File: test_ndarray_methods.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (677 lines) | stat: -rw-r--r-- 23,555 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
# Owner(s): ["module: dynamo"]

import itertools
from unittest import expectedFailure as xfail, skipIf as skipif

import numpy
import pytest
from pytest import raises as assert_raises

from torch.testing._internal.common_utils import (
    instantiate_parametrized_tests,
    parametrize,
    run_tests,
    skipIfTorchDynamo,
    subtest,
    TEST_WITH_TORCHDYNAMO,
    TestCase,
    xpassIfTorchDynamo_np,
)


if TEST_WITH_TORCHDYNAMO:
    import numpy as np
    from numpy.testing import assert_equal
else:
    import torch._numpy as np
    from torch._numpy.testing import assert_equal


class TestIndexing(TestCase):
    @skipif(TEST_WITH_TORCHDYNAMO, reason=".tensor attr, type of a[0, 0]")
    def test_indexing_simple(self):
        a = np.array([[1, 2, 3], [4, 5, 6]])

        assert isinstance(a[0, 0], np.ndarray)
        assert isinstance(a[0, :], np.ndarray)
        assert a[0, :].tensor._base is a.tensor

    def test_setitem(self):
        a = np.array([[1, 2, 3], [4, 5, 6]])
        a[0, 0] = 8
        assert isinstance(a, np.ndarray)
        assert_equal(a, [[8, 2, 3], [4, 5, 6]])


class TestReshape(TestCase):
    @skipif(TEST_WITH_TORCHDYNAMO, reason=".tensor attribute")
    def test_reshape_function(self):
        arr = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
        tgt = [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]]
        assert np.all(np.reshape(arr, (2, 6)) == tgt)

        arr = np.asarray(arr)
        assert np.transpose(arr, (1, 0)).tensor._base is arr.tensor

    @skipif(TEST_WITH_TORCHDYNAMO, reason=".tensor attribute")
    def test_reshape_method(self):
        arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
        arr_shape = arr.shape

        tgt = [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]]

        # reshape(*shape_tuple)
        assert np.all(arr.reshape(2, 6) == tgt)
        assert arr.reshape(2, 6).tensor._base is arr.tensor  # reshape keeps the base
        assert arr.shape == arr_shape  # arr is intact

        # XXX: move out to dedicated test(s)
        assert arr.reshape(2, 6).tensor._base is arr.tensor

        # reshape(shape_tuple)
        assert np.all(arr.reshape((2, 6)) == tgt)
        assert arr.reshape((2, 6)).tensor._base is arr.tensor
        assert arr.shape == arr_shape

        tgt = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
        assert np.all(arr.reshape(3, 4) == tgt)
        assert arr.reshape(3, 4).tensor._base is arr.tensor
        assert arr.shape == arr_shape

        assert np.all(arr.reshape((3, 4)) == tgt)
        assert arr.reshape((3, 4)).tensor._base is arr.tensor
        assert arr.shape == arr_shape


# XXX : order='C' / 'F'
#        tgt = [[1, 4, 7, 10],
#               [2, 5, 8, 11],
#               [3, 6, 9, 12]]
#        assert np.all(arr.T.reshape((3, 4), order='C') == tgt)
#
#        tgt = [[1, 10, 8, 6], [4, 2, 11, 9], [7, 5, 3, 12]]
#        assert_equal(arr.reshape((3, 4), order='F'), tgt)
#


class TestTranspose(TestCase):
    @skipif(TEST_WITH_TORCHDYNAMO, reason=".tensor attribute")
    def test_transpose_function(self):
        arr = [[1, 2], [3, 4], [5, 6]]
        tgt = [[1, 3, 5], [2, 4, 6]]
        assert_equal(np.transpose(arr, (1, 0)), tgt)

        arr = np.asarray(arr)
        assert np.transpose(arr, (1, 0)).tensor._base is arr.tensor

    @skipif(TEST_WITH_TORCHDYNAMO, reason=".tensor attribute")
    def test_transpose_method(self):
        a = np.array([[1, 2], [3, 4]])
        assert_equal(a.transpose(), [[1, 3], [2, 4]])
        assert_equal(a.transpose(None), [[1, 3], [2, 4]])
        assert_raises((RuntimeError, ValueError), lambda: a.transpose(0))
        assert_raises((RuntimeError, ValueError), lambda: a.transpose(0, 0))
        assert_raises((RuntimeError, ValueError), lambda: a.transpose(0, 1, 2))

        assert a.transpose().tensor._base is a.tensor


class TestRavel(TestCase):
    @skipif(TEST_WITH_TORCHDYNAMO, reason=".tensor attribute")
    def test_ravel_function(self):
        a = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
        tgt = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
        assert_equal(np.ravel(a), tgt)

        arr = np.asarray(a)
        assert np.ravel(arr).tensor._base is arr.tensor

    @skipif(TEST_WITH_TORCHDYNAMO, reason=".tensor attribute")
    def test_ravel_method(self):
        a = np.array([[0, 1], [2, 3]])
        assert_equal(a.ravel(), [0, 1, 2, 3])

        assert a.ravel().tensor._base is a.tensor


class TestNonzero(TestCase):
    def test_nonzero_trivial(self):
        assert_equal(np.nonzero(np.array([])), ([],))
        assert_equal(np.array([]).nonzero(), ([],))

        assert_equal(np.nonzero(np.array([0])), ([],))
        assert_equal(np.array([0]).nonzero(), ([],))

        assert_equal(np.nonzero(np.array([1])), ([0],))
        assert_equal(np.array([1]).nonzero(), ([0],))

    def test_nonzero_onedim(self):
        x = np.array([1, 0, 2, -1, 0, 0, 8])
        assert_equal(np.nonzero(x), ([0, 2, 3, 6],))
        assert_equal(x.nonzero(), ([0, 2, 3, 6],))

    def test_nonzero_twodim(self):
        x = np.array([[0, 1, 0], [2, 0, 3]])
        assert_equal(np.nonzero(x), ([0, 1, 1], [1, 0, 2]))
        assert_equal(x.nonzero(), ([0, 1, 1], [1, 0, 2]))

        x = np.eye(3)
        assert_equal(np.nonzero(x), ([0, 1, 2], [0, 1, 2]))
        assert_equal(x.nonzero(), ([0, 1, 2], [0, 1, 2]))

    def test_sparse(self):
        # test special sparse condition boolean code path
        for i in range(20):
            c = np.zeros(200, dtype=bool)
            c[i::20] = True
            assert_equal(np.nonzero(c)[0], np.arange(i, 200 + i, 20))
            assert_equal(c.nonzero()[0], np.arange(i, 200 + i, 20))

            c = np.zeros(400, dtype=bool)
            c[10 + i : 20 + i] = True
            c[20 + i * 2] = True
            assert_equal(
                np.nonzero(c)[0],
                np.concatenate((np.arange(10 + i, 20 + i), [20 + i * 2])),
            )

    def test_array_method(self):
        # Tests that the array method
        # call to nonzero works
        m = np.array([[1, 0, 0], [4, 0, 6]])
        tgt = [[0, 1, 1], [0, 0, 2]]

        assert_equal(m.nonzero(), tgt)


@instantiate_parametrized_tests
class TestArgmaxArgminCommon(TestCase):
    sizes = [
        (),
        (3,),
        (3, 2),
        (2, 3),
        (3, 3),
        (2, 3, 4),
        (4, 3, 2),
        (1, 2, 3, 4),
        (2, 3, 4, 1),
        (3, 4, 1, 2),
        (4, 1, 2, 3),
        (64,),
        (128,),
        (256,),
    ]

    @skipif(numpy.__version__ < "1.22", reason="NP_VER: fails on NumPy 1.21.x")
    @parametrize(
        "size, axis",
        list(
            itertools.chain(
                *[
                    [
                        (size, axis)
                        for axis in list(range(-len(size), len(size))) + [None]
                    ]
                    for size in sizes
                ]
            )
        ),
    )
    @parametrize("method", [np.argmax, np.argmin])
    def test_np_argmin_argmax_keepdims(self, size, axis, method):
        # arr = np.random.normal(size=size)
        arr = np.empty(shape=size)

        # contiguous arrays
        if axis is None:
            new_shape = [1 for _ in range(len(size))]
        else:
            new_shape = list(size)
            new_shape[axis] = 1
        new_shape = tuple(new_shape)

        _res_orig = method(arr, axis=axis)
        res_orig = _res_orig.reshape(new_shape)
        res = method(arr, axis=axis, keepdims=True)
        assert_equal(res, res_orig)
        assert res.shape == new_shape

        outarray = np.empty(res.shape, dtype=res.dtype)
        res1 = method(arr, axis=axis, out=outarray, keepdims=True)
        assert res1 is outarray
        assert_equal(res, outarray)

        if len(size) > 0:
            wrong_shape = list(new_shape)
            if axis is not None:
                wrong_shape[axis] = 2
            else:
                wrong_shape[0] = 2
            wrong_outarray = np.empty(wrong_shape, dtype=res.dtype)
            with pytest.raises(ValueError):
                method(arr.T, axis=axis, out=wrong_outarray, keepdims=True)

        # non-contiguous arrays
        if axis is None:
            new_shape = [1 for _ in range(len(size))]
        else:
            new_shape = list(size)[::-1]
            new_shape[axis] = 1
        new_shape = tuple(new_shape)

        _res_orig = method(arr.T, axis=axis)
        res_orig = _res_orig.reshape(new_shape)
        res = method(arr.T, axis=axis, keepdims=True)
        assert_equal(res, res_orig)
        assert res.shape == new_shape
        outarray = np.empty(new_shape[::-1], dtype=res.dtype)
        outarray = outarray.T
        res1 = method(arr.T, axis=axis, out=outarray, keepdims=True)
        assert res1 is outarray
        assert_equal(res, outarray)

        if len(size) > 0:
            # one dimension lesser for non-zero sized
            # array should raise an error
            with pytest.raises(ValueError):
                method(arr[0], axis=axis, out=outarray, keepdims=True)

        if len(size) > 0:
            wrong_shape = list(new_shape)
            if axis is not None:
                wrong_shape[axis] = 2
            else:
                wrong_shape[0] = 2
            wrong_outarray = np.empty(wrong_shape, dtype=res.dtype)
            with pytest.raises(ValueError):
                method(arr.T, axis=axis, out=wrong_outarray, keepdims=True)

    @skipif(True, reason="XXX: need ndarray.chooses")
    @parametrize("method", ["max", "min"])
    def test_all(self, method):
        # a = np.random.normal(0, 1, (4, 5, 6, 7, 8))
        a = np.arange(4 * 5 * 6 * 7 * 8).reshape((4, 5, 6, 7, 8))
        arg_method = getattr(a, "arg" + method)
        val_method = getattr(a, method)
        for i in range(a.ndim):
            a_maxmin = val_method(i)
            aarg_maxmin = arg_method(i)
            axes = list(range(a.ndim))
            axes.remove(i)
            assert np.all(a_maxmin == aarg_maxmin.choose(*a.transpose(i, *axes)))

    @parametrize("method", ["argmax", "argmin"])
    def test_output_shape(self, method):
        # see also gh-616
        a = np.ones((10, 5))
        arg_method = getattr(a, method)

        # Check some simple shape mismatches
        out = np.ones(11, dtype=np.int_)

        with assert_raises(ValueError):
            arg_method(-1, out=out)

        out = np.ones((2, 5), dtype=np.int_)
        with assert_raises(ValueError):
            arg_method(-1, out=out)

        # these could be relaxed possibly (used to allow even the previous)
        out = np.ones((1, 10), dtype=np.int_)
        with assert_raises(ValueError):
            arg_method(-1, out=out)

        out = np.ones(10, dtype=np.int_)
        arg_method(-1, out=out)
        assert_equal(out, arg_method(-1))

    @parametrize("ndim", [0, 1])
    @parametrize("method", ["argmax", "argmin"])
    def test_ret_is_out(self, ndim, method):
        a = np.ones((4,) + (256,) * ndim)
        arg_method = getattr(a, method)
        out = np.empty((256,) * ndim, dtype=np.intp)
        ret = arg_method(axis=0, out=out)
        assert ret is out

    @parametrize(
        "arr_method, np_method", [("argmax", np.argmax), ("argmin", np.argmin)]
    )
    def test_np_vs_ndarray(self, arr_method, np_method):
        # make sure both ndarray.argmax/argmin and
        # numpy.argmax/argmin support out/axis args
        # a = np.random.normal(size=(2, 3))
        a = np.arange(6).reshape((2, 3))
        arg_method = getattr(a, arr_method)

        # check keyword args
        out1 = np.zeros(3, dtype=int)
        out2 = np.zeros(3, dtype=int)
        assert_equal(arg_method(out=out1, axis=0), np_method(a, out=out2, axis=0))
        assert_equal(out1, out2)

    @parametrize(
        "arr_method, np_method", [("argmax", np.argmax), ("argmin", np.argmin)]
    )
    def test_np_vs_ndarray_positional(self, arr_method, np_method):
        a = np.arange(6).reshape((2, 3))
        arg_method = getattr(a, arr_method)

        # check positional args
        out1 = np.zeros(2, dtype=int)
        out2 = np.zeros(2, dtype=int)
        assert_equal(arg_method(1, out1), np_method(a, 1, out2))
        assert_equal(out1, out2)


@instantiate_parametrized_tests
class TestArgmax(TestCase):
    usg_data = [
        ([1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], 0),
        ([3, 3, 3, 3, 2, 2, 2, 2], 0),
        ([0, 1, 2, 3, 4, 5, 6, 7], 7),
        ([7, 6, 5, 4, 3, 2, 1, 0], 0),
    ]
    sg_data = usg_data + [
        ([1, 2, 3, 4, -4, -3, -2, -1], 3),
        ([1, 2, 3, 4, -1, -2, -3, -4], 3),
    ]
    darr = [
        (np.array(d[0], dtype=t), d[1])
        for d, t in (itertools.product(usg_data, (np.uint8,)))
    ]
    darr += [
        (np.array(d[0], dtype=t), d[1])
        for d, t in (
            itertools.product(
                sg_data, (np.int8, np.int16, np.int32, np.int64, np.float32, np.float64)
            )
        )
    ]
    darr += [
        (np.array(d[0], dtype=t), d[1])
        for d, t in (
            itertools.product(
                (
                    ([0, 1, 2, 3, np.nan], 4),
                    ([0, 1, 2, np.nan, 3], 3),
                    ([np.nan, 0, 1, 2, 3], 0),
                    ([np.nan, 0, np.nan, 2, 3], 0),
                    # To hit the tail of SIMD multi-level(x4, x1) inner loops
                    # on variant SIMD widthes
                    ([1] * (2 * 5 - 1) + [np.nan], 2 * 5 - 1),
                    ([1] * (4 * 5 - 1) + [np.nan], 4 * 5 - 1),
                    ([1] * (8 * 5 - 1) + [np.nan], 8 * 5 - 1),
                    ([1] * (16 * 5 - 1) + [np.nan], 16 * 5 - 1),
                    ([1] * (32 * 5 - 1) + [np.nan], 32 * 5 - 1),
                ),
                (np.float32, np.float64),
            )
        )
    ]
    nan_arr = darr + [
        subtest(
            ([0, 1, 2, 3, complex(0, np.nan)], 4), decorators=[xpassIfTorchDynamo_np]
        ),
        subtest(
            ([0, 1, 2, 3, complex(np.nan, 0)], 4), decorators=[xpassIfTorchDynamo_np]
        ),
        subtest(
            ([0, 1, 2, complex(np.nan, 0), 3], 3), decorators=[xpassIfTorchDynamo_np]
        ),
        subtest(
            ([0, 1, 2, complex(0, np.nan), 3], 3), decorators=[xpassIfTorchDynamo_np]
        ),
        subtest(
            ([complex(0, np.nan), 0, 1, 2, 3], 0), decorators=[xpassIfTorchDynamo_np]
        ),
        subtest(
            ([complex(np.nan, np.nan), 0, 1, 2, 3], 0),
            decorators=[xpassIfTorchDynamo_np],
        ),
        subtest(
            ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, 1)], 0),
            decorators=[xpassIfTorchDynamo_np],
        ),
        subtest(
            ([complex(np.nan, np.nan), complex(np.nan, 2), complex(np.nan, 1)], 0),
            decorators=[xpassIfTorchDynamo_np],
        ),
        subtest(
            ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, np.nan)], 0),
            decorators=[xpassIfTorchDynamo_np],
        ),
        subtest(
            ([complex(0, 0), complex(0, 2), complex(0, 1)], 1),
            decorators=[xpassIfTorchDynamo_np],
        ),
        subtest(
            ([complex(1, 0), complex(0, 2), complex(0, 1)], 0),
            decorators=[xpassIfTorchDynamo_np],
        ),
        subtest(
            ([complex(1, 0), complex(0, 2), complex(1, 1)], 2),
            decorators=[xpassIfTorchDynamo_np],
        ),
        ([False, False, False, False, True], 4),
        ([False, False, False, True, False], 3),
        ([True, False, False, False, False], 0),
        ([True, False, True, False, False], 0),
    ]

    @parametrize("data", nan_arr)
    def test_combinations(self, data):
        arr, pos = data
        #      with suppress_warnings() as sup:
        #          sup.filter(RuntimeWarning,
        #                      "invalid value encountered in reduce")
        #        if np.asarray(arr).dtype.kind in "c":
        #            pytest.xfail(reason="'max_values_cpu' not implemented for 'ComplexDouble'")

        val = np.max(arr)

        assert_equal(np.argmax(arr), pos)  # , err_msg="%r" % arr)
        assert_equal(arr[np.argmax(arr)], val)  # , err_msg="%r" % arr)

        # add padding to test SIMD loops
        rarr = np.repeat(arr, 129)
        rpos = pos * 129
        assert_equal(np.argmax(rarr), rpos, err_msg=f"{rarr!r}")
        assert_equal(rarr[np.argmax(rarr)], val, err_msg=f"{rarr!r}")

        padd = np.repeat(np.min(arr), 513)
        rarr = np.concatenate((arr, padd))
        rpos = pos
        assert_equal(np.argmax(rarr), rpos, err_msg=f"{rarr!r}")
        assert_equal(rarr[np.argmax(rarr)], val, err_msg=f"{rarr!r}")

    def test_maximum_signed_integers(self):
        a = np.array([1, 2**7 - 1, -(2**7)], dtype=np.int8)
        assert_equal(np.argmax(a), 1)

        a = np.array([1, 2**15 - 1, -(2**15)], dtype=np.int16)
        assert_equal(np.argmax(a), 1)

        a = np.array([1, 2**31 - 1, -(2**31)], dtype=np.int32)
        assert_equal(np.argmax(a), 1)

        a = np.array([1, 2**63 - 1, -(2**63)], dtype=np.int64)
        assert_equal(np.argmax(a), 1)


@instantiate_parametrized_tests
class TestArgmin(TestCase):
    usg_data = [
        ([1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], 8),
        ([3, 3, 3, 3, 2, 2, 2, 2], 4),
        ([0, 1, 2, 3, 4, 5, 6, 7], 0),
        ([7, 6, 5, 4, 3, 2, 1, 0], 7),
    ]
    sg_data = usg_data + [
        ([1, 2, 3, 4, -4, -3, -2, -1], 4),
        ([1, 2, 3, 4, -1, -2, -3, -4], 7),
    ]
    darr = [
        (np.array(d[0], dtype=t), d[1])
        for d, t in (itertools.product(usg_data, (np.uint8,)))
    ]
    darr += [
        (np.array(d[0], dtype=t), d[1])
        for d, t in (
            itertools.product(
                sg_data, (np.int8, np.int16, np.int32, np.int64, np.float32, np.float64)
            )
        )
    ]
    darr += [
        (np.array(d[0], dtype=t), d[1])
        for d, t in (
            itertools.product(
                (
                    ([0, 1, 2, 3, np.nan], 4),
                    ([0, 1, 2, np.nan, 3], 3),
                    ([np.nan, 0, 1, 2, 3], 0),
                    ([np.nan, 0, np.nan, 2, 3], 0),
                    # To hit the tail of SIMD multi-level(x4, x1) inner loops
                    # on variant SIMD widthes
                    ([1] * (2 * 5 - 1) + [np.nan], 2 * 5 - 1),
                    ([1] * (4 * 5 - 1) + [np.nan], 4 * 5 - 1),
                    ([1] * (8 * 5 - 1) + [np.nan], 8 * 5 - 1),
                    ([1] * (16 * 5 - 1) + [np.nan], 16 * 5 - 1),
                    ([1] * (32 * 5 - 1) + [np.nan], 32 * 5 - 1),
                ),
                (np.float32, np.float64),
            )
        )
    ]
    nan_arr = darr + [
        subtest(([0, 1, 2, 3, complex(0, np.nan)], 4), decorators=[xfail]),
        subtest(([0, 1, 2, 3, complex(np.nan, 0)], 4), decorators=[xfail]),
        subtest(([0, 1, 2, complex(np.nan, 0), 3], 3), decorators=[xfail]),
        subtest(([0, 1, 2, complex(0, np.nan), 3], 3), decorators=[xfail]),
        subtest(([complex(0, np.nan), 0, 1, 2, 3], 0), decorators=[xfail]),
        subtest(([complex(np.nan, np.nan), 0, 1, 2, 3], 0), decorators=[xfail]),
        subtest(
            ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, 1)], 0),
            decorators=[xfail],
        ),
        subtest(
            ([complex(np.nan, np.nan), complex(np.nan, 2), complex(np.nan, 1)], 0),
            decorators=[xfail],
        ),
        subtest(
            ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, np.nan)], 0),
            decorators=[xfail],
        ),
        subtest(([complex(0, 0), complex(0, 2), complex(0, 1)], 0), decorators=[xfail]),
        subtest(([complex(1, 0), complex(0, 2), complex(0, 1)], 2), decorators=[xfail]),
        subtest(([complex(1, 0), complex(0, 2), complex(1, 1)], 1), decorators=[xfail]),
        ([True, True, True, True, False], 4),
        ([True, True, True, False, True], 3),
        ([False, True, True, True, True], 0),
        ([False, True, False, True, True], 0),
    ]

    @parametrize("data", nan_arr)
    def test_combinations(self, data):
        arr, pos = data

        if np.asarray(arr).dtype.kind in "c":
            pytest.xfail(reason="'min_values_cpu' not implemented for 'ComplexDouble'")

        #        with suppress_warnings() as sup:
        #            sup.filter(RuntimeWarning, "invalid value encountered in reduce")
        min_val = np.min(arr)

        assert_equal(np.argmin(arr), pos, err_msg=f"{arr!r}")
        assert_equal(arr[np.argmin(arr)], min_val, err_msg=f"{arr!r}")

        # add padding to test SIMD loops
        rarr = np.repeat(arr, 129)
        rpos = pos * 129
        assert_equal(np.argmin(rarr), rpos, err_msg=f"{rarr!r}")
        assert_equal(rarr[np.argmin(rarr)], min_val, err_msg=f"{rarr!r}")

        padd = np.repeat(np.max(arr), 513)
        rarr = np.concatenate((arr, padd))
        rpos = pos
        assert_equal(np.argmin(rarr), rpos, err_msg=f"{rarr!r}")
        assert_equal(rarr[np.argmin(rarr)], min_val, err_msg=f"{rarr!r}")

    def test_minimum_signed_integers(self):
        a = np.array([1, -(2**7), -(2**7) + 1, 2**7 - 1], dtype=np.int8)
        assert_equal(np.argmin(a), 1)

        a = np.array([1, -(2**15), -(2**15) + 1, 2**15 - 1], dtype=np.int16)
        assert_equal(np.argmin(a), 1)

        a = np.array([1, -(2**31), -(2**31) + 1, 2**31 - 1], dtype=np.int32)
        assert_equal(np.argmin(a), 1)

        a = np.array([1, -(2**63), -(2**63) + 1, 2**63 - 1], dtype=np.int64)
        assert_equal(np.argmin(a), 1)


class TestAmax(TestCase):
    def test_basic(self):
        a = [3, 4, 5, 10, -3, -5, 6.0]
        assert_equal(np.amax(a), 10.0)
        b = [[3, 6.0, 9.0], [4, 10.0, 5.0], [8, 3.0, 2.0]]
        assert_equal(np.amax(b, axis=0), [8.0, 10.0, 9.0])
        assert_equal(np.amax(b, axis=1), [9.0, 10.0, 8.0])

        arr = np.asarray(a)
        assert_equal(np.amax(arr), arr.max())


class TestAmin(TestCase):
    def test_basic(self):
        a = [3, 4, 5, 10, -3, -5, 6.0]
        assert_equal(np.amin(a), -5.0)
        b = [[3, 6.0, 9.0], [4, 10.0, 5.0], [8, 3.0, 2.0]]
        assert_equal(np.amin(b, axis=0), [3.0, 3.0, 2.0])
        assert_equal(np.amin(b, axis=1), [3.0, 4.0, 2.0])

        arr = np.asarray(a)
        assert_equal(np.amin(arr), arr.min())


class TestContains(TestCase):
    def test_contains(self):
        a = np.arange(12).reshape(3, 4)
        assert 2 in a
        assert 42 not in a


@instantiate_parametrized_tests
class TestNoExtraMethods(TestCase):
    # make sure ndarray does not carry extra methods/attributes
    # >>> set(dir(a)) - set(dir(a.tensor.numpy()))
    @parametrize("name", ["fn", "ivar", "method", "name", "plain", "rvar"])
    def test_extra_methods(self, name):
        a = np.ones(3)
        with pytest.raises(AttributeError):
            getattr(a, name)


class TestIter(TestCase):
    @skipIfTorchDynamo()
    def test_iter_1d(self):
        # numpy generates array scalars, we do 0D arrays
        a = np.arange(5)
        lst = list(a)
        assert all(type(x) == np.ndarray for x in lst), f"{[type(x) for x in lst]}"
        assert all(x.ndim == 0 for x in lst)

    def test_iter_2d(self):
        # numpy iterates over the 0th axis
        a = np.arange(5)[None, :]
        lst = list(a)
        assert len(lst) == 1
        assert type(lst[0]) == np.ndarray
        assert_equal(lst[0], np.arange(5))


if __name__ == "__main__":
    run_tests()