1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
# Owner(s): ["module: dynamo"]
"""Test examples for NEP 50."""
import itertools
from unittest import skipIf as skipif, SkipTest
try:
import numpy as _np
v = _np.__version__.split(".")
HAVE_NUMPY = int(v[0]) >= 1 and int(v[1]) >= 24
except ImportError:
HAVE_NUMPY = False
import torch._numpy as tnp
from torch._numpy import ( # noqa: F401
array,
bool_,
complex128,
complex64,
float32,
float64,
inf,
int16,
int32,
int64,
uint8,
)
from torch._numpy.testing import assert_allclose
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
uint16 = uint8 # can be anything here, see below
# from numpy import array, uint8, uint16, int64, float32, float64, inf
# from numpy.testing import assert_allclose
# import numpy as np
# np._set_promotion_state('weak')
from pytest import raises as assert_raises
unchanged = None
# expression old result new_result
examples = {
"uint8(1) + 2": (int64(3), uint8(3)),
"array([1], uint8) + int64(1)": (array([2], uint8), array([2], int64)),
"array([1], uint8) + array(1, int64)": (array([2], uint8), array([2], int64)),
"array([1.], float32) + float64(1.)": (
array([2.0], float32),
array([2.0], float64),
),
"array([1.], float32) + array(1., float64)": (
array([2.0], float32),
array([2.0], float64),
),
"array([1], uint8) + 1": (array([2], uint8), unchanged),
"array([1], uint8) + 200": (array([201], uint8), unchanged),
"array([100], uint8) + 200": (array([44], uint8), unchanged),
"array([1], uint8) + 300": (array([301], uint16), Exception),
"uint8(1) + 300": (int64(301), Exception),
"uint8(100) + 200": (int64(301), uint8(44)), # and RuntimeWarning
"float32(1) + 3e100": (float64(3e100), float32(inf)), # and RuntimeWarning [T7]
"array([1.0], float32) + 1e-14 == 1.0": (array([True]), unchanged),
"array([0.1], float32) == float64(0.1)": (array([True]), array([False])),
"array(1.0, float32) + 1e-14 == 1.0": (array(False), array(True)),
"array([1.], float32) + 3": (array([4.0], float32), unchanged),
"array([1.], float32) + int64(3)": (array([4.0], float32), array([4.0], float64)),
"3j + array(3, complex64)": (array(3 + 3j, complex128), array(3 + 3j, complex64)),
"float32(1) + 1j": (array(1 + 1j, complex128), array(1 + 1j, complex64)),
"int32(1) + 5j": (array(1 + 5j, complex128), unchanged),
# additional examples from the NEP text
"int16(2) + 2": (int64(4), int16(4)),
"int16(4) + 4j": (complex128(4 + 4j), unchanged),
"float32(5) + 5j": (complex128(5 + 5j), complex64(5 + 5j)),
"bool_(True) + 1": (int64(2), unchanged),
"True + uint8(2)": (uint8(3), unchanged),
}
@skipif(not HAVE_NUMPY, reason="NumPy not found")
@instantiate_parametrized_tests
class TestNEP50Table(TestCase):
@parametrize("example", examples)
def test_nep50_exceptions(self, example):
old, new = examples[example]
if new == Exception:
with assert_raises(OverflowError):
eval(example)
else:
result = eval(example)
if new is unchanged:
new = old
assert_allclose(result, new, atol=1e-16)
assert result.dtype == new.dtype
# ### Directly compare to numpy ###
weaks = (True, 1, 2.0, 3j)
non_weaks = (
tnp.asarray(True),
tnp.uint8(1),
tnp.int8(1),
tnp.int32(1),
tnp.int64(1),
tnp.float32(1),
tnp.float64(1),
tnp.complex64(1),
tnp.complex128(1),
)
if HAVE_NUMPY:
dtypes = (
None,
_np.bool_,
_np.uint8,
_np.int8,
_np.int32,
_np.int64,
_np.float32,
_np.float64,
_np.complex64,
_np.complex128,
)
else:
dtypes = (None,)
# ufunc name: [array.dtype]
corners = {
"true_divide": ["bool_", "uint8", "int8", "int16", "int32", "int64"],
"divide": ["bool_", "uint8", "int8", "int16", "int32", "int64"],
"arctan2": ["bool_", "uint8", "int8", "int16", "int32", "int64"],
"copysign": ["bool_", "uint8", "int8", "int16", "int32", "int64"],
"heaviside": ["bool_", "uint8", "int8", "int16", "int32", "int64"],
"ldexp": ["bool_", "uint8", "int8", "int16", "int32", "int64"],
"power": ["uint8"],
"nextafter": ["float32"],
}
@skipif(not HAVE_NUMPY, reason="NumPy not found")
@instantiate_parametrized_tests
class TestCompareToNumpy(TestCase):
@parametrize("scalar, array, dtype", itertools.product(weaks, non_weaks, dtypes))
def test_direct_compare(self, scalar, array, dtype):
# compare to NumPy w/ NEP 50.
try:
state = _np._get_promotion_state()
_np._set_promotion_state("weak")
if dtype is not None:
kwargs = {"dtype": dtype}
try:
result_numpy = _np.add(scalar, array.tensor.numpy(), **kwargs)
except Exception:
return
kwargs = {}
if dtype is not None:
kwargs = {"dtype": getattr(tnp, dtype.__name__)}
result = tnp.add(scalar, array, **kwargs).tensor.numpy()
assert result.dtype == result_numpy.dtype
assert result == result_numpy
finally:
_np._set_promotion_state(state)
@parametrize("name", tnp._ufuncs._binary)
@parametrize("scalar, array", itertools.product(weaks, non_weaks))
def test_compare_ufuncs(self, name, scalar, array):
if name in corners and (
array.dtype.name in corners[name]
or tnp.asarray(scalar).dtype.name in corners[name]
):
raise SkipTest(f"{name}(..., dtype=array.dtype)")
try:
state = _np._get_promotion_state()
_np._set_promotion_state("weak")
if name in ["matmul", "modf", "divmod", "ldexp"]:
return
ufunc = getattr(tnp, name)
ufunc_numpy = getattr(_np, name)
try:
result = ufunc(scalar, array)
except RuntimeError:
# RuntimeError: "bitwise_xor_cpu" not implemented for 'ComplexDouble' etc
result = None
try:
result_numpy = ufunc_numpy(scalar, array.tensor.numpy())
except TypeError:
# TypeError: ufunc 'hypot' not supported for the input types
result_numpy = None
if result is not None and result_numpy is not None:
assert result.tensor.numpy().dtype == result_numpy.dtype
finally:
_np._set_promotion_state(state)
if __name__ == "__main__":
run_tests()
|