n=n, norm=norm),
                    atol=1e-6,
                )
            assert_allclose(
                np.fft.rfft(x, n=n), np.fft.rfft(x, n=n, norm="backward"), atol=1e-6
            )
            assert_allclose(
                np.fft.rfft(x, n=n) / np.sqrt(n),
                np.fft.rfft(x, n=n, norm="ortho"),
                atol=1e-6,
            )
            assert_allclose(
                np.fft.rfft(x, n=n) / n, np.fft.rfft(x, n=n, norm="forward"), atol=1e-6
            )

    def test_irfft(self):
        x = random(30)
        assert_allclose(x, np.fft.irfft(np.fft.rfft(x)), atol=1e-6)
        assert_allclose(
            x, np.fft.irfft(np.fft.rfft(x, norm="backward"), norm="backward"), atol=1e-6
        )
        assert_allclose(
            x, np.fft.irfft(np.fft.rfft(x, norm="ortho"), norm="ortho"), atol=1e-6
        )
        assert_allclose(
            x, np.fft.irfft(np.fft.rfft(x, norm="forward"), norm="forward"), atol=1e-6
        )

    def test_rfft2(self):
        x = random((30, 20))
        assert_allclose(np.fft.fft2(x)[:, :11], np.fft.rfft2(x), atol=1e-6)
        assert_allclose(np.fft.rfft2(x), np.fft.rfft2(x, norm="backward"), atol=1e-6)
        assert_allclose(
            np.fft.rfft2(x) / np.sqrt(30 * 20), np.fft.rfft2(x, norm="ortho"), atol=1e-6
        )
        assert_allclose(
            np.fft.rfft2(x) / (30.0 * 20.0), np.fft.rfft2(x, norm="forward"), atol=1e-6
        )

    def test_irfft2(self):
        x = random((30, 20))
        assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x)), atol=1e-6)
        assert_allclose(
            x,
            np.fft.irfft2(np.fft.rfft2(x, norm="backward"), norm="backward"),
            atol=1e-6,
        )
        assert_allclose(
            x, np.fft.irfft2(np.fft.rfft2(x, norm="ortho"), norm="ortho"), atol=1e-6
        )
        assert_allclose(
            x, np.fft.irfft2(np.fft.rfft2(x, norm="forward"), norm="forward"), atol=1e-6
        )

    def test_rfftn(self):
        x = random((30, 20, 10))
        assert_allclose(np.fft.fftn(x)[:, :, :6], np.fft.rfftn(x), atol=1e-6)
        assert_allclose(np.fft.rfftn(x), np.fft.rfftn(x, norm="backward"), atol=1e-6)
        assert_allclose(
            np.fft.rfftn(x) / np.sqrt(30 * 20 * 10),
            np.fft.rfftn(x, norm="ortho"),
            atol=1e-6,
        )
        assert_allclose(
            np.fft.rfftn(x) / (30.0 * 20.0 * 10.0),
            np.fft.rfftn(x, norm="forward"),
            atol=1e-6,
        )

    def test_irfftn(self):
        x = random((30, 20, 10))
        assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x)), atol=1e-6)
        assert_allclose(
            x,
            np.fft.irfftn(np.fft.rfftn(x, norm="backward"), norm="backward"),
            atol=1e-6,
        )
        assert_allclose(
            x, np.fft.irfftn(np.fft.rfftn(x, norm="ortho"), norm="ortho"), atol=1e-6
        )
        assert_allclose(
            x, np.fft.irfftn(np.fft.rfftn(x, norm="forward"), norm="forward"), atol=1e-6
        )

    def test_hfft(self):
        x = random(14) + 1j * random(14)
        x_herm = np.concatenate((random(1), x, random(1)))
        x = np.concatenate((x_herm, np.flip(x).conj()))
        assert_allclose(np.fft.fft(x), np.fft.hfft(x_herm), atol=1e-6)
        assert_allclose(
            np.fft.hfft(x_herm), np.fft.hfft(x_herm, norm="backward"), atol=1e-6
        )
        assert_allclose(
            np.fft.hfft(x_herm) / np.sqrt(30),
            np.fft.hfft(x_herm, norm="ortho"),
            atol=1e-6,
        )
        assert_allclose(
            np.fft.hfft(x_herm) / 30.0, np.fft.hfft(x_herm, norm="forward"), atol=1e-6
        )

    def test_ihfft(self):
        x = random(14) + 1j * random(14)
        x_herm = np.concatenate((random(1), x, random(1)))
        x = np.concatenate((x_herm, np.flip(x).conj()))
        assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm)), atol=1e-6)
        assert_allclose(
            x_herm,
            np.fft.ihfft(np.fft.hfft(x_herm, norm="backward"), norm="backward"),
            atol=1e-6,
        )
        assert_allclose(
            x_herm,
            np.fft.ihfft(np.fft.hfft(x_herm, norm="ortho"), norm="ortho"),
            atol=1e-6,
        )
        assert_allclose(
            x_herm,
            np.fft.ihfft(np.fft.hfft(x_herm, norm="forward"), norm="forward"),
            atol=1e-6,
        )

    @parametrize("op", [np.fft.fftn, np.fft.ifftn, np.fft.rfftn, np.fft.irfftn])
    def test_axes(self, op):
        x = random((30, 20, 10))
        axes = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)]
        for a in axes:
            op_tr = op(np.transpose(x, a))
            tr_op = np.transpose(op(x, axes=a), a)
            assert_allclose(op_tr, tr_op, atol=1e-6)

    def test_all_1d_norm_preserving(self):
        # verify that round-trip transforms are norm-preserving
        x = random(30)
        x_norm = np.linalg.norm(x)
        n = x.size * 2
        func_pairs = [
            (np.fft.fft, np.fft.ifft),
            (np.fft.rfft, np.fft.irfft),
            # hfft: order so the first function takes x.size samples
            #       (necessary for comparison to x_norm above)
            (np.fft.ihfft, np.fft.hfft),
        ]
        for forw, back in func_pairs:
            for n in [x.size, 2 * x.size]:
                for norm in [None, "backward", "ortho", "forward"]:
                    tmp = forw(x, n=n, norm=norm)
                    tmp = back(tmp, n=n, norm=norm)
                    assert_allclose(x_norm, np.linalg.norm(tmp), atol=1e-6)

    @parametrize("dtype", [np.half, np.single, np.double])
    def test_dtypes(self, dtype):
        # make sure that all input precisions are accepted and internally
        # converted to 64bit
        x = random(30).astype(dtype)
        assert_allclose(np.fft.ifft(np.fft.fft(x)), x, atol=1e-6)
        assert_allclose(np.fft.irfft(np.fft.rfft(x)), x, atol=1e-6)

    @parametrize("dtype", [np.float32, np.float64, np.complex64, np.complex128])
    @parametrize("order", ["F", "non-contiguous"])
    @parametrize(
        "fft",
        [np.fft.fft, np.fft.fft2, np.fft.fftn, np.fft.ifft, np.fft.ifft2, np.fft.ifftn],
    )
    def test_fft_with_order(self, dtype, order, fft):
        # Check that FFT/IFFT produces identical results for C, Fortran and
        # non contiguous arrays
        #   rng = np.random.RandomState(42)
        rng = np.random
        X = rng.rand(8, 7, 13).astype(dtype)  # , copy=False)
        # See discussion in pull/14178
        _tol = float(8.0 * np.sqrt(np.log2(X.size)) * np.finfo(X.dtype).eps)
        if order == "F":
            raise SkipTest("Fortran order arrays")
            Y = np.asfortranarray(X)
        else:
            # Make a non contiguous array
            Z = np.empty((16, 7, 13), dtype=X.dtype)
            Z[::2] = X
            Y = Z[::2]
            X = Y.copy()

        if fft.__name__.endswith("fft"):
            for axis in range(3):
                X_res = fft(X, axis=axis)
                Y_res = fft(Y, axis=axis)
                assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
        elif fft.__name__.endswith(("fft2", "fftn")):
            axes = [(0, 1), (1, 2), (0, 2)]
            if fft.__name__.endswith("fftn"):
                axes.extend([(0,), (1,), (2,), None])
            for ax in axes:
                X_res = fft(X, axes=ax)
                Y_res = fft(Y, axes=ax)
                assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
        else:
            raise ValueError


@skipif(IS_WASM, reason="Cannot start thread")
class TestFFTThreadSafe(TestCase):
    threads = 16
    input_shape = (800, 200)

    def _test_mtsame(self, func, *args):
        def worker(args, q):
            q.put(func(*args))

        q = queue.Queue()
        expected = func(*args)

        # Spin off a bunch of threads to call the same function simultaneously
        t = [
            threading.Thread(target=worker, args=(args, q)) for i in range(self.threads)
        ]
        [x.start() for x in t]

        [x.join() for x in t]
        # Make sure all threads returned the correct value
        for i in range(self.threads):
            # under torch.dynamo `assert_array_equal` fails with relative errors of
            # about 1.5e-14. Hence replace it with `assert_allclose(..., rtol=2e-14)`
            assert_allclose(
                q.get(timeout=5),
                expected,
                atol=2e-14
                # msg="Function returned wrong value in multithreaded context",
            )

    def test_fft(self):
        a = np.ones(self.input_shape) * 1 + 0j
        self._test_mtsame(np.fft.fft, a)

    def test_ifft(self):
        a = np.ones(self.input_shape) * 1 + 0j
        self._test_mtsame(np.fft.ifft, a)

    def test_rfft(self):
        a = np.ones(self.input_shape)
        self._test_mtsame(np.fft.rfft, a)

    def test_irfft(self):
        a = np.ones(self.input_shape) * 1 + 0j
        self._test_mtsame(np.fft.irfft, a)


if __name__ == "__main__":
    run_tests()