File: test_function_base.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (38 lines) | stat: -rw-r--r-- 1,054 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# Owner(s): ["module: dynamo"]


import pytest

from torch.testing._internal.common_utils import (
    run_tests,
    TEST_WITH_TORCHDYNAMO,
    TestCase,
)


# If we are going to trace through these, we should use NumPy
# If testing on eager mode, we use torch._numpy
if TEST_WITH_TORCHDYNAMO:
    import numpy as np
    from numpy.testing import assert_equal
else:
    import torch._numpy as np
    from torch._numpy.testing import assert_equal


class TestAppend(TestCase):
    # tests taken from np.append docstring
    def test_basic(self):
        result = np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]])
        assert_equal(result, np.arange(1, 10, dtype=int))

        # When `axis` is specified, `values` must have the correct shape.
        result = np.append([[1, 2, 3], [4, 5, 6]], [[7, 8, 9]], axis=0)
        assert_equal(result, np.arange(1, 10, dtype=int).reshape((3, 3)))

        with pytest.raises((RuntimeError, ValueError)):
            np.append([[1, 2, 3], [4, 5, 6]], [7, 8, 9], axis=0)


if __name__ == "__main__":
    run_tests()